时间序列预测 —— TCN模型

时间序列预测 —— TCN模型

卷积神经网络(Convolutional Neural Network,CNN)在图像处理等领域取得了显著的成就,一般认为在处理时序数据上不如RNN模型,而TCN(Temporal Convolutional Network)模型是一种基于卷积神经网络的时间序列预测模型,具有一定的优势。本文将介绍TCN模型的理论基础、公式推导、优缺点,并通过Python实现TCN的单步预测和多步预测,最后对TCN模型进行总结。

1. TCN模型理论及公式

TCN

1.1 TCN模型结构

TCN模型主要包含卷积层和残差块。卷积层用于提取序列中的局部特征,而残差块有助于捕捉序列中的长期依赖关系。TCN的典型结构如下:

Input -> [Conv1D] -> [Residual Block] x N -> [Output Layer]

其中,[Conv1D] 表示一维卷积层,[Residual Block] 表示残差块,N 表示残差块的堆叠次数。

1.2 卷积操作

TCN模型的卷积操作采用了膨胀卷积(Dilated Convolution),膨胀卷积通过在卷积核之间插入零元素来扩大感受野。膨胀卷积的数学表达式为:

y[t]=∑k=0K−1w[k]⋅x[t−d⋅k] y[t] = \sum_{k=0}^{K-1} w[k] \cdot x[t - d \cdot k] y[t]=k=0K1w[k]x[tdk]

其中,y[t]y[t]y[t] 是卷积操作的输出,w[k]w[k]w[k] 是卷积核的权重,x[t−d⋅k]x[t - d \cdot k]x[td

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值