时间序列预测 —— TCN模型
卷积神经网络(Convolutional Neural Network,CNN)在图像处理等领域取得了显著的成就,一般认为在处理时序数据上不如RNN模型,而TCN(Temporal Convolutional Network)模型是一种基于卷积神经网络的时间序列预测模型,具有一定的优势。本文将介绍TCN模型的理论基础、公式推导、优缺点,并通过Python实现TCN的单步预测和多步预测,最后对TCN模型进行总结。
1. TCN模型理论及公式
1.1 TCN模型结构
TCN模型主要包含卷积层和残差块。卷积层用于提取序列中的局部特征,而残差块有助于捕捉序列中的长期依赖关系。TCN的典型结构如下:
Input -> [Conv1D] -> [Residual Block] x N -> [Output Layer]
其中,[Conv1D]
表示一维卷积层,[Residual Block]
表示残差块,N
表示残差块的堆叠次数。
1.2 卷积操作
TCN模型的卷积操作采用了膨胀卷积(Dilated Convolution),膨胀卷积通过在卷积核之间插入零元素来扩大感受野。膨胀卷积的数学表达式为:
y[t]=∑k=0K−1w[k]⋅x[t−d⋅k] y[t] = \sum_{k=0}^{K-1} w[k] \cdot x[t - d \cdot k] y[t]=k=0∑K−1w[k]⋅x[t−d⋅k]
其中,y[t]y[t]y[t] 是卷积操作的输出,w[k]w[k]w[k] 是卷积核的权重,x[t−d⋅k]x[t - d \cdot k]x[t−d⋅