ARIMA参数自动获取

本文介绍了在训练ARIMA模型时如何自动获取p、d、q参数的方法。传统方法包括肉眼识别和根据p-value判断,但有更好的自动化方式。方法一是通过编写网格搜索算法寻找最小误差;方法二是利用pmdarima库,该方法虽然方便但速度较慢。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我们在训练ARIMA模型的时候经常会有这的疑问,p,d,q值如何获取,尤其是d。许多教程教了肉眼识别法(我可去你的),也有根据p-value来判断的,那么有没有更好的方法自动获取p,d,q的值能,当然有

方法一:自己编写一些网格搜索(暴力搜索)的轮子(for循环),根据mse,rmse或者bic,aic等值的最小值获取,pdq的值,这里就不实现这个轮子了

方法二:当然是调库了…
首先,安装库:pip install pmdarima
然后,使用它

from pyramid.arima import auto_arima
# data为你的数据,设置p,q的范围,和起点,设置d值,设置是否使用季节性,然后run....
stepwise_model = auto_arima(data, start_p=1, start_q=1,
                           max_p
Auto.arima函数是一个自动化的时间序列模型选择工具,它尝试在给定数据集上找到最好的ARIMA模型。在自动选择ARIMA模型时,auto.arima函数会自动选择最优的阶数。然而,有时候自动选择的阶数可能不够准确,需要手动调整以获得更好的结果。 以下是一些可以提高auto.arima函数自动定阶的阶数的方法: 1. 增加训练数据量:auto.arima函数会尝试在给定的数据集上选择最优的ARIMA模型,如果数据量太少,则可能无法找到最优的模型。因此,增加训练数据量可能有助于提高auto.arima函数的性能。 2. 确定季节性:如果时间序列数据具有季节性,则可以通过设置seasonal参数来告诉auto.arima函数该时间序列数据的季节性周期。这可以帮助auto.arima函数更准确地选择最优的ARIMA模型。 3. 调整参数范围:auto.arima函数具有许多可调参数,包括p、d、q、P、D、Q等。可以通过将这些参数的范围扩大来提高auto.arima函数选择最优模型的准确性。 4. 手动指定初始参数值:auto.arima函数默认使用一些初始参数值来开始搜索最优模型。通过手动指定初始参数值,auto.arima函数可以更快地找到最优模型。 5. 使用其他算法:除了auto.arima函数外,还有其他一些算法可以用于自动选择时间序列模型,如Prophet、TBATS、STL等。尝试使用其他算法来比较结果,可能可以提高选择最优模型的准确性。
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值