1use std::cmp::Ordering;
19use std::fmt::{Debug, Formatter};
20use std::mem::{size_of, size_of_val};
21use std::sync::Arc;
22
23use arrow::array::{
24 downcast_integer, ArrowNumericType, BooleanArray, ListArray, PrimitiveArray,
25 PrimitiveBuilder,
26};
27use arrow::buffer::{OffsetBuffer, ScalarBuffer};
28use arrow::{
29 array::{ArrayRef, AsArray},
30 datatypes::{
31 DataType, Decimal128Type, Decimal256Type, Field, Float16Type, Float32Type,
32 Float64Type,
33 },
34};
35
36use arrow::array::Array;
37use arrow::array::ArrowNativeTypeOp;
38use arrow::datatypes::{ArrowNativeType, ArrowPrimitiveType};
39
40use datafusion_common::{
41 internal_datafusion_err, internal_err, DataFusionError, HashSet, Result, ScalarValue,
42};
43use datafusion_expr::function::StateFieldsArgs;
44use datafusion_expr::{
45 function::AccumulatorArgs, utils::format_state_name, Accumulator, AggregateUDFImpl,
46 Documentation, Signature, Volatility,
47};
48use datafusion_expr::{EmitTo, GroupsAccumulator};
49use datafusion_functions_aggregate_common::aggregate::groups_accumulator::accumulate::accumulate;
50use datafusion_functions_aggregate_common::aggregate::groups_accumulator::nulls::filtered_null_mask;
51use datafusion_functions_aggregate_common::utils::Hashable;
52use datafusion_macros::user_doc;
53
54make_udaf_expr_and_func!(
55 Median,
56 median,
57 expression,
58 "Computes the median of a set of numbers",
59 median_udaf
60);
61
62#[user_doc(
63 doc_section(label = "General Functions"),
64 description = "Returns the median value in the specified column.",
65 syntax_example = "median(expression)",
66 sql_example = r#"```sql
67> SELECT median(column_name) FROM table_name;
68+----------------------+
69| median(column_name) |
70+----------------------+
71| 45.5 |
72+----------------------+
73```"#,
74 standard_argument(name = "expression", prefix = "The")
75)]
76pub struct Median {
85 signature: Signature,
86}
87
88impl Debug for Median {
89 fn fmt(&self, f: &mut Formatter) -> std::fmt::Result {
90 f.debug_struct("Median")
91 .field("name", &self.name())
92 .field("signature", &self.signature)
93 .finish()
94 }
95}
96
97impl Default for Median {
98 fn default() -> Self {
99 Self::new()
100 }
101}
102
103impl Median {
104 pub fn new() -> Self {
105 Self {
106 signature: Signature::numeric(1, Volatility::Immutable),
107 }
108 }
109}
110
111impl AggregateUDFImpl for Median {
112 fn as_any(&self) -> &dyn std::any::Any {
113 self
114 }
115
116 fn name(&self) -> &str {
117 "median"
118 }
119
120 fn signature(&self) -> &Signature {
121 &self.signature
122 }
123
124 fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
125 Ok(arg_types[0].clone())
126 }
127
128 fn state_fields(&self, args: StateFieldsArgs) -> Result<Vec<Field>> {
129 let field = Field::new_list_field(args.input_types[0].clone(), true);
131 let state_name = if args.is_distinct {
132 "distinct_median"
133 } else {
134 "median"
135 };
136
137 Ok(vec![Field::new(
138 format_state_name(args.name, state_name),
139 DataType::List(Arc::new(field)),
140 true,
141 )])
142 }
143
144 fn accumulator(&self, acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
145 macro_rules! helper {
146 ($t:ty, $dt:expr) => {
147 if acc_args.is_distinct {
148 Ok(Box::new(DistinctMedianAccumulator::<$t> {
149 data_type: $dt.clone(),
150 distinct_values: HashSet::new(),
151 }))
152 } else {
153 Ok(Box::new(MedianAccumulator::<$t> {
154 data_type: $dt.clone(),
155 all_values: vec![],
156 }))
157 }
158 };
159 }
160
161 let dt = acc_args.exprs[0].data_type(acc_args.schema)?;
162 downcast_integer! {
163 dt => (helper, dt),
164 DataType::Float16 => helper!(Float16Type, dt),
165 DataType::Float32 => helper!(Float32Type, dt),
166 DataType::Float64 => helper!(Float64Type, dt),
167 DataType::Decimal128(_, _) => helper!(Decimal128Type, dt),
168 DataType::Decimal256(_, _) => helper!(Decimal256Type, dt),
169 _ => Err(DataFusionError::NotImplemented(format!(
170 "MedianAccumulator not supported for {} with {}",
171 acc_args.name,
172 dt,
173 ))),
174 }
175 }
176
177 fn groups_accumulator_supported(&self, args: AccumulatorArgs) -> bool {
178 !args.is_distinct
179 }
180
181 fn create_groups_accumulator(
182 &self,
183 args: AccumulatorArgs,
184 ) -> Result<Box<dyn GroupsAccumulator>> {
185 let num_args = args.exprs.len();
186 if num_args != 1 {
187 return internal_err!(
188 "median should only have 1 arg, but found num args:{}",
189 args.exprs.len()
190 );
191 }
192
193 let dt = args.exprs[0].data_type(args.schema)?;
194
195 macro_rules! helper {
196 ($t:ty, $dt:expr) => {
197 Ok(Box::new(MedianGroupsAccumulator::<$t>::new($dt)))
198 };
199 }
200
201 downcast_integer! {
202 dt => (helper, dt),
203 DataType::Float16 => helper!(Float16Type, dt),
204 DataType::Float32 => helper!(Float32Type, dt),
205 DataType::Float64 => helper!(Float64Type, dt),
206 DataType::Decimal128(_, _) => helper!(Decimal128Type, dt),
207 DataType::Decimal256(_, _) => helper!(Decimal256Type, dt),
208 _ => Err(DataFusionError::NotImplemented(format!(
209 "MedianGroupsAccumulator not supported for {} with {}",
210 args.name,
211 dt,
212 ))),
213 }
214 }
215
216 fn aliases(&self) -> &[String] {
217 &[]
218 }
219
220 fn documentation(&self) -> Option<&Documentation> {
221 self.doc()
222 }
223}
224
225struct MedianAccumulator<T: ArrowNumericType> {
233 data_type: DataType,
234 all_values: Vec<T::Native>,
235}
236
237impl<T: ArrowNumericType> Debug for MedianAccumulator<T> {
238 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
239 write!(f, "MedianAccumulator({})", self.data_type)
240 }
241}
242
243impl<T: ArrowNumericType> Accumulator for MedianAccumulator<T> {
244 fn state(&mut self) -> Result<Vec<ScalarValue>> {
245 let offsets =
249 OffsetBuffer::new(ScalarBuffer::from(vec![0, self.all_values.len() as i32]));
250
251 let values_array = PrimitiveArray::<T>::new(
253 ScalarBuffer::from(std::mem::take(&mut self.all_values)),
254 None,
255 )
256 .with_data_type(self.data_type.clone());
257
258 let list_array = ListArray::new(
260 Arc::new(Field::new_list_field(self.data_type.clone(), true)),
261 offsets,
262 Arc::new(values_array),
263 None,
264 );
265
266 Ok(vec![ScalarValue::List(Arc::new(list_array))])
267 }
268
269 fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
270 let values = values[0].as_primitive::<T>();
271 self.all_values.reserve(values.len() - values.null_count());
272 self.all_values.extend(values.iter().flatten());
273 Ok(())
274 }
275
276 fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
277 let array = states[0].as_list::<i32>();
278 for v in array.iter().flatten() {
279 self.update_batch(&[v])?
280 }
281 Ok(())
282 }
283
284 fn evaluate(&mut self) -> Result<ScalarValue> {
285 let d = std::mem::take(&mut self.all_values);
286 let median = calculate_median::<T>(d);
287 ScalarValue::new_primitive::<T>(median, &self.data_type)
288 }
289
290 fn size(&self) -> usize {
291 size_of_val(self) + self.all_values.capacity() * size_of::<T::Native>()
292 }
293}
294
295#[derive(Debug)]
303struct MedianGroupsAccumulator<T: ArrowNumericType + Send> {
304 data_type: DataType,
305 group_values: Vec<Vec<T::Native>>,
306}
307
308impl<T: ArrowNumericType + Send> MedianGroupsAccumulator<T> {
309 pub fn new(data_type: DataType) -> Self {
310 Self {
311 data_type,
312 group_values: Vec::new(),
313 }
314 }
315}
316
317impl<T: ArrowNumericType + Send> GroupsAccumulator for MedianGroupsAccumulator<T> {
318 fn update_batch(
319 &mut self,
320 values: &[ArrayRef],
321 group_indices: &[usize],
322 opt_filter: Option<&BooleanArray>,
323 total_num_groups: usize,
324 ) -> Result<()> {
325 assert_eq!(values.len(), 1, "single argument to update_batch");
326 let values = values[0].as_primitive::<T>();
327
328 self.group_values.resize(total_num_groups, Vec::new());
330 accumulate(
331 group_indices,
332 values,
333 opt_filter,
334 |group_index, new_value| {
335 self.group_values[group_index].push(new_value);
336 },
337 );
338
339 Ok(())
340 }
341
342 fn merge_batch(
343 &mut self,
344 values: &[ArrayRef],
345 group_indices: &[usize],
346 _opt_filter: Option<&BooleanArray>,
348 total_num_groups: usize,
349 ) -> Result<()> {
350 assert_eq!(values.len(), 1, "one argument to merge_batch");
351
352 let input_group_values = values[0].as_list::<i32>();
373
374 self.group_values.resize(total_num_groups, Vec::new());
376
377 group_indices
382 .iter()
383 .zip(input_group_values.iter())
384 .for_each(|(&group_index, values_opt)| {
385 if let Some(values) = values_opt {
386 let values = values.as_primitive::<T>();
387 self.group_values[group_index].extend(values.values().iter());
388 }
389 });
390
391 Ok(())
392 }
393
394 fn state(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> {
395 let emit_group_values = emit_to.take_needed(&mut self.group_values);
397
398 let mut offsets = Vec::with_capacity(self.group_values.len() + 1);
400 offsets.push(0);
401 let mut cur_len = 0_i32;
402 for group_value in &emit_group_values {
403 cur_len += group_value.len() as i32;
404 offsets.push(cur_len);
405 }
406 let offsets = OffsetBuffer::new(ScalarBuffer::from(offsets));
414
415 let flatten_group_values =
417 emit_group_values.into_iter().flatten().collect::<Vec<_>>();
418 let group_values_array =
419 PrimitiveArray::<T>::new(ScalarBuffer::from(flatten_group_values), None)
420 .with_data_type(self.data_type.clone());
421
422 let result_list_array = ListArray::new(
424 Arc::new(Field::new_list_field(self.data_type.clone(), true)),
425 offsets,
426 Arc::new(group_values_array),
427 None,
428 );
429
430 Ok(vec![Arc::new(result_list_array)])
431 }
432
433 fn evaluate(&mut self, emit_to: EmitTo) -> Result<ArrayRef> {
434 let emit_group_values = emit_to.take_needed(&mut self.group_values);
436
437 let mut evaluate_result_builder =
439 PrimitiveBuilder::<T>::new().with_data_type(self.data_type.clone());
440 for values in emit_group_values {
441 let median = calculate_median::<T>(values);
442 evaluate_result_builder.append_option(median);
443 }
444
445 Ok(Arc::new(evaluate_result_builder.finish()))
446 }
447
448 fn convert_to_state(
449 &self,
450 values: &[ArrayRef],
451 opt_filter: Option<&BooleanArray>,
452 ) -> Result<Vec<ArrayRef>> {
453 assert_eq!(values.len(), 1, "one argument to merge_batch");
454
455 let input_array = values[0].as_primitive::<T>();
456
457 let values = PrimitiveArray::<T>::new(input_array.values().clone(), None)
466 .with_data_type(self.data_type.clone());
467
468 let offset_end = i32::try_from(input_array.len()).map_err(|e| {
470 internal_datafusion_err!(
471 "cast array_len to i32 failed in convert_to_state of group median, err:{e:?}"
472 )
473 })?;
474 let offsets = (0..=offset_end).collect::<Vec<_>>();
475 let offsets = unsafe { OffsetBuffer::new_unchecked(ScalarBuffer::from(offsets)) };
477
478 let nulls = filtered_null_mask(opt_filter, input_array);
480
481 let converted_list_array = ListArray::new(
482 Arc::new(Field::new_list_field(self.data_type.clone(), true)),
483 offsets,
484 Arc::new(values),
485 nulls,
486 );
487
488 Ok(vec![Arc::new(converted_list_array)])
489 }
490
491 fn supports_convert_to_state(&self) -> bool {
492 true
493 }
494
495 fn size(&self) -> usize {
496 self.group_values
497 .iter()
498 .map(|values| values.capacity() * size_of::<T>())
499 .sum::<usize>()
500 + self.group_values.capacity() * size_of::<Vec<T>>()
502 }
503}
504
505struct DistinctMedianAccumulator<T: ArrowNumericType> {
513 data_type: DataType,
514 distinct_values: HashSet<Hashable<T::Native>>,
515}
516
517impl<T: ArrowNumericType> Debug for DistinctMedianAccumulator<T> {
518 fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
519 write!(f, "DistinctMedianAccumulator({})", self.data_type)
520 }
521}
522
523impl<T: ArrowNumericType> Accumulator for DistinctMedianAccumulator<T> {
524 fn state(&mut self) -> Result<Vec<ScalarValue>> {
525 let all_values = self
526 .distinct_values
527 .iter()
528 .map(|x| ScalarValue::new_primitive::<T>(Some(x.0), &self.data_type))
529 .collect::<Result<Vec<_>>>()?;
530
531 let arr = ScalarValue::new_list_nullable(&all_values, &self.data_type);
532 Ok(vec![ScalarValue::List(arr)])
533 }
534
535 fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
536 if values.is_empty() {
537 return Ok(());
538 }
539
540 let array = values[0].as_primitive::<T>();
541 match array.nulls().filter(|x| x.null_count() > 0) {
542 Some(n) => {
543 for idx in n.valid_indices() {
544 self.distinct_values.insert(Hashable(array.value(idx)));
545 }
546 }
547 None => array.values().iter().for_each(|x| {
548 self.distinct_values.insert(Hashable(*x));
549 }),
550 }
551 Ok(())
552 }
553
554 fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
555 let array = states[0].as_list::<i32>();
556 for v in array.iter().flatten() {
557 self.update_batch(&[v])?
558 }
559 Ok(())
560 }
561
562 fn evaluate(&mut self) -> Result<ScalarValue> {
563 let d = std::mem::take(&mut self.distinct_values)
564 .into_iter()
565 .map(|v| v.0)
566 .collect::<Vec<_>>();
567 let median = calculate_median::<T>(d);
568 ScalarValue::new_primitive::<T>(median, &self.data_type)
569 }
570
571 fn size(&self) -> usize {
572 size_of_val(self) + self.distinct_values.capacity() * size_of::<T::Native>()
573 }
574}
575
576fn slice_max<T>(array: &[T::Native]) -> T::Native
578where
579 T: ArrowPrimitiveType,
580 T::Native: PartialOrd, {
582 debug_assert!(!array.is_empty());
584 *array
586 .iter()
587 .max_by(|x, y| x.partial_cmp(y).unwrap_or(Ordering::Less))
588 .unwrap()
589}
590
591fn calculate_median<T: ArrowNumericType>(
592 mut values: Vec<T::Native>,
593) -> Option<T::Native> {
594 let cmp = |x: &T::Native, y: &T::Native| x.compare(*y);
595
596 let len = values.len();
597 if len == 0 {
598 None
599 } else if len % 2 == 0 {
600 let (low, high, _) = values.select_nth_unstable_by(len / 2, cmp);
601 let left_max = slice_max::<T>(low);
603 let median = left_max
604 .add_wrapping(*high)
605 .div_wrapping(T::Native::usize_as(2));
606 Some(median)
607 } else {
608 let (_, median, _) = values.select_nth_unstable_by(len / 2, cmp);
609 Some(*median)
610 }
611}