AI问答的核心!知识图谱:突破传统 RAG 的天花板

看似简单的 AI 问答系统,背后却隐藏着无数技术难题。 

当我们询问"组件 A 与组件 B 有什么区别"这样的问题时,传统检索增强生成(RAG)系统往往会犯难。它们就像只会做加法的计算器,遇到了需要乘除法的复杂方程...

传统 RAG 的三大痛点

传统 RAG 技术已成为 AI 应用的标配,但它面临三个根本性挑战:

  1. 信息孤岛:文档被切分成互不相关的小块,丢失了上下文联系

  2. 视野局限:只能基于文本相似度检索,无法理解概念间的逻辑关系

  3. 推理能力缺失:无法像人类那样进行跨文档的综合分析

例如,你问系统:"A组件和B组件有什么区别?"

传统 RAG 可能会单独找到关于A和B的片段,但无法理解它们之间的关联和对比点

这就像给了厨师所有原料,却没有告诉他们这些原料应该如何组合。

知识图谱:RAG 技术的进化路径

图片

知识图谱技术为 RAG 系统带来了质的飞跃。

它不再将知识视为孤立的文本块,而是理解了知识间的结构化关系网络

知识图谱增强

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呱牛 do IT

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值