R3LIVE项目实战(4) — 双目相机与激光雷达livox_camera_lidar_calibration联合标定

本文档详细介绍了如何在Ubuntu 20.04环境下,通过R3LIVE项目对ZED相机与Livox雷达进行联合标定的全过程,包括环境配置、相机内参标定、数据采集、外参计算和结果验证。使用了角点作为标定目标,确保了标定的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

步骤1: 环境配置

1.1 安装环境和驱动

1.2 安装依赖

1.3 下载源码,编译准备

1.4 程序节点概括

步骤2: 相机内参标定

2.1 前期准备

2.3 cameraCalib标定

2.4 内参结果

步骤3: 标定准备和数据采集

3.1 标定场景准备

3.2 连接雷达

3.3 连接相机

3.4 采集照片和点云数据

步骤4: 标定数据获取

4.1 参数设置

4.2 获得照片中的角点坐标

4.3 获得雷达点云中的角点坐标

5.2 外参计算getExt1节点

5.3 外参计算getExt2节点

步骤6: 结果验证与相关应用

6.1 概述

6.2 投影点云到照片

6.3 点云着色

注解:


本方案提供了一个手动校准Livox雷达和相机之间外参的方法,已经在LIVOX AVIA和ZED2i上进行了验证。其中包含了计算相机内参,获得标定数据,优化计算外参和雷达相机融合应用相关的代码。本方案中使用了标定板角点作为标定目标物,由于Livox雷达非重复性扫描的特点,点云的密度较大,比较易于找到雷达点云中角点的准确位置。相机雷达的标定和融合也可以得到不错的结果。

步骤1: 环境配置

(以下标定基于Ubuntu 20.04环境)

1.1 安装环境和驱动

安装ROS环境,安装 Livox SDKlivox_ros_driver 如已安装可以跳过此步骤。Livox雷达环境的配置可以参考文章:

<think>好的,用户需要查找关于相机Livox雷达联合标定的方法和教程。首先,我得先理解用户的具体需求。他们可能是在进行多传感器融合的项目,比如自动驾驶或机器人导航,需要将相机和激光雷达的数据进行空间对齐,以便后续的处理和融合。 接下来,我要回忆一下之前提供的引用内容。引用1、2、4提到了Basler相机和Livox Avia的联合标定,以及海康威视相机Livox雷达的标定方法。引用3主要讲的是单目相机的标定,但联合标定可能也需要先进行内参标定。所以,用户的问题应该分为两个部分:相机内参标定和相机-雷达的外参标定。 首先,相机内参标定是基础,必须确保相机自身的参数准确。引用3详细介绍了使用ROS的camera_calibration包进行单目标定的步骤,包括安装包、制作棋盘格标定板、采集图像和运行标定程序。用户需要先完成这一步,才能进行后续的联合标定。 然后是联合标定部分。引用1、2、4提到了不同的方法。比如引用1和4提到了使用ROS下的livox_camera_calib功能包,通过特定的launch文件启动标定流程,可能需要调整配置文件中的路径和参数。引用2提到了在R3LIVE框架下的应用,这可能涉及到在线标定或实时建图中的标定优化。 用户可能遇到的问题包括:如何准备标定数据,需要什么样的标定板(比如棋盘格或AprilTag),标定时的数据采集注意事项,以及如何处理标定结果。此外,标定过程中可能需要同时获取相机图像和雷达点云,确保时间同步和空间上的对应关系。 还需要考虑用户使用的硬件和软件环境,比如是否使用Ubuntu和ROS,具体的版本是否兼容。例如引用1提到的是ROS-noetic,而引用3的安装命令也涉及ROS版本。如果用户的环境不同,可能需要调整安装步骤。 另外,标定的精度评估也很重要。用户可能需要了解如何验证标定结果的有效性,比如通过重投影误差或点云图像的配准效果。可能还需要后期优化,比如在SLAM系统中在线优化外参。 最后,用户可能需要具体的操作步骤,比如如何启动标定程序,修改哪些配置文件,数据采集的频率和场景等。需要将这些步骤整理成清晰的流程,并提示注意事项,比如标定板的大小、光照条件、运动模式等,以确保标定效果准确可靠。 总结下来,回答应该分为内参标定联合标定步骤、标定工具和代码、注意事项、应用优化几个部分,引用相关的资料,并给出可能的扩展问题,帮助用户深入理解。</think>### 相机Livox雷达联合标定方法详解 #### **1. 标定准备工作** - **硬件环境**:需同步采集相机图像和Livox雷达点云数据,确保时间戳对齐。建议使用ROS(Robot Operating System)管理多传感器数据流[^1][^4]。 - **软件依赖**:安装ROS(如Noetic版本)、相机驱动(如Basler或海康威视)、Livox ROS驱动,以及标定工具包(如`livox_camera_calib`)[^3][^4]。 - **标定板选择**:通常使用棋盘格(Chessboard)或AprilTag,需提前打印并固定标定板。 #### **2. 相机内参标定** 标定相机内参是联合标定的前提。通过ROS的`camera_calibration`包实现: ```bash # 安装标定工具 sudo apt install ros-$ROS_DISTRO-camera-calibration # 启动标定程序(需连接相机) rosrun camera_calibration cameracalibrator.py --size 8x6 --square 0.024 image:=/camera/image_raw ``` 标定过程中需多角度移动棋盘格,直至进度条填满后点击“CALIBRATE”,保存生成的`yaml`文件[^3]。 #### **3. 相机-Livox雷达联合外参标定** ##### **步骤1:数据采集** - 同时录制相机图像和雷达点云数据(建议使用`rosbag`录制)。 - 标定板需在相机和雷达视野内清晰可见,并保持静止或缓慢运动[^4]。 ##### **步骤2:配置标定参数** 修改标定包的配置文件(如`calib.yaml`),指定相机内参路径、数据路径和标定板参数: ```yaml camera_intrinsic: "camera_info.yaml" lidar_topic: "/livox/points" image_topic: "/camera/image_raw" chessboard_size: [8, 6] # 棋盘格角点数 square_size: 0.024 # 单个格子边长(米) ``` ##### **步骤3:启动联合标定** 使用`livox_camera_calib`工具包进行标定: ```bash roslaunch livox_camera_calib calib.launch ``` 程序将自动提取标定板的角点和对应点云,通过优化算法计算相机雷达的外参矩阵$T_{cam}^{lidar}$(包含旋转$R$和平移$t$)。 ##### **步骤4:验证标定结果** - **重投影误差**:将雷达点云投影到图像平面,观察标定板角点的对齐程度。 - **在线验证**:在SLAM系统(如R3LIVE)中加载标定结果,评估建图一致性[^2]。 #### **4. 标定工具代码** - **开源工具**: - `livox_camera_calib`:专为Livox雷达设计的标定工具。 - `ROS camera_calibration`:通用相机标定工具。 - **代码示例**(标定数据提取): ```python # 提取棋盘格角点 import cv2 criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) ret, corners = cv2.findChessboardCorners(gray, (8,6), None) if ret: corners_refined = cv2.cornerSubPix(gray, corners, (11,11), (-1,-1), criteria) ``` #### **5. 注意事项** - **光照条件**:避免反光或过暗环境,确保标定板清晰可见。 - **运动模式**:数据采集时标定板需覆盖相机和雷达的视野范围。 - **时间同步**:使用硬件触发或软件同步(如ROS的`message_filters`)减少时间偏差。 #### **6. 应用优化** - **在线标定**:在SLAM系统中实时优化外参(如R3LIVE通过特征匹配动态调整)[^2]。 - **多传感器融合**:标定结果可用于激光-视觉融合定位、三维重建等场景。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

几度春风里

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值