DEV Community

Md Mahbubur Rahman
Md Mahbubur Rahman

Posted on

Battle of the Lightweight AI Engines: TensorFlow Lite vs ONNX Runtime Web

Quick Verdict (TL;DR)

Use Case Best Choice Why
Browser extension / Web-based AI ONNX Runtime Web Faster, WebAssembly backend, works in all browsers, supports more models, no special conversion steps
Mobile app / Electron app / native desktop TensorFlow Lite Designed for native edge devices (Android, iOS, Raspberry Pi, etc.)
General-purpose local AI for multiple environments (browser + backend) ONNX Runtime (Web + Node + Python) Same model across environments — “write once, run anywhere”
Tiny in-browser inference (<100 MB, no backend) ONNX Runtime Web Smaller footprint, simple setup, no GPU drivers
Hardware-optimized inference (GPU, NNAPI, CoreML) TensorFlow Lite Deep optimization for edge hardware accelerators

Detailed Comparison

Feature TensorFlow Lite (TFLite) ONNX Runtime Web (ORT-Web)
Target Platform Primarily mobile / embedded Browser, Node.js, Python, C++
Browser Support Indirect (requires TF.js bridge) ✅ Direct WebAssembly & WebGPU
Model Conversion Convert .pb / .keras.tflite Convert from any major framework → .onnx
Supported Models TensorFlow-trained models only PyTorch, TF, Scikit, HuggingFace, etc.
Performance Great on Android/iOS (NNAPI/CoreML) Excellent on desktop browsers (WASM SIMD / WebGPU)
GPU Acceleration (Browser) ❌ Limited / experimental ✅ WebGPU + WebGL
Model Size / Load Time Usually smaller, quantized Slightly larger, but flexible
Ease of Setup (Firefox) Harder — needs TF.js shim ✅ Simple <script> or npm import
Community Trend (2025) Declining for web use 📈 Rapidly growing, backed by Microsoft + HuggingFace
APIs Interpreter (low-level) InferenceSession.run(inputs) (modern)

Real-World Developer Experience

For browser-based plugins like MindFlash:

import * as ort from 'onnxruntime-web';
const session = await ort.InferenceSession.create('model.onnx');
const results = await session.run(inputs);
Enter fullscreen mode Exit fullscreen mode

✅ Works offline and cross-platform.

✅ Minimal setup, perfect for WebExtensions.

TensorFlow Lite is better for native mobile or IoT apps, not browser extensions.


Future-Proofing for All Projects

Project Type Recommended Runtime
Firefox / Chrome / Edge Extension ONNX Runtime Web
Electron Desktop App ONNX Runtime Node
Native Mobile (Android/iOS) TensorFlow Lite
Local Server or API Backend ONNX Runtime Python / C++
IoT Edge Device (Raspberry Pi, Jetson) TensorFlow Lite or ONNX Runtime C++

Model Conversion Workflow

# PyTorch → ONNX
torch.onnx.export(model, dummy_input, "model.onnx")

# TensorFlow → TFLite
tflite_convert --saved_model_dir=saved_model --output_file=model.tflite

# Quantize ONNX
python -m onnxruntime.quantization.quantize_dynamic model.onnx model_int8.onnx
Enter fullscreen mode Exit fullscreen mode

Privacy + Offline Advantage

ONNX Runtime Web runs entirely in the browser sandbox, never sends webpage data to any server — ideal for privacy-focused extensions like MindFlash.


Final Recommendation

✅ For Firefox / Chrome / Edge AI pluginsONNX Runtime Web

✅ For native appsTensorFlow Lite

Top comments (0)