1use std::any::Any;
21use std::fmt::Debug;
22use std::mem::size_of_val;
23use std::sync::Arc;
24
25use arrow::array::{
26 downcast_array, Array, AsArray, BooleanArray, Float64Array, NullBufferBuilder,
27 UInt64Array,
28};
29use arrow::compute::{and, filter, is_not_null, kernels::cast};
30use arrow::datatypes::{Float64Type, UInt64Type};
31use arrow::{
32 array::ArrayRef,
33 datatypes::{DataType, Field},
34};
35use datafusion_expr::{EmitTo, GroupsAccumulator};
36use datafusion_functions_aggregate_common::aggregate::groups_accumulator::accumulate::accumulate_multiple;
37use log::debug;
38
39use crate::covariance::CovarianceAccumulator;
40use crate::stddev::StddevAccumulator;
41use datafusion_common::{plan_err, Result, ScalarValue};
42use datafusion_expr::{
43 function::{AccumulatorArgs, StateFieldsArgs},
44 type_coercion::aggregates::NUMERICS,
45 utils::format_state_name,
46 Accumulator, AggregateUDFImpl, Documentation, Signature, Volatility,
47};
48use datafusion_functions_aggregate_common::stats::StatsType;
49use datafusion_macros::user_doc;
50
51make_udaf_expr_and_func!(
52 Correlation,
53 corr,
54 y x,
55 "Correlation between two numeric values.",
56 corr_udaf
57);
58
59#[user_doc(
60 doc_section(label = "Statistical Functions"),
61 description = "Returns the coefficient of correlation between two numeric values.",
62 syntax_example = "corr(expression1, expression2)",
63 sql_example = r#"```sql
64> SELECT corr(column1, column2) FROM table_name;
65+--------------------------------+
66| corr(column1, column2) |
67+--------------------------------+
68| 0.85 |
69+--------------------------------+
70```"#,
71 standard_argument(name = "expression1", prefix = "First"),
72 standard_argument(name = "expression2", prefix = "Second")
73)]
74#[derive(Debug)]
75pub struct Correlation {
76 signature: Signature,
77}
78
79impl Default for Correlation {
80 fn default() -> Self {
81 Self::new()
82 }
83}
84
85impl Correlation {
86 pub fn new() -> Self {
88 Self {
89 signature: Signature::uniform(2, NUMERICS.to_vec(), Volatility::Immutable),
90 }
91 }
92}
93
94impl AggregateUDFImpl for Correlation {
95 fn as_any(&self) -> &dyn Any {
97 self
98 }
99
100 fn name(&self) -> &str {
101 "corr"
102 }
103
104 fn signature(&self) -> &Signature {
105 &self.signature
106 }
107
108 fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
109 if !arg_types[0].is_numeric() {
110 return plan_err!("Correlation requires numeric input types");
111 }
112
113 Ok(DataType::Float64)
114 }
115
116 fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
117 Ok(Box::new(CorrelationAccumulator::try_new()?))
118 }
119
120 fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
121 let name = args.name;
122 Ok(vec![
123 Field::new(format_state_name(name, "count"), DataType::UInt64, true),
124 Field::new(format_state_name(name, "mean1"), DataType::Float64, true),
125 Field::new(format_state_name(name, "m2_1"), DataType::Float64, true),
126 Field::new(format_state_name(name, "mean2"), DataType::Float64, true),
127 Field::new(format_state_name(name, "m2_2"), DataType::Float64, true),
128 Field::new(
129 format_state_name(name, "algo_const"),
130 DataType::Float64,
131 true,
132 ),
133 ])
134 }
135
136 fn documentation(&self) -> Option<&Documentation> {
137 self.doc()
138 }
139
140 fn groups_accumulator_supported(&self, _args: AccumulatorArgs) -> bool {
141 true
142 }
143
144 fn create_groups_accumulator(
145 &self,
146 _args: AccumulatorArgs,
147 ) -> Result<Box<dyn GroupsAccumulator>> {
148 debug!("GroupsAccumulator is created for aggregate function `corr(c1, c2)`");
149 Ok(Box::new(CorrelationGroupsAccumulator::new()))
150 }
151}
152
153#[derive(Debug)]
155pub struct CorrelationAccumulator {
156 covar: CovarianceAccumulator,
157 stddev1: StddevAccumulator,
158 stddev2: StddevAccumulator,
159}
160
161impl CorrelationAccumulator {
162 pub fn try_new() -> Result<Self> {
164 Ok(Self {
165 covar: CovarianceAccumulator::try_new(StatsType::Population)?,
166 stddev1: StddevAccumulator::try_new(StatsType::Population)?,
167 stddev2: StddevAccumulator::try_new(StatsType::Population)?,
168 })
169 }
170}
171
172impl Accumulator for CorrelationAccumulator {
173 fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
174 let values = if values[0].null_count() != 0 || values[1].null_count() != 0 {
180 let mask = and(&is_not_null(&values[0])?, &is_not_null(&values[1])?)?;
181 let values1 = filter(&values[0], &mask)?;
182 let values2 = filter(&values[1], &mask)?;
183
184 vec![values1, values2]
185 } else {
186 values.to_vec()
187 };
188
189 self.covar.update_batch(&values)?;
190 self.stddev1.update_batch(&values[0..1])?;
191 self.stddev2.update_batch(&values[1..2])?;
192 Ok(())
193 }
194
195 fn evaluate(&mut self) -> Result<ScalarValue> {
196 let covar = self.covar.evaluate()?;
197 let stddev1 = self.stddev1.evaluate()?;
198 let stddev2 = self.stddev2.evaluate()?;
199
200 if let ScalarValue::Float64(Some(c)) = covar {
201 if let ScalarValue::Float64(Some(s1)) = stddev1 {
202 if let ScalarValue::Float64(Some(s2)) = stddev2 {
203 if s1 == 0_f64 || s2 == 0_f64 {
204 return Ok(ScalarValue::Float64(Some(0_f64)));
205 } else {
206 return Ok(ScalarValue::Float64(Some(c / s1 / s2)));
207 }
208 }
209 }
210 }
211
212 Ok(ScalarValue::Float64(None))
213 }
214
215 fn size(&self) -> usize {
216 size_of_val(self) - size_of_val(&self.covar) + self.covar.size()
217 - size_of_val(&self.stddev1)
218 + self.stddev1.size()
219 - size_of_val(&self.stddev2)
220 + self.stddev2.size()
221 }
222
223 fn state(&mut self) -> Result<Vec<ScalarValue>> {
224 Ok(vec![
225 ScalarValue::from(self.covar.get_count()),
226 ScalarValue::from(self.covar.get_mean1()),
227 ScalarValue::from(self.stddev1.get_m2()),
228 ScalarValue::from(self.covar.get_mean2()),
229 ScalarValue::from(self.stddev2.get_m2()),
230 ScalarValue::from(self.covar.get_algo_const()),
231 ])
232 }
233
234 fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
235 let states_c = [
236 Arc::clone(&states[0]),
237 Arc::clone(&states[1]),
238 Arc::clone(&states[3]),
239 Arc::clone(&states[5]),
240 ];
241 let states_s1 = [
242 Arc::clone(&states[0]),
243 Arc::clone(&states[1]),
244 Arc::clone(&states[2]),
245 ];
246 let states_s2 = [
247 Arc::clone(&states[0]),
248 Arc::clone(&states[3]),
249 Arc::clone(&states[4]),
250 ];
251
252 self.covar.merge_batch(&states_c)?;
253 self.stddev1.merge_batch(&states_s1)?;
254 self.stddev2.merge_batch(&states_s2)?;
255 Ok(())
256 }
257
258 fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
259 let values = if values[0].null_count() != 0 || values[1].null_count() != 0 {
260 let mask = and(&is_not_null(&values[0])?, &is_not_null(&values[1])?)?;
261 let values1 = filter(&values[0], &mask)?;
262 let values2 = filter(&values[1], &mask)?;
263
264 vec![values1, values2]
265 } else {
266 values.to_vec()
267 };
268
269 self.covar.retract_batch(&values)?;
270 self.stddev1.retract_batch(&values[0..1])?;
271 self.stddev2.retract_batch(&values[1..2])?;
272 Ok(())
273 }
274}
275
276#[derive(Default)]
277pub struct CorrelationGroupsAccumulator {
278 count: Vec<u64>,
282 sum_x: Vec<f64>,
284 sum_y: Vec<f64>,
286 sum_xy: Vec<f64>,
288 sum_xx: Vec<f64>,
290 sum_yy: Vec<f64>,
292}
293
294impl CorrelationGroupsAccumulator {
295 pub fn new() -> Self {
296 Default::default()
297 }
298}
299
300fn accumulate_correlation_states(
306 group_indices: &[usize],
307 state_arrays: (
308 &UInt64Array, &Float64Array, &Float64Array, &Float64Array, &Float64Array, &Float64Array, ),
315 mut value_fn: impl FnMut(usize, u64, &[f64]),
316) {
317 let (counts, sum_x, sum_y, sum_xy, sum_xx, sum_yy) = state_arrays;
318
319 assert_eq!(counts.null_count(), 0);
320 assert_eq!(sum_x.null_count(), 0);
321 assert_eq!(sum_y.null_count(), 0);
322 assert_eq!(sum_xy.null_count(), 0);
323 assert_eq!(sum_xx.null_count(), 0);
324 assert_eq!(sum_yy.null_count(), 0);
325
326 let counts_values = counts.values().as_ref();
327 let sum_x_values = sum_x.values().as_ref();
328 let sum_y_values = sum_y.values().as_ref();
329 let sum_xy_values = sum_xy.values().as_ref();
330 let sum_xx_values = sum_xx.values().as_ref();
331 let sum_yy_values = sum_yy.values().as_ref();
332
333 for (idx, &group_idx) in group_indices.iter().enumerate() {
334 let row = [
335 sum_x_values[idx],
336 sum_y_values[idx],
337 sum_xy_values[idx],
338 sum_xx_values[idx],
339 sum_yy_values[idx],
340 ];
341 value_fn(group_idx, counts_values[idx], &row);
342 }
343}
344
345impl GroupsAccumulator for CorrelationGroupsAccumulator {
361 fn update_batch(
362 &mut self,
363 values: &[ArrayRef],
364 group_indices: &[usize],
365 opt_filter: Option<&BooleanArray>,
366 total_num_groups: usize,
367 ) -> Result<()> {
368 self.count.resize(total_num_groups, 0);
369 self.sum_x.resize(total_num_groups, 0.0);
370 self.sum_y.resize(total_num_groups, 0.0);
371 self.sum_xy.resize(total_num_groups, 0.0);
372 self.sum_xx.resize(total_num_groups, 0.0);
373 self.sum_yy.resize(total_num_groups, 0.0);
374
375 let array_x = &cast(&values[0], &DataType::Float64)?;
376 let array_x = downcast_array::<Float64Array>(array_x);
377 let array_y = &cast(&values[1], &DataType::Float64)?;
378 let array_y = downcast_array::<Float64Array>(array_y);
379
380 accumulate_multiple(
381 group_indices,
382 &[&array_x, &array_y],
383 opt_filter,
384 |group_index, batch_index, columns| {
385 let x = columns[0].value(batch_index);
386 let y = columns[1].value(batch_index);
387 self.count[group_index] += 1;
388 self.sum_x[group_index] += x;
389 self.sum_y[group_index] += y;
390 self.sum_xy[group_index] += x * y;
391 self.sum_xx[group_index] += x * x;
392 self.sum_yy[group_index] += y * y;
393 },
394 );
395
396 Ok(())
397 }
398
399 fn merge_batch(
400 &mut self,
401 values: &[ArrayRef],
402 group_indices: &[usize],
403 opt_filter: Option<&BooleanArray>,
404 total_num_groups: usize,
405 ) -> Result<()> {
406 self.count.resize(total_num_groups, 0);
408 self.sum_x.resize(total_num_groups, 0.0);
409 self.sum_y.resize(total_num_groups, 0.0);
410 self.sum_xy.resize(total_num_groups, 0.0);
411 self.sum_xx.resize(total_num_groups, 0.0);
412 self.sum_yy.resize(total_num_groups, 0.0);
413
414 let partial_counts = values[0].as_primitive::<UInt64Type>();
416 let partial_sum_x = values[1].as_primitive::<Float64Type>();
417 let partial_sum_y = values[2].as_primitive::<Float64Type>();
418 let partial_sum_xy = values[3].as_primitive::<Float64Type>();
419 let partial_sum_xx = values[4].as_primitive::<Float64Type>();
420 let partial_sum_yy = values[5].as_primitive::<Float64Type>();
421
422 assert!(opt_filter.is_none(), "aggregate filter should be applied in partial stage, there should be no filter in final stage");
423
424 accumulate_correlation_states(
425 group_indices,
426 (
427 partial_counts,
428 partial_sum_x,
429 partial_sum_y,
430 partial_sum_xy,
431 partial_sum_xx,
432 partial_sum_yy,
433 ),
434 |group_index, count, values| {
435 self.count[group_index] += count;
436 self.sum_x[group_index] += values[0];
437 self.sum_y[group_index] += values[1];
438 self.sum_xy[group_index] += values[2];
439 self.sum_xx[group_index] += values[3];
440 self.sum_yy[group_index] += values[4];
441 },
442 );
443
444 Ok(())
445 }
446
447 fn evaluate(&mut self, emit_to: EmitTo) -> Result<ArrayRef> {
448 let n = match emit_to {
449 EmitTo::All => self.count.len(),
450 EmitTo::First(n) => n,
451 };
452
453 let mut values = Vec::with_capacity(n);
454 let mut nulls = NullBufferBuilder::new(n);
455
456 for i in 0..n {
466 if self.count[i] < 2 {
467 values.push(0.0);
469 nulls.append_null();
470 continue;
471 }
472
473 let count = self.count[i];
474 let sum_x = self.sum_x[i];
475 let sum_y = self.sum_y[i];
476 let sum_xy = self.sum_xy[i];
477 let sum_xx = self.sum_xx[i];
478 let sum_yy = self.sum_yy[i];
479
480 let mean_x = sum_x / count as f64;
481 let mean_y = sum_y / count as f64;
482
483 let numerator = sum_xy - sum_x * mean_y;
484 let denominator =
485 ((sum_xx - sum_x * mean_x) * (sum_yy - sum_y * mean_y)).sqrt();
486
487 if denominator == 0.0 {
488 values.push(0.0);
490 nulls.append_null();
491 } else {
492 values.push(numerator / denominator);
493 nulls.append_non_null();
494 }
495 }
496
497 Ok(Arc::new(Float64Array::new(values.into(), nulls.finish())))
498 }
499
500 fn state(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> {
501 let n = match emit_to {
502 EmitTo::All => self.count.len(),
503 EmitTo::First(n) => n,
504 };
505
506 Ok(vec![
507 Arc::new(UInt64Array::from(self.count[0..n].to_vec())),
508 Arc::new(Float64Array::from(self.sum_x[0..n].to_vec())),
509 Arc::new(Float64Array::from(self.sum_y[0..n].to_vec())),
510 Arc::new(Float64Array::from(self.sum_xy[0..n].to_vec())),
511 Arc::new(Float64Array::from(self.sum_xx[0..n].to_vec())),
512 Arc::new(Float64Array::from(self.sum_yy[0..n].to_vec())),
513 ])
514 }
515
516 fn size(&self) -> usize {
517 size_of_val(&self.count)
518 + size_of_val(&self.sum_x)
519 + size_of_val(&self.sum_y)
520 + size_of_val(&self.sum_xy)
521 + size_of_val(&self.sum_xx)
522 + size_of_val(&self.sum_yy)
523 }
524}
525
526#[cfg(test)]
527mod tests {
528 use super::*;
529 use arrow::array::{Float64Array, UInt64Array};
530
531 #[test]
532 fn test_accumulate_correlation_states() {
533 let group_indices = vec![0, 1, 0, 1];
535 let counts = UInt64Array::from(vec![1, 2, 3, 4]);
536 let sum_x = Float64Array::from(vec![10.0, 20.0, 30.0, 40.0]);
537 let sum_y = Float64Array::from(vec![1.0, 2.0, 3.0, 4.0]);
538 let sum_xy = Float64Array::from(vec![10.0, 40.0, 90.0, 160.0]);
539 let sum_xx = Float64Array::from(vec![100.0, 400.0, 900.0, 1600.0]);
540 let sum_yy = Float64Array::from(vec![1.0, 4.0, 9.0, 16.0]);
541
542 let mut accumulated = vec![];
543 accumulate_correlation_states(
544 &group_indices,
545 (&counts, &sum_x, &sum_y, &sum_xy, &sum_xx, &sum_yy),
546 |group_idx, count, values| {
547 accumulated.push((group_idx, count, values.to_vec()));
548 },
549 );
550
551 let expected = vec![
552 (0, 1, vec![10.0, 1.0, 10.0, 100.0, 1.0]),
553 (1, 2, vec![20.0, 2.0, 40.0, 400.0, 4.0]),
554 (0, 3, vec![30.0, 3.0, 90.0, 900.0, 9.0]),
555 (1, 4, vec![40.0, 4.0, 160.0, 1600.0, 16.0]),
556 ];
557 assert_eq!(accumulated, expected);
558
559 let counts = UInt64Array::from(vec![Some(1), None, Some(3), Some(4)]);
561 let sum_x = Float64Array::from(vec![10.0, 20.0, 30.0, 40.0]);
562 let sum_y = Float64Array::from(vec![1.0, 2.0, 3.0, 4.0]);
563 let sum_xy = Float64Array::from(vec![10.0, 40.0, 90.0, 160.0]);
564 let sum_xx = Float64Array::from(vec![100.0, 400.0, 900.0, 1600.0]);
565 let sum_yy = Float64Array::from(vec![1.0, 4.0, 9.0, 16.0]);
566
567 let result = std::panic::catch_unwind(|| {
568 accumulate_correlation_states(
569 &group_indices,
570 (&counts, &sum_x, &sum_y, &sum_xy, &sum_xx, &sum_yy),
571 |_, _, _| {},
572 )
573 });
574 assert!(result.is_err());
575 }
576}