时间序列预测 —— ConvLSTM 模型

时间序列预测 —— ConvLSTM 模型

时间序列预测是一项重要的任务,ConvLSTM(卷积长短时记忆网络)是深度学习领域中用于处理时序数据的强大工具之一。本文将介绍 ConvLSTM 的理论基础、优缺点,与其他常见时序模型(如 LSTM、GRU、TCN)的区别,并使用 Python 和 Keras 实现 ConvLSTM 的单步预测和多步预测。

1. ConvLSTM 的理论与公式

1.1 ConvLSTM 简介

ConvLSTM 是一种结合卷积神经网络(CNN)和长短时记忆网络(LSTM)的架构,专门用于处理时序数据。与传统的 LSTM 不同,ConvLSTM 在每个时间步应用卷积操作,有助于捕捉时序数据中的空间信息。
在这里插入图片描述

1.2 ConvLSTM 单步预测公式

ConvLSTM 单步预测的基本公式如下:
ft=σg(Wxf∗Xt+Whf∗Ht−1+Wcf∘Ct−1+bf) \begin{equation} f_t = \sigma_g(W_{xf} * X_t + W_{hf} * H_{t-1} + W_{cf} \circ C_{t-1} + b_f) \end{equation} ft=σg(WxfXt+WhfHt1+WcfCt1+bf)

it=σg(Wxi∗Xt+Whi∗Ht−1+Wci∘Ct−1+bi) \begin{equation} i_t = \sigma_g(W_{xi} * X_t + W_{hi} * H_{t-1} + W_{ci} \circ C_{t-1} + b_i) \end{equation} it=σg(WxiXt+Whi

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值