Transformers实践-谷歌-BERT-概览

1 需求

阶段一:模型下载

  • 需求:自动下载模型和分词器
  • 需求:手动导入模型和分词器

阶段二:模型使用

  • 需求:pipeline使用预训练模型

阶段三:模型微调

  • 需求:训练和评估
  • 需求:测试

关键词:训练数据集、评估数据集、测试数据集


阶段四:模型部署

  • 需求:上线

2 接口


3 自动下载模型与分词器

示例一: 

from transformers import BertModel, BertTokenizer

# 指定模型和分词器的名称
model_name = 'bert-base-uncased'

# 指定下载路径
cache_dir = './my_models'

# 下载模型和分词器,并指定下载路径
model = BertModel.from_pretrained(model_name, cache_dir=cache_dir)
tokenizer = BertTokenizer.from_pretrained(model_name, cache_dir=cache_dir)

# 现在你可以使用模型和分词器进行推理或其他任务了

import os
os.environ['http_proxy'] = 'http://xxx.xxx.xxx'
os.environ['https_proxy'] = 'http://xxx.xxx.xxx'

import torch
from transformers import BertModel, BertTokenizer

# 加载预训练的模型和分词器
tokenizer = BertTokenizer.from_pretrained('bert-base-chinese')
model = BertModel.from_pretrained('bert-base-chinese')

# 示例文本
text = "这是一个使用BERT进行中文文本处理的例子。"

# 对文本进行分词
inputs = tokenizer(text, return_tensors="pt")  # 返回张量形式的输入

# 通过模型获取输出
with torch.no_grad():  # 不计算梯度以节省内存
    outputs = model(**inputs)

# 输出最后一层的隐藏状态
last_hidden_states = outputs.last_hidden_state

# 获取文本的第一个标记(通常是[CLS]标记)的向量表示
text_embedding = last_hidden_states[:, 0]

print(text_embedding)

3 手动导入模型和分词器

  • 模型权重文件:pytorch_model.bin 或 tf_model.h5
  • 模型配置文件:config.json
  • 分词器的词汇表文件:vocab.txt
  • 分词器配置文件:tokenizer.json、tokenizer_config.json

当手动下载 Hugging Face 模型时,通常需要以下类型的文件:

一、模型权重文件

  1. PyTorch 格式(.bin 或.pt)
    • 如果模型是基于 PyTorch 开发的,其权重文件通常以 .bin 或 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值