L3-013 非常弹的球 (30 分)

本文介绍了一个简单的物理实验,通过计算分析弹力球在特定条件下能够达到的最远距离。实验考虑了动能、重力加速度等因素,并通过编程实现了模拟计算。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述
刚上高一的森森为了学好物理,买了一个“非常弹”的球。虽然说是非常弹的球,其实也就是一般的弹力球而已。森森玩了一会儿弹力球后突然想到,假如他在地上用力弹球,球最远能弹到多远去呢?他不太会,你能帮他解决吗?当然为了刚学习物理的森森,我们对环境做一些简化:

假设森森是一个质点,以森森为原点设立坐标轴,则森森位于(0, 0)点。
小球质量为w/100 千克(kg),重力加速度为9.8米/秒平方(m/s
​2
​​ )。
森森在地上用力弹球的过程可简化为球从(0, 0)点以某个森森选择的角度ang (0<ang<π/2) 向第一象限抛出,抛出时假设动能为1000 焦耳(J)。
小球在空中仅受重力作用,球纵坐标为0时可视作落地,落地时损失p%动能并反弹。
地面可视为刚体,忽略小球形状、空气阻力及摩擦阻力等。
森森为你准备的公式:

动能公式:E=m×v
​2
​​ /2
牛顿力学公式:F=m×a
重力:G=m×g
其中:

E - 动能,单位为“焦耳”
m - 质量,单位为“千克”
v - 速度,单位为“米/秒”
a - 加速度,单位为“米/秒平方”
g - 重力加速度
输入格式:
输入在一行中给出两个整数:1≤w≤1000 和 1≤p≤100,分别表示放大100倍的小球质量、以及损失动力的百分比p。

输出格式:
在一行输出最远的投掷距离,保留3位小数。

输入样例:
100 90
输出样例:
226.757

/*
这个题的测试点1和测试点2,需要将所有用到的变量都定义成double类型,如果将w和p定义成int类型,将会报答案错误,
可能是因为int的精度不够。也可以将每个分子或者分母乘以1.0这样的数据,乘以之后就相当于是将int类型转换成了double类型,
用来提高精度。

v=g*t;
有垂直方向确定上升到最高点需要的时间Ty;
垂直和水平方向时间都是相同的,Ty=Vy/g,Vy=V*sin,Ty=V*sin/g;
水平距离:Sx=Ty*Vx=V*(sin/g)*V*cos,
公式:sin2=2sin*cos,故得Sx=V*V*sin2/2*g;
当角度为45°时,Sx的取值最大,故Sx=V*V/(2*g);
从抛出,到落地是两段Sx距离,故一个周期的距离需要乘以2; 


题目E=1000焦耳,g=9.8m/s2;
水平方向速度:Vx=V*cos
垂直方向速度:Vy=V*sin
v*v=(E*2)/m  ---> v=sqrt((E*2)/m));
*/
#include<stdio.h>
const double g=9.80;
int main()
{
	double E=1000,m=0,sum=0;
	int w=0,p=0;
	scanf("%d %d",&w,&p);
	m=w*1.0/100;
	double vv=E*2.0/m;//速度的平方;
	double Sx=vv*1.0/(2.0*g);
	while(E>=1e-9)
	{
		sum=sum+2*Sx;
		E=E-E*(p*1.0/100);
		vv=(E*2)/m;
		Sx=vv/(2*g);
	}
	printf("%.3lf",sum);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值