时间序列预测 —— ConvLSTM 模型
时间序列预测是一项重要的任务,ConvLSTM(卷积长短时记忆网络)是深度学习领域中用于处理时序数据的强大工具之一。本文将介绍 ConvLSTM 的理论基础、优缺点,与其他常见时序模型(如 LSTM、GRU、TCN)的区别,并使用 Python 和 Keras 实现 ConvLSTM 的单步预测和多步预测。
1. ConvLSTM 的理论与公式
1.1 ConvLSTM 简介
ConvLSTM 是一种结合卷积神经网络(CNN)和长短时记忆网络(LSTM)的架构,专门用于处理时序数据。与传统的 LSTM 不同,ConvLSTM 在每个时间步应用卷积操作,有助于捕捉时序数据中的空间信息。
1.2 ConvLSTM 单步预测公式
ConvLSTM 单步预测的基本公式如下:
ft=σg(Wxf∗Xt+Whf∗Ht−1+Wcf∘Ct−1+bf) \begin{equation} f_t = \sigma_g(W_{xf} * X_t + W_{hf} * H_{t-1} + W_{cf} \circ C_{t-1} + b_f) \end{equation} ft=σg(Wxf∗Xt+Whf∗Ht−1+Wcf∘Ct−1+bf)
it=σg(Wxi∗Xt+Whi∗Ht−1+Wci∘Ct−1+bi) \begin{equation} i_t = \sigma_g(W_{xi} * X_t + W_{hi} * H_{t-1} + W_{ci} \circ C_{t-1} + b_i) \end{equation} it=σg(Wxi∗Xt+Whi