看似简单的 AI 问答系统,背后却隐藏着无数技术难题。
当我们询问"组件 A 与组件 B 有什么区别"这样的问题时,传统检索增强生成(RAG)系统往往会犯难。它们就像只会做加法的计算器,遇到了需要乘除法的复杂方程...
传统 RAG 的三大痛点
传统 RAG 技术已成为 AI 应用的标配,但它面临三个根本性挑战:
-
信息孤岛:文档被切分成互不相关的小块,丢失了上下文联系
-
视野局限:只能基于文本相似度检索,无法理解概念间的逻辑关系
-
推理能力缺失:无法像人类那样进行跨文档的综合分析
例如,你问系统:"A组件和B组件有什么区别?"
传统 RAG 可能会单独找到关于A和B的片段,但无法理解它们之间的关联和对比点
。
这就像给了厨师所有原料,却没有告诉他们这些原料应该如何组合。
知识图谱:RAG 技术的进化路径
知识图谱技术为 RAG 系统带来了质的飞跃。
它不再将知识视为孤立的文本块,而是理解了知识间的结构化关系网络
。
知识图谱增强