本文将带领您完成一次从理论认知到工程实践的完整旅程:
- 数学基石:重新审视线性代数的核心概念,理解它们在深度学习中的真正含义
- 基础实现:从零开始用C++构建矩阵运算库,掌握底层实现原理
- 性能优化之旅:深入探索SIMD、缓存优化、内存布局等高级技术
- 高级应用:特征值分解、矩阵分解等在实际深度学习中的应用
- 实战演练:使用我们的优化库解决真实的深度学习问题
数学基石——线性代数核心概念回顾
1.1 标量、向量、矩阵、张量:数据世界的四重奏
让我们用天气预报系统来理解这四个概念:
标量(Scalar):就像今天的气温是"25°C"——一个简单的数字,完整地描述了某个时刻的温度信息。在深度学习中,学习率、损失值都是标量。
向量(Vector):就像一天的温度变化"[20°C, 25°C, 28°C, 22°C]"——一行数字,记录了一天中四个时间点的温度。在神经网络中,一个样本的特征、一层的偏置都是向量。
矩阵(Matrix):就像一周的天气记录表:
周一 周二 周三 周四 周五 周六 周日
温度 20 22 25 24 21