C++已死?这篇文章让你看到它在深度学习底层有多硬核!

本文将带领您完成一次从理论认知到工程实践的完整旅程:

  1. 数学基石:重新审视线性代数的核心概念,理解它们在深度学习中的真正含义
  2. 基础实现:从零开始用C++构建矩阵运算库,掌握底层实现原理
  3. 性能优化之旅:深入探索SIMD、缓存优化、内存布局等高级技术
  4. 高级应用:特征值分解、矩阵分解等在实际深度学习中的应用
  5. 实战演练:使用我们的优化库解决真实的深度学习问题

数学基石——线性代数核心概念回顾

1.1 标量、向量、矩阵、张量:数据世界的四重奏

让我们用天气预报系统来理解这四个概念:

标量(Scalar):就像今天的气温是"25°C"——一个简单的数字,完整地描述了某个时刻的温度信息。在深度学习中,学习率、损失值都是标量。

向量(Vector):就像一天的温度变化"[20°C, 25°C, 28°C, 22°C]"——一行数字,记录了一天中四个时间点的温度。在神经网络中,一个样本的特征、一层的偏置都是向量。

矩阵(Matrix):就像一周的天气记录表:

        周一  周二  周三  周四  周五  周六  周日
温度     20    22    25    24    21   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

讳疾忌医丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值