百行业为先 ,万恶懒为首。——梁启超
😏1. 激光SLAM概述
SLAM
(同步定位与地图构建)是一种机器人感知技术,用于在未知环境中同时确定机器人的位置并构建地图。
激光SLAM是利用机器人的激光传感器扫描周围环境,将激光点云数据与机器人当前位置相结合,通过运算和优化算法实时构建环境地图,并估计机器人在地图中的准确位置。这样,机器人在未知环境中不仅能够实时感知周围的障碍物、墙壁等信息,还能对自身位置进行估计,从而实现路径规划、避障以及导航等任务。
激光SLAM的核心思想是将机器人的定位和地图构建同时进行,通过激光扫描数据和运动模型等信息,在未知环境中实现自主导航和建立精确的地图。
根据分类标准不同,一般激光SLAM有两种分类方式:
- 基于滤波器的激光SLAM和基于图优化的激光SLAM
- 基于特征的激光SLAM和基于全局扫描匹配的激光SLAM
通过激光SLAM技术,机器人能够在不依赖外部定位系统的情况下,实现自主感知和导航,广泛应用于无人车、无人机、智能机器人以及工业自动化等领域。
😊2. 激光SLAM整体框架
激光SLAM的整体框架通常包含以下几个主要组成部分:
1.数据获取和预处理:激光SLAM首先需要获取环境的激光扫描数据。这可以通过激光传感器(如激光雷达)实现。获取的激光数据