【SLAM】激光SLAM简介与常用框架

激光SLAM是一种机器人定位与建图技术,利用激光传感器处理环境数据,实现未知环境中的导航。文章介绍了其整体框架,包括数据预处理、特征提取、初始化、自我定位、地图构建、闭环检测和实时性优化等步骤,并列举了如gmapping、hector_slam、cartographer等开源算法及其特点,适用于2D和3D环境的智能系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

百行业为先 ,万恶懒为首。——梁启超

😏1. 激光SLAM概述

SLAM(同步定位与地图构建)是一种机器人感知技术,用于在未知环境中同时确定机器人的位置并构建地图。

激光SLAM是利用机器人的激光传感器扫描周围环境,将激光点云数据与机器人当前位置相结合,通过运算和优化算法实时构建环境地图,并估计机器人在地图中的准确位置。这样,机器人在未知环境中不仅能够实时感知周围的障碍物、墙壁等信息,还能对自身位置进行估计,从而实现路径规划、避障以及导航等任务。

激光SLAM的核心思想是将机器人的定位和地图构建同时进行,通过激光扫描数据和运动模型等信息,在未知环境中实现自主导航和建立精确的地图。

根据分类标准不同,一般激光SLAM有两种分类方式:

  1. 基于滤波器的激光SLAM和基于图优化的激光SLAM
  2. 基于特征的激光SLAM和基于全局扫描匹配的激光SLAM

通过激光SLAM技术,机器人能够在不依赖外部定位系统的情况下,实现自主感知和导航,广泛应用于无人车、无人机、智能机器人以及工业自动化等领域。

😊2. 激光SLAM整体框架

激光SLAM的整体框架通常包含以下几个主要组成部分:

1.数据获取和预处理:激光SLAM首先需要获取环境的激光扫描数据。这可以通过激光传感器(如激光雷达)实现。获取的激光数据

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

DevFrank

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值