Spring Boot Reference Documentation

Phillip Webb, Dave Syer, Josh Long, Stéphane Nicoll, Rob Winch, Andy
Wilkinson, Marcel Overdijk, Christian Dupuis, Sébastien Deleuze, Michael
Simons, Vedran Pavi!, Jay Bryant, Madhura Bhave, Eddu Meléndez, Scott
Frederick

Table of Contents

Legal
1. Spring Boot Documentation
1.1. About the Documentation
1.2. Getting Help
1.3. Upgrading from an Earlier Version
1.4. First Steps
1.5. Working with Spring Boot
1.6. Learning about Spring Boot Features
1.7. Moving to Production
1.8. Advanced Topics
2. Getting Started
2.1. Introducing Spring Boot
2.2. System Requirements
2.2.1. Servlet Containers

2.3. Installing Spring Boot

2.3.1. Installation Instructions for the Java Developer

Maven Installation
Gradle Installation

2.3.2. Installing the Spring Boot CLI
Manual Installation
Installation with SDKMAN!
OSX Homebrew Installation
MacPorts Installation
Command-line Completion
Windows Scoop Installation

Quick-start Spring CLI Example

2.3.3. Upgrading from an Earlier Version of Spring Boot

2.4. Developing Your First Spring Boot Application
2.4.1. Creating the POM
2.4.2. Adding Classpath Dependencies
2.4.3. Writing the Code

The @RestController and @RequestMapping Annotations

The @EnableAutoConfiguration Annotation
The OmainO Method
2.4.4. Running the Example
2.4.5. Creating an Executable Jar
2.5. What to Read Next
3. Using Spring Boot

© © © © b N N N N O b > o0t ot 1w Ww Ww w w hm b > P

B bR R R R BRBRERPRRR
o N o0 o0 o0 DN WO DN - O

3.1. Build Systems
3.1.1. Dependency Management
3.1.2. Maven
3.1.3. Gradle
3.1.4. Ant
3.1.5. Starters
3.2. Structuring Your Code
3.2.1. Using the OdefaultO Package
3.2.2. Locating the Main Application Class
3.3. Configuration Classes
3.3.1. Importing Additional Configuration Classes
3.3.2. Importing XML Configuration
3.4. Auto-configuration
3.4.1. Gradually Replacing Auto-configuration
3.4.2. Disabling Specific Auto-configuration Classes
3.5. Spring Beans and Dependency Injection
3.6. Using the @SpringBootApplication Annotation
3.7. Running Your Application
3.7.1. Running from an IDE
3.7.2. Running as a Packaged Application
3.7.3. Using the Maven Plugin
3.7.4. Using the Gradle Plugin
3.7.5. Hot Swapping
3.8. Developer Tools
3.8.1. Property Defaults
3.8.2. Automatic Restart
Logging changes in condition evaluation
Excluding Resources
Watching Additional Paths
Disabling Restart
Using a Trigger File
Customizing the Restart Classloader
Known Limitations
3.8.3. LiveReload
3.8.4. Global Settings
Configuring File System Watcher
3.8.5. Remote Applications
Running the Remote Client Application
Remote Update
3.9. Packaging Your Application for Production
3.10. What to Read Next

419
19
19
19
20
21
25
25
25
26
27
27
27
27
27
28
29
31
31
31
31
32
32
32
33
34
35
35
35
36
36
37
37
37
38
38
39
39
40
4l
41

4. Spring Boot Features
4.1. SpringApplication
4.1.1. Startup Failure
4.1.2. Lazy Initialization
4.1.3. Customizing the Banner
4.1.4. Customizing SpringApplication
4.1.5. Fluent Builder API
4.1.6. Application Availability
Liveness State
Readiness State
Managing the Application Availability State
4.1.7. Application Events and Listeners
4.1.8. Web Environment
4.1.9. Accessing Application Arguments
4.1.10. Using the ApplicationRunner or CommandLineRunner
4.1.11. Application Exit
4.1.12. Admin Features
4.2. Externalized Configuration
4.2.1. Configuring Random Values
4.2.2. Accessing Command Line Properties
4.2.3. Application Property Files
4.2.4. Profile-specific Properties
4.2.5. Placeholders in Properties
4.2.6. Encrypting Properties
4.2.7. Using YAML Instead of Properties
Loading YAML
Exposing YAML as Properties in the Spring Environment
Multi-profile YAML Documents
YAML Shortcomings
4.2.8. Type-safe Configuration Properties
JavaBean properties binding
Constructor binding
Enabling @ConfigurationProperties-annotated types
Using @ConfigurationProperties-annotated types
Third-party Configuration
Relaxed Binding
Merging Complex Types
Properties Conversion
@ConfigurationProperties Validation
@ConfigurationProperties vs. @Value
4.3. Profiles

42
A2
43
43
44
45
45
46
46
46
a1
48
50
50
51
51
52
52
55
b5
55
57
57
58
58
58
59
59
61
61
61
63
66
67
68
68
70
72
76
A7
78

4.3.1. Adding Active Profiles
4.3.2. Programmatically Setting Profiles
4.3.3. Profile-specific Configuration Files
4.4. Logging
4.4.1. Log Format
4.4.2. Console Output
Color-coded Output
4.4.3. File Output
4.4.4. Log Levels
4.4.5. Log Groups
4.4.6. Custom Log Configuration
4.4.7. Logback Extensions
Profile-specific Configuration
Environment Properties
4.5. Internationalization
4.6. JSON
4.6.1. Jackson
4.6.2. Gson
4.6.3. JSON-B
4.7. Developing Web Applications
4.7.1. The OSpring Web MVC FrameworkO
Spring MVC Auto-configuration
HttpMessageConverters
Custom JSON Serializers and Deserializers
MessageCodesResolver
Static Content
Welcome Page
Custom Favicon
Path Matching and Content Negotiation
ConfigurableWebBindinglnitializer
Template Engines
Error Handling
Spring HATEOAS
CORS Support
4.7.2. The OSpring WebFlux FrameworkO
Spring WebFlux Auto-configuration

HTTP Codecs with HttpMessageReaders and HttpMessageWriters

Static Content
Welcome Page
Template Engines

Error Handling

79
79
79
79
80
81
81
82
82
83
83
86
86
87
87
88
88
88
88
88
89
89
90
91
91
91
93
93
93
94
94
95
99
99
99
102
102
103
103
103
104

Web Filters 105

4.7.3. JAX-RS and Jersey. 105
4.7.4. Embedded Servlet Container Support 107
Servlets, Filters, and listeners 107
Servlet Context Initialization 107

The ServletWebServerApplicationContext 108
Customizing Embedded Servlet Containers 108

JSP Limitations 110
4.7.5. Embedded Reactive Server Support 110
4.7.6. Reactive Server Resources Configuration 110
4.8. Graceful shutdown 110
4.9. RSocket 111
4.9.1. RSocket Strategies Auto-configuration 111
4.9.2. RSocket server Auto-configuration 111
4.9.3. Spring Messaging RSocket support 112
4.9.4. Calling RSocket Services with RSocketRequester 112
4.10. Security 113
4.10.1. MVC Security 114
4.10.2. WebFlux Security 114
4.10.3. OAuth2 415
Client 115
Resource Server 117
Authorization Server 118
4.10.4. SAML 2.0 118
Relying Party 118
4.10.5. Actuator Security 119
Cross Site Request Forgery Protection 119
4.11. Working with SQL Databases 120
4.11.1. Configure a DataSource 120
Embedded Database Support 120
Connection to a Production Database 121
Connection to a JNDI DataSource 122
4.11.2. Using JdbcTemplate 122
4.11.3. JPA and Spring Data JPA 123
Entity Classes 123
Spring Data JPA Repositories 125
Creating and Dropping JPA Databases 125
Open EntityManager in View 126
4.11.4. Spring Data JDBC 126
4.11.5. Using H2Os Web Console 126

Changing the H2 ConsoleOs Path 127

4.11.6. Using JOOQ

Code Generation

Using DSLContext

jOOQ SQL Dialect

Customizing jOOQ
4.11.7. Using R2DBC

Embedded Database Support

Using DatabaseClient

Spring Data R2DBC Repositories

4.12. Working with NoSQL Technologies

4.12.1. Redis

Connecting to Redis
4.12.2. MongoDB

Connecting to a MongoDB Database

MongoTemplate

Spring Data MongoDB Repositories

Embedded Mongo
4.12.3. Neo4j

Connecting to a Neo4j Database

Using the Embedded Mode

Using Native Types

Neo4jSession

Spring Data Neo4j Repositories
4.12.4. Solr

Connecting to Solr

Spring Data Solr Repositories
4.12.5. Elasticsearch

Connecting to Elasticsearch using REST clients

Connecting to Elasticsearch using Reactive REST clients

Connecting to Elasticsearch by Using Spring Data

Spring Data Elasticsearch Repositories
4.12.6. Cassandra

Connecting to Cassandra

Spring Data Cassandra Repositories
4.12.7. Couchbase

Connecting to Couchbase

Spring Data Couchbase Repositories
4.12.8. LDAP

Connecting to an LDAP Server

Spring Data LDAP Repositories

Embedded In-memory LDAP Server

127
127
128
129
129
129
130
131
131
132
132
133
133
133
135
135
136
136
136
137
138
138
138
139
139
139
139
140
140
140
441
142
142
143
143
143
144
145
145
145
146

4.12.9. InfluxDB
Connecting to InfluxDB
4.13. Caching
4.13.1. Supported Cache Providers
Generic
JCache (JSR-107)
EhCache 2.x
Hazelcast
Infinispan
Couchbase
Redis
Caffeine
Simple
None
4.14. Messaging
4.14.1. IMS
ActiveMQ Support
Artemis Support
Using a JNDI ConnectionFactory
Sending a Message
Receiving a Message
4.14.2. AMQP
RabbitMQ support
Sending a Message
Receiving a Message
4.14.3. Apache Kafka Support
Sending a Message
Receiving a Message
Kafka Streams
Additional Kafka Properties
Testing with Embedded Kafka
4.15. Calling REST Services with RestTemplate
4.15.1. RestTemplate Customization
4.16. Calling REST Services with WebClient
4.16.1. WebClient Runtime
4.16.2. WebClient Customization
4.17. Validation
4.18. Sending Email
4.19. Distributed Transactions with JTA
4.19.1. Using an Atomikos Transaction Manager

4.19.2. Using a Bitronix Transaction Manager

147
147
147
148
149
149
4150
150
150
451
451
152
153
153
153
153
153
154
155
155
156
158
158
158
159
161
161
162
163
163
164
165
166
166
167
168
168
168
169
169
170

4.19.3. Using a Java EE Managed Transaction Manager
4.19.4. Mixing XA and Non-XA JMS Connections
4.19.5. Supporting an Alternative Embedded Transaction Manager
4.20. Hazelcast
4.21. Quartz Scheduler
4.22. Task Execution and Scheduling
4.23. Spring Integration
4.24. Spring Session
4.25. Monitoring and Management over JMX
4.26. Testing
4.26.1. Test Scope Dependencies
4.26.2. Testing Spring Applications
4.26.3. Testing Spring Boot Applications
Detecting Web Application Type
Detecting Test Configuration
Excluding Test Configuration
Using Application Arguments
Testing with a mock environment
Testing with a running server
Customizing WebTestClient
Using JMX
Mocking and Spying Beans
Auto-configured Tests
Auto-configured JSON Tests
Auto-configured Spring MVC Tests
Auto-configured Spring WebFlux Tests
Auto-configured Data JPA Tests
Auto-configured JDBC Tests
Auto-configured Data JDBC Tests
Auto-configured jOOQ Tests
Auto-configured Data MongoDB Tests
Auto-configured Data Neo4j Tests
Auto-configured Data Redis Tests
Auto-configured Data LDAP Tests
Auto-configured REST Clients
Auto-configured Spring REST Docs Tests
Auto-configured Spring Web Services Tests
Additional Auto-configuration and Slicing
User Configuration and Slicing
Using Spock to Test Spring Boot Applications
4.26.4. Test Utilities

170
170
471
171
172
173
174
175
176
176
177
477
178
179
179
180
180
180
182
183
184
184
186
186
188
190
192
193
194
194
195
196
197
197
198
199
203
203
204
206
206

ConfigFileApplicationContextlInitializer
TestPropertyValues
OutputCapture
TestRestTemplate
4.27. WebSockets
4.28. Web Services
4.28.1. Calling Web Services with WebServiceTemplate
4.29. Creating Your Own Auto-configuration
4.29.1. Understanding Auto-configured Beans
4.29.2. Locating Auto-configuration Candidates
4.29.3. Condition Annotations
Class Conditions
Bean Conditions
Property Conditions
Resource Conditions
Web Application Conditions
SpEL Expression Conditions
4.29.4. Testing your Auto-configuration
Simulating a Web Context
Overriding the Classpath
4.29.5. Creating Your Own Starter
Naming
Configuration keys
The OautoconfigureO Module
Starter Module
4.30. Kotlin support
4.30.1. Requirements
4.30.2. Null-safety
4.30.3. Kotlin API
runApplication
Extensions
4.30.4. Dependency management
4.30.5. @ConfigurationProperties
4.30.6. Testing
4.30.7. Resources
Further reading
Examples
4.31. Building Container Images
4.31.1. Building Docker images
Layering Docker Images
Writing the Dockerfile

206
206
206
207
208
209
209
210
210
210
211
211
212
213
213
213
213
214
215
215
215
216
216
217
219
219
219
219
220
220
220
221
221
222
222
222
222
223
223
223
224

4.31.2. Buildpacks 225

4.32. What to Read Next 225
5. Spring Boot Actuator: Production-ready Features 226
5.1. Enabling Production-ready Features 226
5.2. Endpoints 226
5.2.1. Enabling Endpoints 228
5.2.2. Exposing Endpoints 228
5.2.3. Securing HTTP Endpoints 230
5.2.4. Configuring Endpoints 231
5.2.5. Hypermedia for Actuator Web Endpoints 231
5.2.6. CORS Support 232
5.2.7. Implementing Custom Endpoints 232
Receiving Input 233
Custom Web Endpoints 233
Servlet endpoints 235
Controller endpoints 235
5.2.8. Health Information 235
Auto-configured Healthindicators 236
Writing Custom HealthIndicators 237
Reactive Health Indicators 239
Auto-configured ReactiveHealthindicators 240
Health Groups 240
5.2.9. Kubernetes Probes 241
Checking external state with Kubernetes Probes 242
Application lifecycle and Probes states 242
5.2.10. Application Information 243
Auto-configured InfoContributors 243
Custom Application Information 244

Git Commit Information 244
Build Information 244
Writing Custom InfoContributors 244

5.3. Monitoring and Management over HTTP 245
5.3.1. Customizing the Management Endpoint Paths 245
5.3.2. Customizing the Management Server Port 246
5.3.3. Configuring Management-specific SSL 246
5.3.4. Customizing the Management Server Address 247
5.3.5. Disabling HTTP Endpoints 247
5.4. Monitoring and Management over JMX 248
5.4.1. Customizing MBean Names 248
5.4.2. Disabling JMX Endpoints 248

5.4.3. Using Jolokia for JIMX over HTTP 248

Customizing Jolokia 249

Disabling Jolokia 249
5.5. Loggers 249
5.5.1. Configure a Logger 249
5.6. Metrics 250
5.6.1. Getting started 250
5.6.2. Supported monitoring systems 251
AppOptics 251
Atlas 251
Datadog 252
Dynatrace 252
Elastic 252
Ganglia 252
Graphite 253
Humio 253
Influx 253
JMX 253
KairosDB 254
New Relic 254
Prometheus 255
SignalFx 255
Simple 256
Stackdriver 256
StatsD 256
Wavefront 256
5.6.3. Supported Metrics 257
Spring MVC Metrics 257
Spring WebFlux Metrics 258
Jersey Server Metrics 259
HTTP Client Metrics 260
Cache Metrics 261
DataSource Metrics 261
Hibernate Metrics 262
RabbitMQ Metrics 262
Kafka Metrics 262
5.6.4. Registering custom metrics 262
5.6.5. Customizing individual metrics 263
Common tags 263
Per-meter properties 263
5.6.6. Metrics endpoint 264

5.7. Auditing 265

5.7.1. Custom Auditing
5.8. HTTP Tracing
5.8.1. Custom HTTP tracing
5.9. Process Monitoring
5.9.1. Extending Configuration
5.9.2. Programmatically
5.10. Cloud Foundry Support
5.10.1. Disabling Extended Cloud Foundry Actuator Support
5.10.2. Cloud Foundry Self-signed Certificates
5.10.3. Custom context path
5.11. What to Read Next
6. Deploying Spring Boot Applications
6.1. Deploying to Containers
6.2. Deploying to the Cloud
6.2.1. Cloud Foundry
Binding to Services
6.2.2. Kubernetes
Kubernetes Container Lifecycle
6.2.3. Heroku
6.2.4. OpenShift
6.2.5. Amazon Web Services (AWS)
AWS Elastic Beanstalk
Summary
6.2.6. Boxfuse and Amazon Web Services
6.2.7. Google Cloud
6.3. Installing Spring Boot Applications
6.3.1. Supported Operating Systems
6.3.2. Unix/Linux Services
Installation as an init.d Service (System V)
Installation as a systemd Service
Customizing the Startup Script
6.3.3. Microsoft Windows Services
6.4. What to Read Next
7. Spring Boot CLI
7.1. Installing the CLI
7.2. Using the CLI
7.2.1. Running Applications with the CLI
Deduced OgrabO Dependencies
Deduced OgrabO Coordinates
Default Import Statements

Automatic Main Method

265
265
265
266
266
266
266
267
267
267
268
269
269
269
270
212
272
212
273
274
275
275
276
276
277
278
279
279
279
281
282
285
285
286
286
286
287
288
289
289
289

Custom Dependency Management
7.2.2. Applications with Multiple Source Files
7.2.3. Packaging Your Application
7.2.4. Initialize a New Project
7.2.5. Using the Embedded Shell
7.2.6. Adding Extensions to the CLI
7.3. Developing Applications with the Groovy Beans DSL
7.4. Configuring the CLI with settings.xml
7.5. What to Read Next
8. Build Tool Plugins
8.1. Spring Boot Maven Plugin
8.2. Spring Boot Gradle Plugin
8.3. Spring Boot AntLib Module
8.3.1. Spring Boot Ant Tasks
Using the OexejarO Task
Examples
8.3.2. Using the OfindmainclassO Task
Examples
8.4. Supporting Other Build Systems
8.4.1. Repackaging Archives
8.4.2. Nested Libraries
8.4.3. Finding a Main Class
8.4.4. Example Repackage Implementation
8.5. What to Read Next
9. OHow-toO Guides
9.1. Spring Boot Application
9.1.1. Create Your Own FailureAnalyzer
9.1.2. Troubleshoot Auto-configuration
9.1.3. Customize the Environment or ApplicationContext Before It Starts
9.1.4. Build an ApplicationContext Hierarchy (Adding a Parent or Root Context)
9.1.5. Create a Non-web Application
9.2. Properties and Configuration
9.2.1. Automatically Expand Properties at Build Time
Automatic Property Expansion Using Maven
Automatic Property Expansion Using Gradle
9.2.2. Externalize the Configuration of SpringApplication
9.2.3. Change the Location of External Properties of an Application
9.2.4. Use OShortO Command Line Arguments
9.2.5. Use YAML for External Properties
9.2.6. Set the Active Spring Profiles

9.2.7. Change Configuration Depending on the Environment

289
290
290
290
291
292
292
293
293
295
295
295
295
296
296
296
297
297
298
298
298
298
298
299
300
300
300
300
301
303
303
303
303
303
304
305
305
306
306
307
308

9.2.8. Discover Built-in Options for External Properties 308

9.3. Embedded Web Servers 309
9.3.1. Use Another Web Server 309
9.3.2. Disabling the Web Server 310
9.3.3. Change the HTTP Port 310
9.3.4. Use a Random Unassigned HTTP Port 310
9.3.5. Discover the HTTP Port at Runtime 310
9.3.6. Enable HTTP Response Compression 311
9.3.7. Configure SSL 312
9.3.8. Configure HTTP/2 312

HTTP/2 with Tomcat 312
HTTP/2 with Jetty 313
HTTP/2 with Reactor Netty 313
HTTP/2 with Undertow 313
h2c with supported servers 313
9.3.9. Configure the Web Server 314
9.3.10. Add a Servlet, Filter, or Listener to an Application 315
Add a Servlet, Filter, or Listener by Using a Spring Bean 315
Add Servlets, Filters, and Listeners by Using Classpath Scanning 316
9.3.11. Configure Access Logging 316
9.3.12. Running Behind a Front-end Proxy Server 317
Customize TomcatOs Proxy Configuration 317
9.3.13. Enable Multiple Connectors with Tomcat 318
9.3.14. Use TomcatOs LegacyCookieProcessor 319
9.3.15. Enable TomcatOs MBean Registry 320
9.3.16. Enable Multiple Listeners with Undertow 320
9.3.17. Create WebSocket Endpoints Using @ServerEndpoint 320

9.4. Spring MVC 321
9.4.1. Write a JSON REST Service 321
9.4.2. Write an XML REST Service 321
9.4.3. Customize the Jackson ObjectMapper 322
9.4.4. Customize the @ResponseBody Rendering 323
9.4.5. Handling Multipart File Uploads 324
9.4.6. Switch Off the Spring MVC DispatcherServlet 324
9.4.7. Switch off the Default MVC Configuration 324
9.4.8. Customize ViewResolvers 325

9.5. Testing With Spring Security 326

9.6. Jersey 326
9.6.1. Secure Jersey endpoints with Spring Security 326
9.6.2. Use Jersey Alongside Another Web Framework 327

9.7. HTTP Clients 327

9.7.1.

9.7.2. Configure the TcpClient used by a Reactor Netty-based WebClient

Configure RestTemplate to Use a Proxy

9.8. Logging

9.8.1.

Configure Logback for Logging

Configure Logback for File-only Output

9.8.2.

Configure Log4j for Logging

Use YAML or JSON to Configure Log4j 2

9.9. Data Access

9.9.1.
9.9.2.
9.9.3.
9.9.4.
9.9.5.
9.9.6.
9.9.7.
9.9.8.
9.9.9.

9.9.10.
9.9.11.
9.9.12.
9.9.13.
9.9.14.
9.9.15.
9.9.16.

Configure a Custom DataSource

Configure Two DataSources

Use Spring Data Repositories

Separate @Entity Definitions from Spring Configuration
Configure JPA Properties

Configure Hibernate Naming Strategy

Configure Hibernate Second-Level Caching

Use Dependency Injection in Hibernate Components
Use a Custom EntityManagerFactory

Use Two EntityManagers

Use a Traditional persistence.xml File

Use Spring Data JPA and Mongo Repositories
Customize Spring DataOs Web Support

Expose Spring Data Repositories as REST Endpoint
Configure a Component that is Used by JPA
Configure jOOQ with Two DataSources

9.10. Database Initialization

9.10.1
9.10.2
9.10.3
9.10.4
9.10.5
9.10.6

. Initialize a Database Using JPA

. Initialize a Database Using Hibernate

. Initialize a Database using basic SQL scripts
. Initialize a Database Using R2DBC

. Initialize a Spring Batch Database

. Use a Higher-level Database Migration Tool

Execute Flyway Database Migrations on Startup

Execute Liquibase Database Migrations on Startup

9.11. Messaging

9.111

. Disable Transacted JMS Session

9.12. Batch Applications

9.121
9.12.2
9.12.3
9.12.4

. Specifying a Batch Data Source
. Running Spring Batch Jobs on Startup
. Running from the Command Line

. Storing the Job Repository

9.13. Actuator

327
328
329
329
330
331
332
332
332
335
337
338
338
339
340
340
340
340
342
342
342
343
343
343
344
344
344
344
345
346
346
346
347
348
348
348
348
349
349
349
349

9.13.1. Change the HTTP Port or Address of the Actuator Endpoints
9.13.2. Customize the OwhitelabelO Error Page
9.13.3. Sanitize Sensitive Values
9.13.4. Map Health Indicators to Micrometer Metrics
9.14. Security
9.14.1. Switch off the Spring Boot Security Configuration
9.14.2. Change the UserDetailsService and Add User Accounts
9.14.3. Enable HTTPS When Running behind a Proxy Server
9.15. Hot Swapping
9.15.1. Reload Static Content
9.15.2. Reload Templates without Restarting the Container
Thymeleaf Templates
FreeMarker Templates
Groovy Templates
9.15.3. Fast Application Restarts
9.15.4. Reload Java Classes without Restarting the Container
9.16. Build
9.16.1. Generate Build Information
9.16.2. Generate Git Information
9.16.3. Customize Dependency Versions
9.16.4. Create an Executable JAR with Maven
9.16.5. Use a Spring Boot Application as a Dependency
9.16.6. Extract Specific Libraries When an Executable Jar Runs
9.16.7. Create a Non-executable JAR with Exclusions
9.16.8. Remote Debug a Spring Boot Application Started with Maven
9.16.9. Build an Executable Archive from Ant without Using spring-boot-antlib
9.17. Traditional Deployment
9.17.1. Create a Deployable War File
9.17.2. Convert an Existing Application to Spring Boot
9.17.3. Deploying a WAR to WebLogic
9.17.4. Use Jedis Instead of Lettuce
9.17.5. Use Testcontainers for integration testing
10. Appendices
Appendix A: Common Application properties
10.A.1. Core properties
10.A.2. Cache properties
10.A.3. Mail properties
10.A.4. JSON properties
10.A.5. Data properties
10.A.6. Transaction properties

10.A.7. Data migration properties

349
350
350
351
351
351
352
352
352
352
353
353
353
353
353
353
354
354
354
355
355
356
357
358
358
358
359
360
361
364
364
365
367
367
367
373
373
374
375
391
398

10.A.8. Integration properties 401

10.A.9. Web properties 414
10.A.10. Templating properties 419
10.A.11. Server properties 424
10.A.12. Security properties 432
10.A.13. RSocket properties 433
10.A.14. Actuator properties 433
10.A.15. Devtools properties 451
10.A.16. Testing properties 452
Appendix B: Configuration Metadata 452
10.B.1. Metadata Format 453
Group Attributes 454
Property Attributes 455

Hint Attributes 457
Repeated Metadata Items 458
10.B.2. Providing Manual Hints 458
Value Hint 459
Value Providers 459
10.B.3. Generating Your Own Metadata by Using the Annotation Processor 466
Configuring the Annotation Processor 466
Automatic Metadata Generation 467
Adding Additional Metadata 470
Appendix C: Auto-configuration Classes 470
10.C.1. spring-boot-autoconfigure 471
10.C.2. spring-boot-actuator-autoconfigure 475
Appendix D: Test Auto-configuration Annotations 478
10.D.1. Test Slices 478
Appendix E: The Executable Jar Format 484
10.E.1. Nested JARs 484
The Executable Jar File Structure 484

The Executable War File Structure 485
Index Files 486
Classpath Index 486
Layer Index 486
10.E.2. Spring BootOs OJarFileO Class A87
Compatibility with the Standard Java OJarFileO A87
10.E.3. Launching Executable Jars 487
Launcher Manifest 488
10.E.4. PropertiesLauncher Features 488
10.E.5. Executable Jar Restrictions 490

10.E.6. Alternative Single Jar Solutions 490

Appendix F: Dependency versions 490
10.F.1. Managed Dependency Coordinates 490
10.F.2. Version Properties 519

Legal
2.3.7.RELEASE

Copyright © 2012-2020

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

Chapter 1. Spring Boot Documentation

This section provides a brief overview of Spring Boot reference documentation. It serves as a map
for the rest of the document.

1.1. About the Documentation

The Spring Boot reference guide is available as:

¥ Multi-page HTML
¥ Single page HTML

¥ PDF
The latest copy is available at docs.spring.io/spring-boot/docs/current/reference/

Copies of this document may be made for your own use and for distribution to others, provided
that you do not charge any fee for such copies and further provided that each copy contains this
Copyright Notice, whether distributed in print or electronically.

1.2. Getting Help

If you have trouble with Spring Boot, we would like to help.

¥ Try the How-to documents . They provide solutions to the most common questions.

¥ Learn the Spring basics. Spring Boot builds on many other Spring projects. Check the spring.io
web-site for a wealth of reference documentation. If you are starting out with Spring, try one of
the guides.

¥ Ask a question. We monitor stackoverflow.com for questions tagged with spring-boot .

¥ Report bugs with Spring Boot at github.com/spring-projects/spring-boot/issues

All of Spring Boot is open source, including the documentation. If you find
. problems with the docs or if you want to improve them, please get involved .

1.3. Upgrading from an Earlier Version

Instructions for how to upgrade from earlier versions of Spring Boot are provided on the project
wiki . Follow the links in the in the release notes section to find the version that you want to
upgrade to.

Upgrading instructions are always the first item in the release notes. If you are more than one
release behind, please make sure that you also review the release notes of the versions that you
jumped.

You should always ensure that you are running a supported version of Spring Boot.

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/reference/html/
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/reference/pdf/spring-boot-reference.pdf
https://docs.spring.io/spring-boot/docs/current/reference/
https://spring.io
https://spring.io/guides
https://stackoverflow.com
https://stackoverflow.com/tags/spring-boot
https://github.com/spring-projects/spring-boot/issues
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE
https://github.com/spring-projects/spring-boot/wiki
https://github.com/spring-projects/spring-boot/wiki#release-notes
https://github.com/spring-projects/spring-boot/wiki/Supported-Versions

1.4. First Steps

If you are getting started with Spring Boot or 'Spring' in general, start with the following topics

¥ From scratch: Overview | Requirements | Installation
¥ Tutorial: Part1 | Part2

¥ Running your example: Part1l | Part2

1.5. Working with Spring Boot
Ready to actually start using Spring Boot? We have you covered :

¥ Build systems: Maven | Gradle | Ant | Starters

¥ Best practices: Code Structure | @Configuration | @EnableAutoConfiguration
Dependency Injection

¥ Running your code: IDE | Packaged | Maven | Gradle
¥ Packaging your app: Production jars

¥ Spring Boot CLI: Using the CLI

1.6. Learning about Spring Boot Features

Need more details about Spring BootOs core features? The following content is for you

¥ Core Features: SpringApplication | External Configuration | Profiles | Logging
¥ Web Applications: MVC | Embedded Containers

¥ Working with data: SQL| NO-SQL

¥ Messaging: Overview | JMS

¥ Testing: Overview | Boot Applications | Ultils

¥ Extending: Auto-configuration | @Conditions

1.7. Moving to Production

When you are ready to push your Spring Boot application to production, we have
you might like:

¥ Management endpoints: Overview
¥ Connection options: HTTP | JMX

¥ Monitoring: Metrics | Auditing | HTTP Tracing | Process

1.8. Advanced Topics

Finally, we have a few topics for more advanced users:

| Beans and

some tricks that

¥ Spring Boot Applications Deployment: Cloud Deployment | OS Service
¥ Build tool plugins: Maven | Gradle

¥ Appendix: Application Properties | Configuration Metadata | Auto-configuration Classes | Test
Auto-configuration Annotations | Executable Jars | Dependency Versions

Chapter 2. Getting Started

If you are getting started with Spring Boot, or OSpringO in general, start by reading this section. It
answers the basic Owhat?0, Ohow?0 and Owhy?0O questions. It includes an introduction to Spring
Boot, along with installation instructions. We then walk you through building your first Spring Boot
application, discussing some core principles as we go.

2.1. Introducing Spring Boot

Spring Boot helps you to create stand-alone, production-grade Spring-based Applications that you
can run. We take an opinionated view of the Spring platform and third-party libraries, so that you
can get started with minimum fuss. Most Spring Boot applications need very little Spring
configuration.

You can use Spring Boot to create Java applications that can be started by using java -jar or more
traditional war deployments. We also provide a command line tool that runs Ospring scriptsO.

Our primary goals are:
¥ Provide a radically faster and widely accessible getting-started experience for all Spring

development.

¥ Be opinionated out of the box but get out of the way quickly as requirements start to diverge
from the defaults.

¥ Provide a range of non-functional features that are common to large classes of projects (such as
embedded servers, security, metrics, health checks, and externalized configuration).

¥ Absolutely no code generation and no requirement for XML configuration.

2.2. System Requirements

Spring Boot 2.3.7.RELEASE requires Java 8 and is compatible up to Java 15 (included). Spring
Framework 5.2.12.RELEASE or above is also required.

Explicit build support is provided for the following build tools:

Build Tool Version
Maven 3.3+
Gradle 6 (6.3 or later). 5.6.x is also supported but in a

deprecated form

2.2.1. Servlet Containers

Spring Boot supports the following embedded servlet containers:

Name Servlet Version

Tomcat 9.0 4.0

https://www.java.com
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/

Name Servlet Version
Jetty 9.4 3.1

Undertow 2.0 4.0

You can also deploy Spring Boot applications to any Servlet 3.1+ compatible container.

2.3. Installing Spring Boot

Spring Boot can be used with OclassicO Java development tools or installed as a command line tool.
Either way, you need Java SDK v1.8 or higher. Before you begin, you should check your current Java
installation by using the following command:

$ java -version

If you are new to Java development or if you want to experiment with Spring Boot, you might want
to try the Spring Boot CLI (Command Line Interface) first. Otherwise, read on for OclassicO
installation instructions.

2.3.1. Installation Instructions for the Java Developer

You can use Spring Boot in the same way as any standard Java library. To do so, include the
appropriate spring-boot-*.jar files on your classpath. Spring Boot does not require any special
tools integration, so you can use any IDE or text editor. Also, there is nothing special about a Spring
Boot application, so you can run and debug a Spring Boot application as you would any other Java
program.

Although you could copy Spring Boot jars, we generally recommend that you use a build tool that
supports dependency management (such as Maven or Gradle).

Maven Installation

Spring Boot is compatible with Apache Maven 3.3 or above. If you do not already have Maven
installed, you can follow the instructions at maven.apache.org .

On many operating systems, Maven can be installed with a package manager. If
| you use OSX Homebrew, try brew install maven . Ubuntu users can run sudo apt-
. get install maven . Windows users with Chocolatey can run choco install maven
from an elevated (administrator) prompt.

Spring Boot dependencies use the org.springframework.boot groupld. Typically, your Maven POM file
inherits from the spring-boot-starter-parent project and declares dependencies to one or more
OStartersO Spring Boot also provides an optional ~ Maven plugin to create executable jars.

More details on getting started with Spring Boot and Maven can be found in the Getting Started
section of the Maven pluginOs reference guide.

https://www.java.com
https://maven.apache.org
https://chocolatey.org/
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/maven-plugin/reference/html/#getting-started
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/maven-plugin/reference/html/#getting-started

Gradle Installation

Spring Boot is compatible with Gradle 6 (6.3 or later). Gradle 5.6.x is also supported but this support
is deprecated and will be removed in a future release. If you do not already have Gradle installed,
you can follow the instructions at ~ gradle.org .

Spring Boot dependencies can be declared by using the org.springframework.boot group. Typically,
your project declares dependencies to one or more OStartersO Spring Boot provides a useful Gradle
plugin that can be used to simplify dependency declarations and to create executable jars.

Gradle Wrapper

The Gradle Wrapper provides a nice way of Oobtainingd Gradle when you need to build a
project. It is a small script and library that you commit alongside your code to bootstrap the
build process. See docs.gradle.org/current/userguide/gradle_wrapper.html for details.

More details on getting started with Spring Boot and Gradle can be found in the Getting Started
section of the Gradle pluginOs reference guide.

2.3.2. Installing the Spring Boot CLI

The Spring Boot CLI (Command Line Interface) is a command line tool that you can use to quickly
prototype with Spring. It lets you run Groovy scripts, which means that you have a familiar Java-
like syntax without so much boilerplate code.

You do not need to use the CLI to work with Spring Boot, but it is definitely the quickest way to get a
Spring application off the ground.

Manual Installation

You can download the Spring CLI distribution from the Spring software repository:

¥ spring-boot-cli-2.3.7.RELEASE-bin.zip

¥ spring-boot-cli-2.3.7.RELEASE-bin.tar.gz
Cutting edge snapshot distributions are also available.

Once downloaded, follow the INSTALL.txt instructions from the unpacked archive. In summary,
there is a spring script (spring.bat for Windows) in a bin/ directory in the .zip file. Alternatively,
you can use java -jar with the .jar file (the script helps you to be sure that the classpath is set
correctly).

Installation with SDKMAN!

SDKMAN! (The Software Development Kit Manager) can be used for managing multiple versions of
various binary SDKs, including Groovy and the Spring Boot CLI. Get SDKMAN! from sdkman.io and
install Spring Boot by using the following commands:

https://gradle.org
https://docs.gradle.org/current/userguide/gradle_wrapper.html
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/gradle-plugin/reference/html/#getting-started
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/gradle-plugin/reference/html/#getting-started
https://groovy-lang.org/
https://repo.spring.io/release/org/springframework/boot/spring-boot-cli/2.3.7.RELEASE/spring-boot-cli-2.3.7.RELEASE-bin.zip
https://repo.spring.io/release/org/springframework/boot/spring-boot-cli/2.3.7.RELEASE/spring-boot-cli-2.3.7.RELEASE-bin.tar.gz
https://repo.spring.io/snapshot/org/springframework/boot/spring-boot-cli/
https://raw.githubusercontent.com/spring-projects/spring-boot/v2.3.7.RELEASE/spring-boot-project/spring-boot-cli/src/main/content/INSTALL.txt
https://sdkman.io

$ sdk install springboot
$ spring --version
Spring Boot v2.3.7.RELEASE

If you develop features for the CLI and want access to the version you built, use the following
commands:

$ sdk install springboot dev /path/to/spring-boot/spring-boot-cli/target/spring-boot-
cli-2.3.7.RELEASE-bin/spring-2.3.7.RELEASE/

$ sdk default springboot dev

$ spring --version

Spring CLI v2.3.7.RELEASE

The preceding instructions install a local instance of spring called the devinstance. It points at your
target build location, so every time you rebuild Spring Boot, spring is up-to-date.

You can see it by running the following command:

$ sdk Is springboot

Available Springboot Versions

> + dev
* 2.3.7.RELEASE

+ - local version
* - installed
> - currently in use

OSX Homebrew Installation

If you are on a Mac and use Homebrew , you can install the Spring Boot CLI by using the following
commands:

$ brew tap pivotal/tap
$ brew install springboot

Homebrew installs spring to /usr/local/bin

If you do not see the formula, your installation of brew might be out-of-date. In
. that case, run brew update and try again.

https://brew.sh/

MacPorts Installation

If you are on a Mac and use MacPorts, you can install the Spring Boot CLI by using the following
command:

$ sudo port install spring-boot-cli

Command-line Completion

The Spring Boot CLI includes scripts that provide command completion for the BASH and zsh shells.
You can source the script (also named spring) in any shell or put it in your personal or system-wide
bash completion initialization. On a Debian system, the system-wide scripts are in /shell-
completion/bash and all scripts in that directory are executed when a new shell starts. For example,

to run the script manually if you have installed by using SDKMAN!, use the following commands:

$. ~/.sdkman/candidates/springboot/current/shell-completion/bash/spring
$ spring <HIT TAB HERE>
E grab help jar run test version

If you install the Spring Boot CLI by using Homebrew or MacPorts, the command-
line completion scripts are automatically registered with your shell.

Windows Scoop Installation

If you are on a Windows and use Scoop, you can install the Spring Boot CLI by using the following
commands:

> scoop bucket add extras
> scoop install springboot

Scoop installs spring to ~/scoop/apps/springboot/current/bin

If you do not see the app manifest, your installation of scoop might be out-of-date.
In that case, run scoop update and try again.

Quick-start Spring CLI Example

You can use the following web application to test your installation. To start, create a file called
app.groovy, as follows:

https://www.macports.org/
https://en.wikipedia.org/wiki/Bash_%28Unix_shell%29
https://en.wikipedia.org/wiki/Z_shell
https://scoop.sh/

@RestController
class ThisWillActuallyRun {

E @RequestMapping("/")
E String home() {

E "Hello World!"

E }

}

Then run it from a shell, as follows:

$ spring run app.groovy

I The first run of your application is slow, as dependencies are downloaded.
. Subsequent runs are much quicker.

Open localhost:8080 in your favorite web browser. You should see the following output:

Hello World!

2.3.3. Upgrading from an Earlier Version of Spring Boot

If you are upgrading from the 1.x release of Spring Boot, check the Omigration guideO on the project
wiki that provides detailed upgrade instructions. Check also the Orelease notesOfor a list of Onew
and noteworthyO features for each release.

When upgrading to a new feature release, some properties may have been renamed or removed.
Spring Boot provides a way to analyze your applicationOs environment and print diagnostics at

startup, but also temporarily migrate properties at runtime for you. To enable that feature, add the
following dependency to your project:

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-properties-migrator</artifactld>
E <scope>runtime</scope>

</dependency>

T

b [T

n Properties that are added late to the environment, such as when using
@PropertySourcewill not be taken into account.

Once youOre done with the migration, please make sure to remove this module
from your projectOs dependencies.

10

http://localhost:8080
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Migration-Guide
https://github.com/spring-projects/spring-boot/wiki

To upgrade an existing CLI installation, use the appropriate package manager command (for
example, brew upgrade). If you manually installed the CLI, follow the standard instructions
remembering to update your PATHenvironment variable to remove any older references.

2.4. Developing Your First Spring Boot Application

This section describes how to develop a small OHello World!O web application that highlights some
of Spring BootOs key features. We use Maven to build this project, since most IDEs support it.

The spring.io web site contains many OGetting StartedO guides that use Spring Boot.
If you need to solve a specific problem, check there first.

You can shortcut the steps below by going to start.spring.io and choosing the "Web"
starter from the dependencies searcher. Doing so generates a new project
structure so that you can start coding right away . Check the Spring Initializr
documentation for more details.

Before we begin, open a terminal and run the following commands to ensure that you have valid
versions of Java and Maven installed:

$ java -version

java version "1.8.0_102"

Java(TM) SE Runtime Environment (build 1.8.0 102-b14)

Java HotSpot(TM) 64-Bit Server VM (build 25.102-b14, mixed mode)

$ mvn -v

Apache Maven 3.5.4 (1edded0938998edf8bf061flceb3cfdeccf443fe; 2018-06-17T14:33:14-
04:00)

Maven home: /usr/local/Cellar/maven/3.3.9/libexec

Java version: 1.8.0_102, vendor: Oracle Corporation

This sample needs to be created in its own directory. Subsequent instructions
assume that you have created a suitable directory and that it is your current
directory.

2.4.1. Creating the POM

We need to start by creating a Maven pom.xmlfile. The pom.xmlis the recipe that is used to build your
project. Open your favorite text editor and add the following:

11

https://spring.io
https://spring.io/guides
https://start.spring.io
https://docs.spring.io/initializr/docs/current/reference/html/#user-guide
https://docs.spring.io/initializr/docs/current/reference/html/#user-guide

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"
xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"

E xsi:schemalocation="http://maven.apache.org/POM/4.0.0
https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>

T

<groupld>com.example</groupld>
<artifactld>myproject</artifactld>
<version>0.0.1-SNAPSHOT</version>

m [T [T

<parent>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-parent</artifactld>
<version>2.3.7.RELEASE</version>

</parent>

[T T [T [T [T

<description/>
<developers>
<developer/>
</developers>
<licenses>
<license/>
</licenses>
<scm>
<url/>
</scm>
<url/>

[T T [T [T [T [T [T Ty e [Ty [mp

T

<l-- Additional lines to be added here... -->

</project>

The preceding listing should give you a working build. You can test it by running mvn package(for
now, you can ignore the Ojar will be empty - no content was marked for inclusion!O warning).

At this point, you could import the project into an IDE (most modern Java IDEs
include built-in support for Maven). For simplicity, we continue to use a plain text
editor for this example.

2.4.2. Adding Classpath Dependencies

Spring Boot provides a number of OStartersO that let you add jars to your classpath. Our
applications for smoke tests use the spring-boot-starter-parent in the parent section of the POM.
The spring-boot-starter-parent is a special starter that provides useful Maven defaults. It also
provides a dependency-managemensection so that you can omit version tags for OblessedO
dependencies.

Other OStartersO provide dependencies that you are likely to need when developing a specific type

12

of application. Since we are developing a web application, we add a spring-boot-starter-web

dependency. Before that, we can look at what we currently have by running the following
command:

$ mvn dependency:tree

[INFO] com.example:myproject:jar:0.0.1-SNAPSHOT

The mvn dependency:tree command prints a tree representation of your project dependencies. You
can see that spring-boot-starter-parent provides no dependencies by itself. To add the necessary
dependencies, edit your pom.xmland add the spring-boot-starter-web dependency immediately
below the parent section:

<dependencies>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-web</artifactld>

</dependency>

</dependencies>

m > m» [mp

If you run mvn dependency:tree again, you see that there are now a number of additional
dependencies, including the Tomcat web server and Spring Boot itself.

2.4.3. Writing the Code

To finish our application, we need to create a single Java file. By default, Maven compiles sources
from src/main/java , so you need to create that directory structure and then add a file named
src/main/java/Example.java to contain the following code:

13

import org.springframework.boot.*;
import org.springframework.boot.autoconfigure.*;
import org.springframework.web.bind.annotation.*;

@RestController
@EnableAutoConfiguration
public class Example {

@RequestMapping("/")
String home() {
return "Hello World!";

m > m» [mp

public static void main(String[] args) {
SpringApplication.run(Example.class, args);

}

[T [T T

—

Although there is not much code here, quite a lot is going on. We step through the important parts
in the next few sections.

The @RestController and @RequestMapping Annotations

The first annotation on our Example class is @RestController. This is known as a stereotype
annotation. It provides hints for people reading the code and for Spring that the class plays a
specific role. In this case, our class is a web @Controller, so Spring considers it when handling
incoming web requests.

The @RequestMappingnnotation provides Orouting® information. It tells Spring that any HTTP
request with the / path should be mapped to the homemethod. The @RestController annotation tells
Spring to render the resulting string directly back to the caller.

The @RestController and @RequestMappingnnotations are Spring MVC annotations
I (they are not specific to Spring Boot). See the MVC section in the Spring Reference
Documentation for more details.

The @EnableAutoConfiguration Annotation

The second class-level annotation is @EnableAutoConfiguration. This annotation tells Spring Boot to
OguessO how you want to configure Spring, based on the jar dependencies that you have added.
Since spring-boot-starter-web added Tomcat and Spring MVC, the auto-configuration assumes that
you are developing a web application and sets up Spring accordingly.

14

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#mvc

Starters and Auto-configuration

Auto-configuration is designed to work well with OStartersO, but the two concepts are not
directly tied. You are free to pick and choose jar dependencies outside of the starters. Spring
Boot still does its best to auto-configure your application.

The OmainO Method

The final part of our application is the main method. This is a standard method that follows the Java
convention for an application entry point. Our main method delegates to Spring BootOs
SpringApplication class by calling run. SpringApplication bootstraps our application, starting Spring,
which, in turn, starts the auto-configured Tomcat web server. We need to pass Example.class as an
argument to the run method to tell SpringApplication which is the primary Spring component. The
args array is also passed through to expose any command-line arguments.

2.4.4. Running the Example

At this point, your application should work. Since you used the spring-boot-starter-parent POM,
you have a useful run goal that you can use to start the application. Type mvn spring-boot:run from
the root project directory to start the application. You should see output similar to the following:

$ mvn spring-boot:run

E.

=\ VA G I A R
(A()_|'_|'_| [V _ [V

EWV _DOUDITTTICT))))

|§'| [N [

E =_|= = = /=1 1]
E:: Spring Boot :: (v2.3.7.RELEASE)

ceeeeer - . . (log output here)

........ Started Example in 2.222 seconds (JVM running for 6.514)
If you open a web browser to localhost:8080 , you should see the following output:
Hello World!

To gracefully exit the application, press ctrl-c

2.4.5. Creating an Executable Jar

We finish our example by creating a completely self-contained executable jar file that we could run
in production. Executable jars (sometimes called Ofat jarsO) are archives containing your compiled
classes along with all of the jar dependencies that your code needs to run.

15

http://localhost:8080

Executable jars and Java

Java does not provide a standard way to load nested jar files (jar files that are themselves

contained within a jar). This can be problematic if you are looking to distribute a self-
contained application.

To solve this problem, many developers use OuberO jars. An uber jar packages all the classes
from all the applicationOs dependencies into a single archive. The problem with this approach

is that it becomes hard to see which libraries are in your application. It can also be
problematic if the same filename is used (but with different content) in multiple jars.

Spring Boot takes a different approach and lets you actually nest jars directly.

To create an executable jar, we need to add the spring-boot-maven-plugin to our pom.xml To do so,
insert the following lines just below the dependenciessection:

<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-maven-plugin</artifactid>
</plugin>
</plugins>
</build>

[T [T [e T [Tp

The spring-boot-starter-parent POM includes <executions> configuration to bind
| the repackage goal. If you do not use the parent POM, you need to declare this
configuration yourself. See the plugin documentation for details.

Save your pom.xmland run mvn packagefrom the command line, as follows:

16

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/maven-plugin/reference/html/#getting-started

$ mvn package

[INFO] Scanning for projects...
[INFO]
[INFO]
[INFO] Building myproject 0.0.1-SNAPSHOT
[INFO]
[INFQ]

[INFO] --- maven-jar-plugin:2.4:jar (default-jar) @ myproject ---

[INFO] Building jar: /Users/developer/example/spring-boot-example/target/myproject-
0.0.1-SNAPSHOT .jar

[INFO]

[INFO] --- spring-boot-maven-plugin:2.3.7.RELEASE:repackage (default) @ myproject ---
[INFO]
[INFO] BUILD SUCCESS
[INFO]

If you look in the target directory, you should see myproject-0.0.1-SNAPSHOT jar. The file should be
around 10 MB in size. If you want to peek inside, you can use jartvf | as follows:

$ jar tvf target/myproject-0.0.1-SNAPSHOT jar

You should also see a much smaller file named myproject-0.0.1-SNAPSHOT jar.original in the target
directory. This is the original jar file that Maven created before it was repackaged by Spring Boot.

To run that application, use the java -jar command, as follows:

$ java -jar target/myproject-0.0.1-SNAPSHOT jar

E.
EAN/ (O W

(O oV VW

EWV __ OUDITTTIC))))

I§'I | N

E==== =|_|z==== = /=11 1/
E:: Spring Boot :: (v2.3.7.RELEASE)

ceeeeer . .. (log output here)

........ Started Example in 2.536 seconds (JVM running for 2.864)

As before, to exit the application, press ctrl-c

2.5. What to Read Next

Hopefully, this section provided some of the Spring Boot basics and got you on your way to writing

17

your own applications. If you are a task-oriented type of developer, you might want to jump over to
spring.io and check out some of the getting started guides that solve specific OHow do | do that with
Spring?0 problems. We also have Spring Boot-specific O How-to O reference documentation.

Otherwise, the next logical step is to read Using Spring Boot . If you are really impatient, you could
also jump ahead and read about Spring Boot features .

18

https://spring.io
https://spring.io/guides/

Chapter 3. Using Spring Boot

This section goes into more detail about how you should use Spring Boot. It covers topics such as
build systems, auto-configuration, and how to run your applications. We also cover some Spring
Boot best practices. Although there is nothing particularly special about Spring Boot (it is just
another library that you can consume), there are a few recommendations that, when followed,
make your development process a little easier.

If you are starting out with Spring Boot, you should probably read the Getting Started guide before
diving into this section.

3.1. Build Systems

It is strongly recommended that you choose a build system that supports dependency management
and that can consume artifacts published to the OMaven CentralO repository. We would recommend

that you choose Maven or Gradle. It is possible to get Spring Boot to work with other build systems

(Ant, for example), but they are not particularly well supported.

3.1.1. Dependency Management

Each release of Spring Boot provides a curated list of dependencies that it supports. In practice, you
do not need to provide a version for any of these dependencies in your build configuration, as
Spring Boot manages that for you. When you upgrade Spring Boot itself, these dependencies are
upgraded as well in a consistent way.

You can still specify a version and override Spring BootOs recommendations if you
need to do so.

The curated list contains all the Spring modules that you can use with Spring Boot as well as a
refined list of third party libraries. The list is available as a standard Bills of Materials (spring-boot-
dependencieg that can be used with both Maven and Gradle .

n Each release of Spring Boot is associated with a base version of the Spring
Framework. We highly recommend that you not specify its version.

3.1.2. Maven

To learn about using Spring Boot with Maven, please refer to the documentation for Spring BootOs
Maven plugin:

¥ Reference (HTML and PDF)

¥ API

3.1.3. Gradle

To learn about using Spring Boot with Gradle, please refer to the documentation for Spring BootOs
Gradle plugin:

19

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/maven-plugin/reference/html/
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/maven-plugin/reference/pdf/spring-boot-maven-plugin-reference.pdf
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/maven-plugin/api/

¥ Reference (HTML and PDF)

¥ API

3.1.4. Ant

It is possible to build a Spring Boot project using Apache Ant+lvy. The spring-boot-antlib ~ OAntLibO
module is also available to help Ant create executable jars.

To declare dependencies, a typical ivy.xml file looks something like the following example:

<ivy-module version="2.0">
<info organisation="org.springframework.boot" module="spring-boot-sample-ant" />
<configurations>
<conf name="compile" description="everything needed to compile this module" />
<conf name="runtime" extends="compile" description="everything needed to run
this module” />
</configurations>
<dependencies>
<dependency org="org.springframework.boot" name="spring-boot-starter"
rev="${spring-boot.version}" conf="compile" />
</dependencies>
</ivy-module>

[T [T T> [Th

™ > [mp My me

A typical build.xml looks like the following example:

20

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/gradle-plugin/reference/html/
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/gradle-plugin/reference/pdf/spring-boot-gradle-plugin-reference.pdf
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/gradle-plugin/api/

<project

E xmins:ivy="antlib:org.apache.ivy.ant"

E xmins:spring-boot="antlib:org.springframework.boot.ant"

E name="myapp" default="build">

E <property name="spring-boot.version" value="2.3.7.RELEASE" />

E <target name="resolve" description="--> retrieve dependencies with ivy">

E <ivy:retrieve pattern="lib/[conf]/[artifact]-[type]-[revision].[ext]" />

E <ftarget>

E <target name="classpaths" depends="resolve">

E <path id="compile.classpath">

E <fileset dir="lib/compile" includes="*.jar" />

E </path>

E </target>

E <target name="init" depends="classpaths">

E <mkdir dir="build/classes" />

E </target>

E <target name="compile" depends="init" description="compile">

E <javac srcdir="src/main/java" destdir="build/classes"

classpathref="compile.classpath" />

E </target>

E <target name="build" depends="compile">

E <spring-boot:exejar destfile="build/myapp.jar" classes="build/classes">

E <spring-boot:lib>

E <fileset dir="lib/runtime" />

E </spring-boot:lib>

E </spring-boot:exejar>

E </target>

</project>
I If you do not want to use the spring-boot-antlib module, see the Build an
. Executable Archive from Ant without Using spring-boot-antlib OHow-100 .

3.1.5. Starters

Starters are a set of convenient dependency descriptors that you can include in your application.
You get a one-stop shop for all the Spring and related technologies that you need without having to
hunt through sample code and copy-paste loads of dependency descriptors. For example, if you
want to get started using Spring and JPA for database access, include the spring-boot-starter-data-
jpa dependency in your project.

The starters contain a lot of the dependencies that you need to get a project up and running quickly
and with a consistent, supported set of managed transitive dependencies.

21

WhatDs in a name

All official starters follow a similar naming pattern;

spring-boot-starter-* |, where * is a

particular type of application. This naming structure is intended to help when you need to

find a starter. The Maven integration in many IDEs lets you search dependencies by name.

For example, with the appropriate Eclipse or STS plugin installed, you can press ctrl-space in
the POM editor and type Ospring-boot-starterO for a complete list.

As explained in the O Creating Your Own Starter O section, third party starters should not start
with spring-boot , as it is reserved for official Spring Boot artifacts. Rather, a third-party
starter typically starts with the name of the project. For example, a third-party starter project
called thirdpartyproject would typically be named thirdpartyproject-spring-boot-starter

The following application starters are provided by Spring Boot under the

group:
Table 1. Spring Boot application starters

Name

spring-boot-starter

spring-boot-starter-activemq

spring-boot-starter-amaqp

spring-boot-starter-aop

spring-boot-starter-artemis
spring-boot-starter-batch

spring-boot-starter-cache

spring-boot-starter-data-cassandra

spring-boot-starter-data-cassandra-reactive

spring-boot-starter-data-couchbase

spring-boot-starter-data-couchbase-reactive

spring-boot-starter-data-elasticsearch

spring-boot-starter-data-jdbc

spring-boot-starter-data-jpa

22

Description

Core starter, including auto-configuration
support, logging and YAML

Starter for IMS messaging using Apache
ActiveMQ

Starter for using Spring AMQP and Rabbit MQ

Starter for aspect-oriented programming with
Spring AOP and AspectJ

Starter for IMS messaging using Apache Artemis
Starter for using Spring Batch

Starter for using Spring FrameworkOs caching
support

Starter for using Cassandra distributed database
and Spring Data Cassandra

Starter for using Cassandra distributed database
and Spring Data Cassandra Reactive

Starter for using Couchbase document-oriented
database and Spring Data Couchbase

Starter for using Couchbase document-oriented
database and Spring Data Couchbase Reactive

Starter for using Elasticsearch search and
analytics engine and Spring Data Elasticsearch

Starter for using Spring Data JDBC

Starter for using Spring Data JPA with Hibernate

org.springframework.boot

Name
spring-boot-starter-data-ldap

spring-boot-starter-data-mongodb

spring-boot-starter-data-mongodb-reactive

spring-boot-starter-data-neo4j

spring-boot-starter-data-r2dbc

spring-boot-starter-data-redis

spring-boot-starter-data-redis-reactive

spring-boot-starter-data-rest

spring-boot-starter-data-solr

spring-boot-starter-freemarker

spring-boot-starter-groovy-templates

spring-boot-starter-hateoas

spring-boot-starter-integration

spring-boot-starter-jdbc

spring-boot-starter-jersey

spring-boot-starter-jooq

spring-boot-starter-json
spring-boot-starter-jta-atomikos

spring-boot-starter-jta-bitronix

spring-boot-starter-mail

Description
Starter for using Spring Data LDAP

Starter for using MongoDB document-oriented
database and Spring Data MongoDB

Starter for using MongoDB document-oriented
database and Spring Data MongoDB Reactive

Starter for using Neo4j graph database and
Spring Data Neo4j

Starter for using Spring Data R2DBC

Starter for using Redis key-value data store with
Spring Data Redis and the Lettuce client

Starter for using Redis key-value data store with
Spring Data Redis reactive and the Lettuce client

Starter for exposing Spring Data repositories
over REST using Spring Data REST

Starter for using the Apache Solr search
platform with Spring Data Solr

Starter for building MVC web applications using
FreeMarker views

Starter for building MVC web applications using
Groovy Templates views

Starter for building hypermedia-based RESTful
web application with Spring MVC and Spring
HATEOAS

Starter for using Spring Integration

Starter for using JDBC with the HikariCP
connection pool

Starter for building RESTful web applications

using JAX-RS and Jersey. An alternative to
spring-boot-starter-web

Starter for using jOOQ to access SQL databases.
An alternative to spring-boot-starter-data-jpa
or spring-boot-starter-jdbc

Starter for reading and writing json
Starter for JTA transactions using Atomikos

Starter for JTA transactions using Bitronix.
Deprecated since 2.3.0

Starter for using Java Mail and Spring
FrameworkOs email sending support

23

Name

spring-boot-starter-mustache

spring-boot-starter-oauth2-client

spring-boot-starter-oauth2-resource-server

spring-boot-starter-quartz
spring-boot-starter-rsocket
spring-boot-starter-security

spring-boot-starter-test

spring-boot-starter-thymeleaf

spring-boot-starter-validation

spring-boot-starter-web

spring-boot-starter-web-services

spring-boot-starter-webflux

spring-boot-starter-websocket

Description

Starter for building web applications using
Mustache views

Starter for using Spring SecurityOs
OAuth2/0OpenID Connect client features

Starter for using Spring SecurityOs OAuth2
resource server features

Starter for using the Quartz scheduler
Starter for building RSocket clients and servers
Starter for using Spring Security

Starter for testing Spring Boot applications with
libraries including JUnit, Hamcrest and Mockito

Starter for building MVC web applications using
Thymeleaf views

Starter for using Java Bean Validation with
Hibernate Validator

Starter for building web, including RESTful,
applications using Spring MVC. Uses Tomcat as
the default embedded container

Starter for using Spring Web Services

Starter for building WebFlux applications using
Spring FrameworkOs Reactive Web support

Starter for building WebSocket applications
using Spring FrameworkOs WebSocket support

In addition to the application starters, the following starters can be used to add production ready

features:

Table 2. Spring Boot production starters
Name

spring-boot-starter-actuator

Description

Starter for using Spring BootOs Actuator which
provides production ready features to help you
monitor and manage your application

Finally, Spring Boot also includes the following starters that can be used if you want to exclude or

swap specific technical facets:

Table 3. Spring Boot technical starters

24

Name Description

spring-boot-starter-jetty Starter for using Jetty as the embedded servlet

container. An alternative to spring-boot-
starter-tomcat

spring-boot-starter-log4j2 Starter for using Log4j2 for logging. An
alternative to spring-boot-starter-logging

spring-boot-starter-logging Starter for logging using Logback. Default
logging starter

spring-boot-starter-reactor-netty Starter for using Reactor Netty as the embedded
reactive HTTP server.

spring-boot-starter-tomcat Starter for using Tomcat as the embedded
servlet container. Default servlet container
starter used by spring-boot-starter-web

spring-boot-starter-undertow Starter for using Undertow as the embedded

servlet container. An alternative to spring-boot-
starter-tomcat

To learn how to swap technical facets, please see the how-to documentation for swapping web
server and logging system .

For a list of additional community contributed starters, see the README file in the
. spring-boot-starters ~ module on GitHub.

3.2. Structuring Your Code

Spring Boot does not require any specific code layout to work. However, there are some best
practices that help.

3.2.1. Using the OdefaultO Package

When a class does not include a packagedeclaration, it is considered to be in the Odefault packageO.

The use of the Odefault packageO is generally discouraged and should be avoided. It can cause
particular problems for Spring Boot applications that wuse the @ComponentSg¢an
@ConfigurationPropertiesScan , @EntityScan or @SpringBootApplication annotations, since every class
from every jar is read.

We recommend that you follow JavaOs recommended package naming conventions
and use a reversed domain name (for example, com.example.project).

3.2.2. Locating the Main Application Class

We generally recommend that you locate your main application class in a root package above other
classes. The @SpringBootApplication annotation is often placed on your main class, and it implicitly
defines a base Osearch packageO for certain items. For example, if you are writing a JPA application,

the package of the @SpringBootApplication annotated class is used to search for @Entity items. Using

25

https://github.com/spring-projects/spring-boot/tree/master/spring-boot-project/spring-boot-starters/README.adoc

a root package also allows component scan to apply only on your project.

If you donOt want to use @SpringBootApplication, the @EnableAutoConfiguration and
I @ComponentScannotations that it imports defines that behaviour so you can also
use those instead.

The following listing shows a typical layout:

com
E+- example
+- myapplication
+- Application.java
|
+- customer
| +- Customer.java
| +- CustomerController.java
| +- CustomerService.java
| +- CustomerRepository.java
I
+- order
+- Order.java
+- OrderController.java
+- OrderService.java
+- OrderRepository.java

[T [T [T [T [T [T [Te 1> [T [T» [Th Th [Th TP

The Application.java file would declare the main method, along with the basic
@SpringBootApplication, as follows:

package com.example.myapplication;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

T [Ty [T

}

—

3.3. Configuration Classes

Spring Boot favors Java-based configuration. Although it is possible to use SpringApplication with
XML sources, we generally recommend that your primary source be a single @Configuration class.
Usually the class that defines the mainmethod is a good candidate as the primary ~ @Configuration.

26

Many Spring configuration examples have been published on the Internet that use
| XML configuration. If possible, always try to use the equivalent Java-based
configuration. Searching for Enable* annotations can be a good starting point.

3.3.1. Importing Additional Configuration Classes

You need not put all your @Configuration into a single class. The @Importannotation can be used to
import additional configuration classes. Alternatively, you can use @ComponentSctmautomatically
pick up all Spring components, including @Configuration classes.

3.3.2. Importing XML Configuration

If you absolutely must use XML based configuration, we recommend that you still start with a
@Configuration class. You can then use an @ImportResourceannotation to load XML configuration
files.

3.4. Auto-configuration

Spring Boot auto-configuration attempts to automatically configure your Spring application based

on the jar dependencies that you have added. For example, if HSQLDIB on your classpath, and you
have not manually configured any database connection beans, then Spring Boot auto-configures an
in-memory database.

You need to opt-in to auto-configuration by adding the @EnableAutoConfiguration or
@SpringBootApplication annotations to one of your ~@Configuration classes.

You should only ever add one @SpringBootApplication or @EnableAutoConfiguration
| annotation. We generally recommend that you add one or the other to your
primary @ Configuration class only.

3.4.1. Gradually Replacing Auto-configuration

Auto-configuration is non-invasive. At any point, you can start to define your own configuration to
replace specific parts of the auto-configuration. For example, if you add your own DataSourcebean,
the default embedded database support backs away.

If you need to find out what auto-configuration is currently being applied, and why, start your
application with the --debug switch. Doing so enables debug logs for a selection of core loggers and
logs a conditions report to the console.

3.4.2. Disabling Specific Auto-configuration Classes

If you find that specific auto-configuration classes that you do not want are being applied, you can
use the exclude attribute of @SpringBootApplication to disable them, as shown in the following
example:

27

import org.springframework.boot.autoconfigure.*;
import org.springframework.boot.autoconfigure.jdbc.*;

@SpringBootApplication(exclude={DataSourceAutoConfiguration.class})
public class MyApplication {

}

If the class is not on the classpath, you can use the excludeNameattribute of the annotation and
specify the fully qualified name instead. If you prefer to use @EnableAutoConfiguration rather than
@SpringBootApplication, exclude and excludeNamere also available. Finally, you can also control the
list of auto-configuration classes to exclude by using the spring.autoconfigure.exclude property.

| You can define exclusions both at the annotation level and by using the property.

Even though auto-configuration classes are public , the only aspect of the class that
is considered public API is the name of the class which can be used for disabling
the auto-configuration. The actual contents of those classes, such as nested
configuration classes or bean methods are for internal use only and we do not

recommend using those directly.

3.5. Spring Beans and Dependency Injection

You are free to use any of the standard Spring Framework techniques to define your beans and
their injected dependencies. We often find that using @ComponentScéo find your beans) and using
@Autowiredto do constructor injection) works well.

If you structure your code as suggested above (locating your application class in a root package),
you can add @ComponentScamithout any arguments. All of your application components (
@Componer@®Service @Repository @Controller etc.) are automatically registered as Spring Beans.

The following example shows a @ServiceBean that uses constructor injection to obtain a required
RiskAssessor bean:

28

package com.example.service;

import org.springframework.beans.factory.annotation.Autowired,;
import org.springframework.stereotype.Service;

@Service
public class DatabaseAccountService implements AccountService {

T

private final RiskAssessor riskAssessor;

@Autowired
public DatabaseAccountService(RiskAssessor riskAssessor) {
this.riskAssessor = riskAssessor;

m > [y mp

T

...

If a bean has one constructor, you can omit the @Autowiregas shown in the following example:

@Service
public class DatabaseAccountService implements AccountService {

T

private final RiskAssessor riskAssessor;

public DatabaseAccountService(RiskAssessor riskAssessor) {
this.riskAssessor = riskAssessor;

m [T [T

m

...

Notice how using constructor injection lets the riskAssessor field be marked as
. final , indicating that it cannot be subsequently changed.

3.6. Using the @SpringBootApplication Annotation

Many Spring Boot developers like their apps to use auto-configuration, component scan and be able
to define extra configuration on their "application class". A single @SpringBootApplication
annotation can be used to enable those three features, that is:

¥ @EnableAutoConfiguration enable Spring BootOs auto-configuration mechanism

¥ @ComponentScanable @Componestan on the package where the application is located (see the
best practices)

29

30

¥ @Configuration: allow to register extra beans in the context or import additional configuration
classes

package com.example.myapplication;

import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication // same as @Configuration @EnableAutoConfiguration
@ComponentScan
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

}

T [Ty [T

—

@SpringBootApplication also provides aliases to customize the attributes of
@EnableAutoConfigurationand @ComponentScan

None of these features are mandatory and you may choose to replace this single
annotation by any of the features that it enables. For instance, you may not want to
use component scan or configuration properties scan in your application:

package com.example.myapplication;

import org.springframework.boot.SpringApplication;

import org.springframework.context.annotation.ComponentScan
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Import;

@Configuration(proxyBeanMethods = false)
@EnableAutoConfiguration

@Import({ MyConfig.class, MyAnotherConfig.class })
public class Application {

public static void main(String[] args) {
SpringApplication.run(Application.class, args);

™ [T [T

—

In this example, Application is just like any other Spring Boot application except
that @Componeanhnotated classes and @ConfigurationProperties -annotated classes
are not detected automatically and the user-defined beans are imported explicitly

(see @Impor].

3.7. Running Your Application

One of the biggest advantages of packaging your application as a jar and using an embedded HTTP
server is that you can run your application as you would any other. The sample applies to
debugging Spring Boot applications. You do not need any special IDE plugins or extensions.

This section only covers jar based packaging. If you choose to package your
. application as a war file, you should refer to your server and IDE documentation.

3.7.1. Running from an IDE

You can run a Spring Boot application from your IDE as a Java application. However, you first need
to import your project. Import steps vary depending on your IDE and build system. Most IDEs can
import Maven projects directly. For example, Eclipse users can select ImportE "
Projects from the File menu.

If you cannot directly import your project into your IDE, you may be able to generate IDE metadata

Existing Maven

by using a build plugin. Maven includes plugins for Eclipse and IDEA. Gradle offers plugins for

various IDEs .

If you accidentally run a web application twice, you see a OPort already in useO
I error. STS users can use the Relaunchbutton rather than the Runbutton to ensure
that any existing instance is closed.
3.7.2. Running as a Packaged Application
If you use the Spring Boot Maven or Gradle plugins to create an executable jar, you can run your
application using java -jar , as shown in the following example:

$ java -jar target/myapplication-0.0.1-SNAPSHOT .jar

It is also possible to run a packaged application with remote debugging support enabled. Doing so
lets you attach a debugger to your packaged application, as shown in the following example:

$ java -Xdebug -Xrunjdwp:server=y,transport=dt_socket,address=8000,suspend=n \
E -jar target/myapplication-0.0.1-SNAPSHOT .jar

3.7.3. Using the Maven Plugin

The Spring Boot Maven plugin includes a run goal that can be used to quickly compile and run your
application. Applications run in an exploded form, as they do in your IDE. The following example
shows a typical Maven command to run a Spring Boot application:

$ mvn spring-boot:run

31

https://maven.apache.org/plugins/maven-eclipse-plugin/
https://maven.apache.org/plugins/maven-idea-plugin/
https://docs.gradle.org/current/userguide/userguide.html

You might also want to use the MAVEN_ORJerating system environment variable, as shown in the
following example:

$ export MAVEN_OPTS=-Xmx1024m

3.7.4. Using the Gradle Plugin

The Spring Boot Gradle plugin also includes a bootRuntask that can be used to run your application
in an exploded form. The bootRuntask is added whenever you apply the org.springframework.boot
and java plugins and is shown in the following example:

$ gradle bootRun

You might also want to use the JAVA_ OPTdperating system environment variable, as shown in the
following example:

$ export JAVA_OPTS=-Xmx1024m

3.7.5. Hot Swapping

Since Spring Boot applications are plain Java applications, JVM hot-swapping should work out of
the box. JVM hot swapping is somewhat limited with the bytecode that it can replace. For a more
complete solution, JRebelcan be used.

The spring-boot-devtools module also includes support for quick application restarts. See the
Developer Tools section later in this chapter and the Hot swapping OHow-toO for details.

3.8. Developer Tools

Spring Boot includes an additional set of tools that can make the application development
experience a little more pleasant. The spring-boot-devtools module can be included in any project
to provide additional development-time features. To include devtools support, add the module
dependency to your build, as shown in the following listings for Maven and Gradle:

Maven

<dependencies>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-devtools</artifactld>
<optional>true</optional>

</dependency>

</dependencies>

™ > m» mp me

32

https://www.jrebel.com/products/jrebel

Gradle

dependencies {
E developmentOnly("org.springframework.boot:spring-boot-devtools")

}

Developer tools are automatically disabled when running a fully packaged
application. If your application is launched from java -jar orif it is started from a
special classloader, then it is considered a Oproduction applicationO. If that does
not apply to you (i.e. if you run your application from a container), consider
excluding devtools or set the -Dspring.devtools.restart.enabled=false system

property.

Flagging the dependency as optional in Maven or using the developmentOnly
I configuration in Gradle (as shown above) prevents devtools from being
transitively applied to other modules that use your project.

Repackaged archives do not contain devtools by default. If you want to use a
certain remote devtools feature , you need to include it. When using the Maven
plugin, set the excludeDevtools property to false . When using the Gradle plugin,
configure the taskOs classpath to include the developmentOnlyconfiguration

3.8.1. Property Defaults

Several of the libraries supported by Spring Boot use caches to improve performance. For example,
template engines cache compiled templates to avoid repeatedly parsing template files. Also, Spring
MVC can add HTTP caching headers to responses when serving static resources.

While caching is very beneficial in production, it can be counter-productive during development,
preventing you from seeing the changes you just made in your application. For this reason, spring-
boot-devtools disables the caching options by default.

Cache options are usually configured by settings in your application.properties file. For example,
Thymeleaf offers the spring.thymeleaf.cache property. Rather than needing to set these properties
manually, the spring-boot-devtools module automatically applies sensible development-time
configuration.

Because you need more information about web requests while developing Spring MVC and Spring
WebFlux applications, developer tools will enable DEBUI(egging for the weblogging group. This will
give you information about the incoming request, which handler is processing it, the response
outcome, etc. If you wish to log all request details (including potentially sensitive information), you

can turn on the spring.mvc.log-request-details or spring.codec.log-request-details configuration
properties.

If you donOt want property defaults to be applied you can set spring.devtools.add-
. properties to false inyour application.properties

33

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/gradle-plugin/reference/html/#packaging-executable-configuring-including-development-only-dependencies
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/gradle-plugin/reference/html/#packaging-executable-configuring-including-development-only-dependencies
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/gradle-plugin/reference/html/#packaging-executable-configuring-including-development-only-dependencies

For a complete list of the properties that are applied by the devtools, see
DevToolsPropertyDefaultsPostProcessor

3.8.2. Automatic Restart

Applications that use spring-boot-devtools automatically restart whenever files on the classpath
change. This can be a useful feature when working in an IDE, as it gives a very fast feedback loop

for code changes. By default, any entry on the classpath that points to a directory is monitored for
changes. Note that certain resources, such as static assets and view templates, do not need to restart
the application .

34

Triggering a restart

As DevTools monitors classpath resources, the only way to trigger a restart is to update the
classpath. The way in which you cause the classpath to be updated depends on the IDE that
you are using:

¥ In Eclipse, saving a modified file causes the classpath to be updated and triggers a restart.

¥ In IntelliJ IDEA, building the project (Build +!+ Build Project) has the same effect.

¥ If using a build plugin, running mvn compile for Maven or gradle build for Gradle will

trigger a restart.

If you are restarting with Maven or Gradle using the build plugin you must leave
the forking set to enabled. If you disable forking, the isolated application
classloader used by devtools will not be created and restarts will not operate

properly.

Automatic restart works very well when used with LiveReload. See the LiveReload
section for details. If you use JRebel, automatic restarts are disabled in favor of
dynamic class reloading. Other devtools features (such as LiveReload and property
overrides) can still be used.

DevTools relies on the application contextOs shutdown hook to close it during a
restart. It does not work correctly if you have disabled the shutdown hook
(SpringApplication.setRegisterShutdownHook(false)).

When deciding if an entry on the classpath should trigger a restart when it
changes, DevTools automatically ignores projects named spring-boot , spring-boot-
devtools, spring-boot-autoconfigure , spring-boot-actuator , and spring-boot-
Starter .

DevTools needs to customize the ResourceLoaderused by the ApplicationContext . If
your application provides one already, it is going to be wrapped. Direct override of
the getResource method on the ApplicationContext is not supported.

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-devtools/src/main/java/org/springframework/boot/devtools/env/DevToolsPropertyDefaultsPostProcessor.java

Restart vs Reload

The restart technology provided by Spring Boot works by using two classloaders. Classes that

do not change (for example, those from third-party jars) are loaded into a base classloader.
Classes that you are actively developing are loaded into a restart classloader. When the
application is restarted, the restart classloader is thrown away and a new one is created. This
approach means that application restarts are typically much faster than Ocold startsO, since

the base classloader is already available and populated.

If you find that restarts are not quick enough for your applications or you encounter
classloading issues, you could consider reloading technologies such as JRebel from
ZeroTurnaround. These work by rewriting classes as they are loaded to make them more
amenable to reloading.

Logging changes in condition evaluation

By default, each time your application restarts, a report showing the condition evaluation delta is
logged. The report shows the changes to your applicationOs auto-configuration as you make changes
such as adding or removing beans and setting configuration properties.

To disable the logging of the report, set the following property:

spring.devtools.restart.log-condition-evaluation-delta=false

Excluding Resources

Certain resources do not necessarily need to trigger a restart when they are changed. For example,
Thymeleaf templates can be edited in-place. By default, changing resources in IMETA-INF/maven
IMETA-INF/resources /resources , /static , /public , or /templates does not trigger a restart but does
trigger a live reload . If you want to customize these exclusions, you can use the
spring.devtools.restart.exclude property. For example, to exclude only /static and /public you
would set the following property:

spring.devtools.restart.exclude=static/**,public/**

If you want to keep those defaults and add additional exclusions, use the
. spring.devtools.restart.additional-exclude property instead.

Watching Additional Paths

You may want your application to be restarted or reloaded when you make changes to files that are

not on the classpath. To do so, use the spring.devtools.restart.additional-paths property to
configure additional paths to watch for changes. You can use the spring.devtools.restart.exclude
property described earlier to control whether changes beneath the additional paths trigger a full
restart or a live reload .

35

https://jrebel.com/software/jrebel/

Disabling Restart

If you do not want to use the restart feature, you can disable it by using the

spring.devtools.restart.enabled property. In most cases, you can set this property in your
application.properties (doing so still initializes the restart classloader, but it does not watch for file

changes).

If you need to completely disable restart support (for example, because it does not work with a
specific library), you need to set the spring.devtools.restart.enabled System property to false
before calling SpringApplication.run(E) , as shown in the following example:

public static void main(String[] args) {

E System.setProperty("spring.devtools.restart.enabled"”, "false");
E SpringApplication.run(MyApp.class, args);

}

Using a Trigger File

If you work with an IDE that continuously compiles changed files, you might prefer to trigger
restarts only at specific times. To do so, you can use a Otrigger fileO, which is a special file that must
be modified when you want to actually trigger a restart check.

Any update to the file will trigger a check, but restart only actually occurs if
Devtools has detected it has something to do.

To use a trigger file, set the spring.devtools.restart.trigger-file property to the name (excluding
any path) of your trigger file. The trigger file must appear somewhere on your classpath.

For example, if you have a project with the following structure:

src

+- main

E +- resources

E +- .reloadtrigger

Then your trigger-file property would be:

spring.devtools.restart.trigger-file=.reloadtrigger

Restarts will now only happen when the src/main/resources/.reloadtrigger is updated.
You might want to set spring.devtools.restart.trigger-file as a global setting , so
. that all your projects behave in the same way.
Some IDEs have features that save you from needing to update your trigger file manually. Spring

Tools for Eclipse and IntelliJ IDEA (Ultimate Edition) both have such support. With Spring Tools, you

36

https://spring.io/tools
https://spring.io/tools
https://www.jetbrains.com/idea/

can use the OreloadO button from the console view (as long as your trigger-file is named
.reloadtrigger). For IntelliJ IDEA, you can follow the instructions in their documentation

Customizing the Restart Classloader

As described earlier in the Restart vs Reload section, restart functionality is implemented by using
two classloaders. For most applications, this approach works well. However, it can sometimes cause
classloading issues.

By default, any open project in your IDE is loaded with the OrestartO classloader, and any regular
Jjar file is loaded with the ObaseO classloader. If you work on a multi-module project, and not every
module is imported into your IDE, you may need to customize things. To do so, you can create a
META-INF/spring-devtools.properties file.

The spring-devtools.properties file can contain properties prefixed with restart.exclude and
restart.include . The include elements are items that should be pulled up into the OrestartO
classloader, and the exclude elements are items that should be pushed down into the ObaseO
classloader. The value of the property is a regex pattern that is applied to the classpath, as shown in

the following example:

restart.exclude.companycommonlibs=/mycorp-common-[\Ww\\d-\.]+\.jar
restart.include.projectcommon=/mycorp-myproj-[\w\\d-\.]+\.jar

All property keys must be unique. As long as a property starts with
restart.include. or restart.exclude. itis considered.

All META-INF/spring-devtools.properties from the classpath are loaded. You can
. package files inside your project, or in the libraries that the project consumes.

Known Limitations

Restart functionality does not work well with objects that are deserialized by using a standard
ObjectinputStream. If you need to deserialize data, you may need to use SpringOs
ConfigurableObjectinputStream in combination with
Thread.currentThread().getContextClassLoader()

Unfortunately, several third-party libraries deserialize without considering the context classloader.
If you find such a problem, you need to request a fix with the original authors.

3.8.3. LiveReload

The spring-boot-devtools module includes an embedded LiveReload server that can be used to
trigger a browser refresh when a resource is changed. LiveReload browser extensions are freely
available for Chrome, Firefox and Safari from livereload.com .

If you do not want to start the LiveReload server when your application runs, you can set the
spring.devtools.livereload.enabled property to false .

37

https://www.jetbrains.com/help/idea/spring-boot.html#application-update-policies
http://livereload.com/extensions/

You can only run one LiveReload server at a time. Before starting your application,
ensure that no other LiveReload servers are running. If you start multiple
applications from your IDE, only the first has LiveReload support.

" To trigger LiveReload when a file changes, Automatic Restart must be enabled.

3.8.4. Global Settings

You can configure global devtools settings by adding any of the following files to the
$HOME/.config/spring-boot directory:

1. spring-boot-devtools.properties

2. spring-boot-devtools.yami

3. spring-boot-devtools.yml

Any properties added to these file apply to all Spring Boot applications on your machine that use
devtools. For example, to configure restart to always use a trigger file , you would add the following

property:

~/.config/spring-boot/spring-boot-devtools.properties

spring.devtools.restart.trigger-file=.reloadtrigger

If devtools configuration files are not found in $HOME/.config/spring-boot , the root
of the $HOMHdirectory is searched for the presence of a .spring-boot-
devtools.properties file. This allows you to share the devtools global configuration
with applications that are on an older version of Spring Boot that does not support

the $HOME/.config/spring-boot location.

Profiles are not supported in devtools properties/yaml files.

I Any profiles activated in .spring-boot-devtools.properties will not affect the
. loading of profile-specific configuration files . Profile specific filenames (of the
form spring-boot-devtools-<profile>.properties) and spring.profile sub-

documents in YAML files are not supported.

Configuring File System Watcher

FileSystemWatcher works by polling the class changes with a certain time interval, and then
waiting for a predefined quiet period to make sure there are no more changes. Since Spring Boot
relies entirely on the IDE to compile and copy files into the location from where Spring Boot can

read them, you might find that there are times when certain changes are not reflected when
devtools restarts the application. If you observe such problems constantly, try increasing the
spring.devtools.restart.poll-interval and spring.devtools.restart.quiet-period parameters to
the values that fit your development environment:

38

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-devtools/src/main/java/org/springframework/boot/devtools/filewatch/FileSystemWatcher.java

spring.devtools.restart.poll-interval=2s
spring.devtools.restart.quiet-period=1s

The monitored classpath directories are now polled every 2 seconds for changes, and a 1 second
quiet period is maintained to make sure there are no additional class changes.

3.8.5. Remote Applications

The Spring Boot developer tools are not limited to local development. You can also use several
features when running applications remotely. Remote support is opt-in as enabling it can be a
security risk. It should only be enabled when running on a trusted network or when secured with
SSL. If neither of these options is available to you, you should not use DevTools' remote support.
You should never enable support on a production deployment.

To enable it, you need to make sure that devtools is included in the repackaged archive, as shown in
the following listing:

<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-maven-plugin</artifactld>
<configuration>
<excludeDevtools>false</excludeDevtools>
</configuration>
</plugin>
</plugins>
</build>

[T [T [T My mp e mp mp mp

Then you need to set the spring.devtools.remote.secret property. Like any important password or
secret, the value should be unique and strong such that it cannot be guessed or brute-forced.

Remote devtools support is provided in two parts: a server-side endpoint that accepts connections
and a client application that you run in your IDE. The server component is automatically enabled
when the spring.devtools.remote.secret property is set. The client component must be launched
manually.

Running the Remote Client Application

The remote client application is designed to be run from within your IDE. You need to run
org.springframework.boot.devtools.RemoteSpringApplication with the same classpath as the remote
project that you connect to. The applicationOs single required argument is the remote URL to which

it connects.

For example, if you are using Eclipse or STS and you have a project named my-appthat you have
deployed to Cloud Foundry, you would do the following:

¥ Select Run ConfigurationsE from the Runmenu.

39

¥ Create a new Java Application

¥ Browse for the my-appproject.

Olaunch configurationO.

¥ Use org.springframework.boot.devtools.RemoteSpringApplication as the main class.

¥ Add https://myapp.cfapps.io

to the Program arguments(or whatever your remote URL is).

A running remote client might resemble the following listing:

E. _ o

=\ VA O o _ o\

(O "1V _| S U S R

EV __ DT D=0 7= VN -2)))))

I%'I (P |\ N AN T

E :|_|: = = _/ = = = = = :/_/_/_/
E:: Spring Boot Remote :: 2.3.7.RELEASE

2015-06-10 18:25:06.632 INFO 14938 --- main]

0.s.b.devtools.RemoteSpringApplication : Starting RemoteSpringApplication on pwmbp
with PID 14938 (/Users/pwebb/projects/spring-boot/code/spring-boot-project/spring-
boot-devtools/target/classes started by pwebb in /Users/pwebb/projects/spring-

boot/code)

2015-06-10 18:25:06.671 INFO 14938 --- main]
s.c.a.AnnotationConfigApplicationContext : Refreshing
org.springframework.context.annotation.AnnotationConfigApplicationContext@2al7b7b6:
startup date [Wed Jun 10 18:25:06 PDT 2015]; root of context hierarchy

2015-06-10 18:25:07.043 WARN 14938 --- main]
0.s.b.d.r.c.RemoteClientConfiguration : The connection to http://localhost:8080 is
insecure. You should use a URL starting with 'https://'.

2015-06-10 18:25:07.074 INFO 14938 --- | main|]
0.s.b.d.a.OptionalLiveReloadServer : LiveReload server is running on port 35729
2015-06-10 18:25:07.130 INFO 14938 --- | main|]

0.s.b.devtools.RemoteSpringApplication : Started RemoteSpringApplication in 0.74
seconds (JVM running for 1.105)

Because the remote client is using the same classpath as the real application it can

directly read application properties. This is how the

property is read and passed to the server for authentication.

It is always advisable to use https:// as the connection protocol, so that traffic is
encrypted and passwords cannot be intercepted.

If you need to use a proxy to access the remote application, configure the
I spring.devtools.remote.proxy.host and spring.devtools.remote.proxy.port

properties.

Remote Update

The remote client monitors your application classpath for changes in the same way as the

40

spring.devtools.remote.secret

local

restart . Any updated resource is pushed to the remote application and (if required) triggers a
restart. This can be helpful if you iterate on a feature that uses a cloud service that you do not have
locally. Generally, remote updates and restarts are much quicker than a full rebuild and deploy

cycle.

On a slower development environment, it may happen that the quiet period is not enough, and the
changes in the classes may be split into batches. The server is restarted after the first batch of class
changes is uploaded. The next batch canOt be sent to the application, since the server is restarting.

This is typically manifested by a warning in the RemoteSpringApplication logs about failing to upload
some of the classes, and a consequent retry. But it may also lead to application code inconsistency

and failure to restart after the first batch of changes is uploaded. If you observe such problems
constantly, try increasing the spring.devtools.restart.poll-interval and
spring.devtools.restart.quiet-period parameters to the values that fit your development
environment. See the Configuring File System Watcher section for configuring these properties.

Files are only monitored when the remote client is running. If you change a file
before starting the remote client, it is not pushed to the remote server.

3.9. Packaging Your Application for Production

Executable jars can be used for production deployment. As they are self-contained, they are also
ideally suited for cloud-based deployment.

For additional Oproduction readyO features, such as health, auditing, and metric REST or JMX end-
points, consider adding spring-boot-actuator . See Spring Boot Actuator: Production-ready Features
for details.

3.10. What to Read Next

You should now understand how you can use Spring Boot and some best practices that you should
follow. You can now go on to learn about specific Spring Boot features in depth, or you could skip
ahead and read about the O production ready O aspects of Spring Boot.

41

Chapter 4. Spring Boot Features

This section dives into the details of Spring Boot. Here you can learn about the key features that you
may want to use and customize. If you have not already done so, you might want to read the
"Getting Started " and " Using Spring Boot " sections, so that you have a good grounding of the basics.

4.1. SpringApplication

The SpringApplication class provides a convenient way to bootstrap a Spring application that is
started from a main() method. In many situations, you can delegate to the static
SpringApplication.run method, as shown in the following example:

public static void main(String[] args) {
E SpringApplication.run(MySpringConfiguration.class, args);
}

When your application starts, you should see something similar to the following output:

J

EA/ (O W

(O oV VW

EV __ DI))))

E L 1

E =|_|===== ==

E:: Spring Boot :: v2.3.7.RELEASE

2019-04-31 13:09:54.117 INFO 56603 --- | main|]
0.s.b.s.app.SampleApplication : Starting SampleApplication v0.1.0 on
mycomputer with PID 56603 (/apps/myapp.jar started by pwebb)
2019-04-31 13:09:54.166 INFO 56603 --- [main]

ationConfigServletWebServerApplicationContext : Refreshing
org.springframework.boot.web.servlet.context.AnnotationConfigServietWebServerApplicati
onContext@6e5a8246: startup date [Wed Jul 31 00:08:16 PDT 2013]; root of context
hierarchy

2019-04-01 13:09:56.912 INFO 41370 --- [main]
.t.TomcatServletWebServerFactory : Server initialized with port: 8080

2019-04-01 13:09:57.501 INFO 41370 --- | main|]

0.s.b.s.app.SampleApplication . Started SampleApplication in 2.992 seconds

(JVM running for 3.658)

By default, INFOlogging messages are shown, including some relevant startup details, such as the
user that launched the application. If you need a log level other than INFQ you can set it, as
described in Log Levels. The application version is determined using the implementation version

from the main application classOs package. Startup information logging can be turned off by setting
spring.main.log-startup-info to false . This will also turn off logging of the applicationOs active
profiles.

42

To add additional logging during startup, you can override
. logStartuplnfo(boolean) in a subclass of SpringApplication .

4.1.1. Startup Failure

If your application fails to start, registered FailureAnalyzers get a chance to provide a dedicated
error message and a concrete action to fix the problem. For instance, if you start a web application

on port 8080 and that port is already in use, you should see something similar to the following
message:

kkkkkkkkkkkkkkhkhkhkkkkkkkhkhkkkk

APPLICATION FAILED TO START

kkkkkkhkkkkkkkhkhkhkkkkkhkhkhkkkkk

Description:
Embedded servlet container failed to start. Port 8080 was already in use.
Action:

Identify and stop the process that's listening on port 8080 or configure this
application to listen on another port.

I Spring Boot provides numerous FailureAnalyzer implementations, and you can
. add your own .

If no failure analyzers are able to handle the exception, you can still display the full conditions

report to better understand what went wrong. To do so, you need to enable the debugproperty or
enable DEBUG logging for
org.springframework.boot.autoconfigure.logging.ConditionEvaluationReportLoggingListener

For instance, if you are running your application by using java -jar , you can enable the debug

property as follows:

$ java -jar myproject-0.0.1-SNAPSHOT .jar --debug

4.1.2. Lazy Initialization

SpringApplication allows an application to be initialized lazily. When lazy initialization is enabled,
beans are created as they are needed rather than during application startup. As a result, enabling
lazy initialization can reduce the time that it takes your application to start. In a web application,
enabling lazy initialization will result in many web-related beans not being initialized until an
HTTP request is received.

A downside of lazy initialization is that it can delay the discovery of a problem with the application.
If a misconfigured bean is initialized lazily, a failure will no longer occur during startup and the

43

problem will only become apparent when the bean is initialized. Care must also be taken to ensure
that the JVM has sufficient memory to accommodate all of the applicationOs beans and not just those
that are initialized during startup. For these reasons, lazy initialization is not enabled by default
and it is recommended that fine-tuning of the JVMOs heap size is done before enabling lazy
initialization.

Lazy initialization can be enabled programmatically using the lazylnitialization method on
SpringApplicationBuilder or the setLazylnitialization method on SpringApplication . Alternatively,
it can be enabled using the spring.main.lazy-initialization property as shown in the following
example:

spring.main.lazy-initialization=true

If you want to disable lazy initialization for certain beans while using lazy
I initialization for the rest of the application, you can explicitly set their lazy
attribute to false using the ~ @Lazy(false) annotation.

4.1.3. Customizing the Banner

The banner that is printed on start up can be changed by adding a banner.txt file to your classpath
or by setting the spring.banner.location property to the location of such a file. If the file has an
encoding other than UTF-8, you can set spring.banner.charset . In addition to a text file, you can also
add a banner.gif , bannerjpg, or banner.png image file to your classpath or set the
spring.banner.image.location property. Images are converted into an ASCII art representation and
printed above any text banner.

Inside your banner.txt file, you can use any of the following placeholders:

Table 4. Banner variables

Variable Description

${application.version} The version number of your application, as
declared in MANIFEST.MFor example,
Implementation-Version: 1.0 is printed as 1.0.

${application.formatted-version} The version number of your application, as
declared in MANIFEST.Mird formatted for
display (surrounded with brackets and prefixed
with v). For example (v1.0) .

${spring-boot.version} The Spring Boot version that you are using. For
example 2.3.7.RELEASE

${spring-boot.formatted-version} The Spring Boot version that you are using,
formatted for display (surrounded with brackets
and prefixed with v). For example
(v2.3.7.RELEASE)

${Ansi.NAME}or ${AnsiColor.NAME} Where NAMIES the name of an ANSI escape code.
${AnsiBackground.NAME}${AnsiStyle. NAME}) SeeAnsiPropertySource for details.

44

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/ansi/AnsiPropertySource.java

Variable Description

${application.title} The title of your application, as declared in
MANIFEST.MIFor example Implementation-Title:
MyApiis printed as MyApp

The SpringApplication.setBanner(E) method can be used if you want to generate a
I banner programmatically. Use the org.springframework.boot.Banner interface and
implement your own printBanner() method.

You can also use the spring.main.banner-mode property to determine if the banner has to be printed
on System.out (console), sent to the configured logger (log), or not produced at all (off).

The printed banner is registered as a singleton bean under the following name: springBootBanner.

4.1.4. Customizing SpringApplication

If the SpringApplication defaults are not to your taste, you can instead create a local instance and
customize it. For example, to turn off the banner, you could write:

public static void main(String[] args) {

SpringApplication app = new SpringApplication(MySpringConfiguration.class);
app.setBannerMode(Banner.Mode.OFF);

app.run(args);

= [T M m

The constructor arguments passed to SpringApplication are configuration sources
for Spring beans. In most cases, these are references to ~ @Configuration classes, but
they could also be references to XML configuration or to packages that should be

scanned.

It is also possible to configure the SpringApplication by using an application.properties file. See
Externalized Configuration for details.

For a complete list of the configuration options, see the SpringApplication Javadoc.

4.1.5. Fluent Builder API

If you need to build an ApplicationContext hierarchy (multiple contexts with a parent/child
relationship) or if you prefer using a OfluentO builder API, you can use the SpringApplicationBuilder

The SpringApplicationBuilder lets you chain together multiple method calls and includes parent and
child methods that let you create a hierarchy, as shown in the following example:

45

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/SpringApplication.html
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/SpringApplication.html

new SpringApplicationBuilder()

= .sources(Parent.class)
.child(Application.class)
.bannerMode(Banner.Mode.OFF)
.run(args);

[T M T M

There are some restrictions when creating an ApplicationContext hierarchy. For
example, Web components must be contained within the child context, and the
same Environment is used for both parent and child contexts. See the
SpringApplicationBuilder Javadoc for full details.

4.1.6. Application Availability

When deployed on platforms, applications can provide information about their availability to the
platform using infrastructure such as Kubernetes Probes . Spring Boot includes out-of-the box
support for the commonly used OlivenessO and OreadinessO availability states. If you are using
Spring BootOs OactuatorO support then these states are exposed as health endpoint groups.

In addition, you can also obtain availability states by injecting the ApplicationAvailability interface
into your own beans.

Liveness State

The OLivenessO state of an application tells whether its internal state allows it to work correctly, or
recover by itself if itOs currently failing. A broken OLivenessO state means that the application is in a
state that it cannot recover from, and the infrastructure should restart the application.

In general, the "Liveness" state should not be based on external checks, such as
Health checks . If it did, a failing external system (a database, a Web API, an
external cache) would trigger massive restarts and cascading failures across the
platform.

The internal state of Spring Boot applications is mostly represented by the Spring

ApplicationContext . If the application context has started successfully, Spring Boot assumes that the
application is in a valid state. An application is considered live as soon as the context has been

refreshed, see Spring Boot application lifecycle and related Application Events

Readiness State

The OReadinessO state of an application tells whether the application is ready to handle traffic. A
failing OReadinessO state tells the platform that it should not route traffic to the application for now.

This typically happens during startup, while CommandLineRunnand ApplicationRunner components
are being processed, or at any time if the application decides that itOs too busy for additional traffic.

An application is considered ready as soon as application and command-line runners have been
called, see Spring Boot application lifecycle and related Application Events

46

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/builder/SpringApplicationBuilder.html
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/builder/SpringApplicationBuilder.html
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Tasks expected to run during startup should be executed by CommandLineRunnand
I ApplicationRunner components instead of using Spring component lifecycle
callbacks such as @PostConstruct

Managing the Application Availability State

Application components can retrieve the current availability state at any time, by injecting the
ApplicationAvailability interface and calling methods on it. More often, applications will want to
listen to state updates or update the state of the application.

For example, we can export the "Readiness" state of the application to a file so that a Kubernetes
"exec Probe" can look at this file:

@Component
public class ReadinessStateExporter {

@EventListener
public void onStateChange(AvailabilityChangeEvent<ReadinessState> event) {
switch (event.getState()) {
case ACCEPTING_TRAFFIC:
/I create file /tmp/healthy
break;
case REFUSING_TRAFFIC:
/Il remove file /tmp/healthy
break;

}

[T T [T [T [T [T [T Ty e [Ty [mp

—

We can also update the state of the application, when the application breaks and cannot recover:

a7

@Component
public class LocalCacheVerifier {

[T»

private final ApplicationEventPublisher eventPublisher;

public LocalCacheVerifier(ApplicationEventPublisher eventPublisher) {
this.eventPublisher = eventPublisher;

T > m»

public void checkLocalCache() {

try {
/...

}

catch (CacheCompletelyBrokenException ex) {
AvailabilityChangeEvent.publish(this.eventPublisher, ex,

ivenessState.BROKEN);

}

m e T mp me me

m

E }

Spring Boot provides Kubernetes HTTP probes for "Liveness" and "Readiness” with Actuator Health
Endpoints . You can get more guidance about deploying Spring Boot applications on Kubernetes in
the dedicated section .

4.1.7. Application Events and Listeners

In addition to the wusual Spring Framework events, such as ContextRefreshedEvent, a
SpringApplication sends some additional application events.

Some events are actually triggered before the ApplicationContext is created, so you
cannot register a listener on those as a @BeanYou can register them with the
SpringApplication.addListeners(E) method or the
SpringApplicationBuilder.listeners(E) method.

If you want those listeners to be registered automatically, regardless of the way the
application is created, you can add a META-INF/spring.factories file to your project

and reference your listener(s) by using the
org.springframework.context.ApplicationListener key, as shown in the following
example:

org.springframework.context. ApplicationListener=com.example.project.MyL
istener

Application events are sent in the following order, as your application runs:

1. An ApplicationStartingEvent is sent at the start of a run but before any processing, except for

48

https://docs.spring.io/spring/docs/5.2.12.RELEASE/javadoc-api/org/springframework/context/event/ContextRefreshedEvent.html

the registration of listeners and initializers.

2. An ApplicationEnvironmentPreparedEvent is sent when the Environmentto be used in the context is
known but before the context is created.

3. An ApplicationContextlnitializedEvent is sent when the ApplicationContext is prepared and
ApplicationContextlnitializers have been called but before any bean definitions are loaded.

4. An ApplicationPreparedEvent is sent just before the refresh is started but after bean definitions
have been loaded.

5. An ApplicationStartedEvent is sent after the context has been refreshed but before any
application and command-line runners have been called.

6. An AvailabilityChangeEvent is sent right after with LivenessState. CORRECT0 indicate that the
application is considered as live.

7. An ApplicationReadyEvent is sent after any application and command-line runners have been
called.

8. An AvalilabilityChangeEvent is sent right after with ReadinessState. ACCEPTING_TRAFt @hdicate
that the application is ready to service requests.

9. An ApplicationFailedEvent is sent if there is an exception on startup.

The above list only includes SpringApplicationEvent s that are tied to a SpringApplication . In
addition to these, the following events are also published after ApplicationPreparedEvent and before
ApplicationStartedEvent

¥ A WebServerlnitializedEvent is sent after the WebServer is ready.
ServletWebServerlnitializedEvent and ReactiveWebServerlnitializedEvent are the servlet and
reactive variants respectively.

¥ A ContextRefreshedEventis sent when an ApplicationContext is refreshed.

! You often need not use application events, but it can be handy to know that they
. exist. Internally, Spring Boot uses events to handle a variety of tasks.

Event listeners should not run potentially lengthy tasks as they execute in the
same thread by default. Consider using application and command-line runners
instead.

Application events are sent by using Spring FrameworkOs event publishing mechanism. Part of this
mechanism ensures that an event published to the listeners in a child context is also published to
the listeners in any ancestor contexts. As a result of this, if your application uses a hierarchy of
SpringApplication instances, a listener may receive multiple instances of the same type of
application event.

To allow your listener to distinguish between an event for its context and an event for a descendant
context, it should request that its application context is injected and then compare the injected
context with the context of the event. The context can be injected by implementing
ApplicationContextAware or, if the listener is a bean, by using ~ @Autowired

49

4.1.8. Web Environment

A SpringApplication attempts to create the right type of ApplicationContext on your behalf. The
algorithm used to determine a WebApplicationTypeis the following:

¥ If Spring MVC is present, an AnnotationConfigServletWebServerApplicationContext is used

¥If Spring MVC is not present and Spring WebFlux is present, an
AnnotationConfigReactiveWebServerApplicationContext is used

¥ Otherwise, AnnotationConfigApplicationContext is used

This means that if you are using Spring MVC and the new WebClient from Spring WebFlux in the
same application, Spring MVC will be used by default. You can override that easily by calling
setWebApplicationType(WebApplicationType) .

It is also possible to take complete control of the ApplicationContext type that is used by calling
setApplicationContextClass(E)

I It is often desirable to call setWebApplicationType(WebApplicationType.NONE)when
. using SpringApplication within a JUnit test.

4.1.9. Accessing Application Arguments

If you need to access the application arguments that were passed to SpringApplication.run(E) , you
can inject a org.springframework.boot.ApplicationArguments bean. The ApplicationArguments
interface provides access to both the raw String[] arguments as well as parsed option and non-
option arguments, as shown in the following example:

import org.springframework.boot.*;
import org.springframework.beans.factory.annotation.*;
import org.springframework.stereotype.*;

@Component
public class MyBean {

E @Autowired

E public MyBean(ApplicationArguments args) {

E boolean debug = args.containsOption("debug");

E List<String> files = args.getNonOptionArgs();

E /I if run with "--debug logfile.txt" debug=true, files=["logfile.txt"]
E }

}

Spring Boot also registers a CommandLinePropertySourceith the Spring Environment.

This lets you also inject single application arguments by using the @Value
annotation.

50

4.1.10. Using the ApplicationRunner or CommandLineRunner

If you need to run some specific code once the SpringApplication has started, you can implement
the ApplicationRunner or CommandLineRunnaterfaces. Both interfaces work in the same way and
offer a single run method, which is called just before SpringApplication.run(E) completes.

This contract is well suited for tasks that should run after application startup but
before it starts accepting traffic.

The CommandLineRunnenterfaces provides access to application arguments as a string array,
whereas the ApplicationRunner uses the ApplicationArguments interface discussed earlier. The
following example shows a CommandLineRunneith a run method:

import org.springframework.boot.*;
import org.springframework.stereotype.*;

@Component
public class MyBean implements CommandLineRunner {

public void run(String... args) {
/I Do something...

™ > [mp

}

—

If several CommandLineRunner ApplicationRunner beans are defined that must be called in a specific

order, you can additionally implement the org.springframework.core.Ordered interface or use the
org.springframework.core.annotation.Order annotation.

4.1.11. Application Exit

Each SpringApplication registers a shutdown hook with the JVM to ensure that the

ApplicationContext closes gracefully on exit. All the standard Spring lifecycle callbacks (such as the
DisposableBeaninterface or the @PreDestroyannotation) can be used.

In addition, beans may implement the org.springframework.boot.ExitCodeGenerator interface if they
wish to return a specific exit code when SpringApplication.exit() is called. This exit code can then
be passed to System.exit() to return it as a status code, as shown in the following example:

51

@SpringBootApplication
public class ExitCodeApplication {

@Bean
public ExitCodeGenerator exitCodeGenerator() {
return () -> 42;

™ m> mp [mp

}

E public static void main(String[] args) {

E
System.exit(SpringApplication.exit(SpringApplication.run(ExitCodeApplication.class,
args)));

E }

Also, the ExitCodeGenerator interface may be implemented by exceptions. When such an exception
is encountered, Spring Boot returns the exit code provided by the implemented getExitCode()
method.

4.1.12. Admin Features

It is possible to enable admin-related features for the application by specifying the
spring.application.admin.enabled property. This exposes the SpringApplicationAdminMXBeanon the
platftorm MBeanServer You could use this feature to administer your Spring Boot application
remotely. This feature could also be useful for any service wrapper implementation.

If you want to know on which HTTP port the application is running, get the
. property with a key of local.server.port

4.2. Externalized Configuration

Spring Boot lets you externalize your configuration so that you can work with the same application

code in different environments. You can use properties files, YAML files, environment variables,

and command-line arguments to externalize configuration. Property values can be injected directly

into your beans by using the @Valueannotation, accessed through Spring®s Environment abstraction,
or be bound to structured objects through @ConfigurationProperties .

Spring Boot uses a very particular PropertySource order that is designed to allow sensible
overriding of values. Properties are considered in the following order:

1. Devtools global settings properties in the $HOME/.config/spring-boot directory when devtools is
active.

2. @TestPropertySourceannotations on your tests.

3. properties attribute on your tests. Available on @SpringBootTestand the test annotations for
testing a particular slice of your application

52

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/admin/SpringApplicationAdminMXBean.java
https://docs.spring.io/spring/docs/5.2.12.RELEASE/javadoc-api/org/springframework/test/context/TestPropertySource.html
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/test/context/SpringBootTest.html

4, Command line arguments.

5. Properties from SPRING_APPLICATION_J8Mme JSON embedded in an environment variable or
system property).

. ServletConfig init parameters.
. ServletContext init parameters.

. JNDI attributes from java:comp/env.

© 00 N O

. Java System properties (System.getProperties()).
10. OS environment variables.
11. A RandomValuePropertySourcéhat has properties only in ~ random.*.

12. Profile-specific application properties outside of your packaged jar (application-
{profile}.properties and YAML variants).

13. Profile-specific ~ application properties packaged inside your jar (application-
{profile}.properties and YAML variants).

14. Application properties outside of your packaged jar (application.properties and YAML
variants).

15. Application properties packaged inside your jar (application.properties and YAML variants).

16. @PropertySourceannotations on your @Configuration classes. Please note that such property
sources are not added to the Environment until the application context is being refreshed. This is
too late to configure certain properties such as logging.* and spring.main.* which are read
before refresh begins.

17. Default properties (specified by setting ~ SpringApplication.setDefaultProperties).
To provide a concrete example, suppose you develop a @Componetihat uses a nameproperty, as

shown in the following example:

import org.springframework.stereotype.*;
import org.springframework.beans.factory.annotation.*;

@Component
public class MyBean {

@Value("${name}")
private String name;

[T TP

»

...

On vyour application classpath (for example, inside your jar) you can have an
application.properties file that provides a sensible default property value for nameWhen running
in a new environment, an application.properties file can be provided outside of your jar that
overrides the name For one-off testing, you can launch with a specific command line switch (for
example, java -jar app.jar --name="Spring").

53

https://docs.spring.io/spring/docs/5.2.12.RELEASE/javadoc-api/org/springframework/context/annotation/PropertySource.html

Spring Boot also supports wildcard locations when loading configuration files. By default, a
wildcard location of config/*/ outside of your jar is supported. Wildcard locations are also
supported when specifying spring.config.additional-location and spring.config.location

Wildcard locations are particularly useful in an environment such as Kubernetes when there are
multiple sources of config properties. For example, if you have some Redis configuration and some
MySQL configuration, you might want to keep those two pieces of configuration separate, while
requiring that both those are present in an application.properties that the app can bind to. This
might result in two separate application.properties files mounted at different locations such as
/config/redis/application.properties and /config/mysql/application.properties . In such a case,
having a wildcard location of config/*/ , will result in both files being processed.

A wildcard location must contain only one and end with / for search locations
that are directories or */<filename> for search locations that are files. Locations
with wildcards are sorted alphabetically based on the absolute path of the file
names.

The SPRING_APPLICATION_Jj#qperties can be supplied on the command line with
an environment variable. For example, you could use the following line in a UN*X
shell:

$ SPRING_APPLICATION_JSON='{"acme":{"name":"test"}}' java -jar

myapp.jar
In the preceding example, you end up with acme.name=test in the Spring
Environment You can also supply the JSON as spring.application.json in a System

property, as shown in the following example:

$ java -Dspring.application.json='{"name":"test"} -jar myapp.jar

You can also supply the JSON by using a command line argument, as shown in the
following example:

$ java -jar myapp.jar --spring.application.json="{"name":"test"}'

You can also supply the JSON as a JNDI variable, as follows:
java:comp/env/spring.application.json

Although null values from the JSON will be added to the resulting property source,
the PropertySourcesPropertyResolver treats null properties as missing values. This
means that the JSON cannot override properties from lower order property
sources with a null value.

54

4.2.1. Configuring Random Values

The RandomValuePropertySourcés useful for injecting random values (for example, into secrets or
test cases). It can produce integers, longs, uuids, or strings, as shown in the following example:

my.secret=${random.value}
my.number=${random.int}
my.bignumber=${random.long}
my.uuid=${random.uuid}
my.number.less.than.ten=${random.int(10)}
my.number.in.range=${random.int[1024,65536]}

The random.int* syntax is OPEN value (,max) CLOSBEvhere the OPEN,CLOSe any character and
value,max are integers. If maxis provided, then value is the minimum value and maxis the maximum
value (exclusive).

4.2.2. Accessing Command Line Properties

By default, SpringApplication converts any command line option arguments (that is, arguments
starting with -- , such as --server.port=9000) to a property and adds them to the Spring Environment.
As mentioned previously, command line properties always take precedence over other property
sources.

If you do not want command line properties to be added to the Environment, you can disable them
by using SpringApplication.setAddCommandLineProperties(false)

4.2.3. Application Property Files

SpringApplication loads properties from application.properties files in the following locations and
adds them to the Spring Environment

1. A/config subdirectory of the current directory

2. The current directory

3. Aclasspath /config package

4. The classpath root

The list is ordered by precedence (properties defined in locations higher in the list override those
defined in lower locations).

| You can also use YAML (“.yml') files as an alternative to '.properties'.

If you do not like application.properties as the configuration file name, you can switch to another
file name by specifying a spring.config.name environment property. You can also refer to an explicit
location by using the spring.config.location environment property (which is a comma-separated
list of directory locations or file paths). The following example shows how to specify a different file
name:

55

$ java -jar myproject.jar --spring.config.name=myproject

The following example shows how to specify two locations:

$ java -jar myproject.jar
--spring.config.location=classpath:/default.properties,classpath:/override.properties

spring.config.name and spring.config.location are used very early to determine

n which files have to be loaded. They must be defined as an environment property
(typically an OS environment variable, a system property, or a command-line
argument).

If spring.config.location contains directories (as opposed to files), they should end in / (and, at
runtime, be appended with the names generated from spring.config.name before being loaded,
including profile-specific file names). Files specified in spring.config.location are used as-is, with
no support for profile-specific variants, and are overridden by any profile-specific properties.
Whether specified directly or contained in a directory, configuration files must include a file
extension in their name. Typical extensions that are supported out-of-the-box are .properties
.yaml, and .yml.

Config locations are searched in reverse order. By default, the configured locations are
classpath:/,classpath:/config/,file:./ file:./config/*/ file:./config/ . The resulting search
order is the following:

1. file:./config/

2. file:./config/*/

3. file:./

4. classpath:/config/

5. classpath:/

When custom config locations are configured by using spring.config.location , they replace the
default locations. For example, if spring.config.location is configured with the value
classpath:/custom-config/,file:./custom-config/ , the search order becomes the following:

1. file:./custom-config/

2. classpath:custom-config/

Alternatively, when custom config locations are configured by using spring.config.additional-
location , they are used in addition to the default locations. Additional locations are searched before

the default locations. For example, if additional locations of classpath:/custom-
config/ file:./custom-config/ are configured, the search order becomes the following:

1. file:./custom-config/

2. classpath:custom-config/

56

. file:./config/
. file:./config/*/

3
4
5. file:./
6. classpath:/config/
7

. classpath:/

This search ordering lets you specify default values in one configuration file and then selectively
override those values in another. You can provide default values for your application in
application.properties (or whatever other basename you choose with spring.config.name) in one of
the default locations. These default values can then be overridden at runtime with a different file

located in one of the custom locations.

If you use environment variables rather than system properties, most operating
systems disallow period-separated key names, but you can use underscores
instead (for example, SPRING_CONFIG_NAidtead of spring.config.name). See
Binding from Environment Variables for details.

If your application runs in a container, then JNDI properties (in java:compl/env) or
servlet context initialization parameters can be used instead of, or as well as,
environment variables or system properties.

4.2.4. Profile-specific Properties

In addition to application.properties files, profile-specific properties can also be defined by using

the following naming convention: application-{profile}.properties . The Environment has a set of
default profiles (by default, [default]) that are used if no active profiles are set. In other words, if

no profiles are explicitly activated, then properties from application-default.properties are
loaded.

Profile-specific properties are loaded from the same locations as standard application.properties
with profile-specific files always overriding the non-specific ones, whether or not the profile-
specific files are inside or outside your packaged jar.

If several profiles are specified, a last-wins strategy applies. For example, profiles specified by the
spring.profiles.active property are added after those configured through the SpringApplication
API and therefore take precedence.

If you have specified any files in spring.config.location , profile-specific variants
| of those files are not considered. Use directories in spring.config.location if you
want to also use profile-specific properties.

4.2.5. Placeholders in Properties

The values in application.properties are filtered through the existing Environment when they are
used, so you can refer back to previously defined values (for example, from System properties).

57

app.name=MyApp
app.description=${app.name} is a Spring Boot application

| You can also use this technique to create OshortO variants of existing Spring Boot
properties. See the Use OShortO Command Line Argumentshow-to for details.

4.2.6. Encrypting Properties

Spring Boot does not provide any built in support for encrypting property values, however, it does

provide the hook points necessary to modify values contained in the Spring Environment The
EnvironmentPostProcessor interface allows you to manipulate the Environment before the application
starts. See Customize the Environment or ApplicationContext Before It Starts for details.

If youOre looking for a secure way to store credentials and passwords, the Spring Cloud Vault project
provides support for storing externalized configuration in HashiCorp Vault .

4.2.7. Using YAML Instead of Properties

YAML is a superset of JSON and, as such, is a convenient format for specifying hierarchical
configuration data. The SpringApplication class automatically supports YAML as an alternative to
properties whenever you have the SnakeYAML library on your classpath.

If you use OStartersO, SnakeYAML is automatically provided by spring-boot-
. starter .

Loading YAML

Spring Framework provides two convenient classes that can be used to load YAML documents. The
YamlPropertiesFactoryBean loads YAML as Properties and the YamlMapFactoryBeatoads YAML as a
Map

For example, consider the following YAML document:

environments:

dev:
url: https://dev.example.com
name: Developer Setup

prod:
url: https://another.example.com
name: My Cool App

T [T > T [T T

The preceding example would be transformed into the following properties:

58

https://cloud.spring.io/spring-cloud-vault/
https://www.vaultproject.io/
https://yaml.org
https://bitbucket.org/asomov/snakeyaml

environments.dev.url=https://dev.example.com
environments.dev.name=Developer Setup
environments.prod.url=https://another.example.com
environments.prod.name=My Cool App

YAML lists are represented as property keys with [index] dereferencers. For example, consider the
following YAML.:

my:

E servers:

E - dev.example.com

E - another.example.com

The preceding example would be transformed into these properties:

my.servers[O]=dev.example.com
my.servers[1]=another.example.com

To bind to properties like that by using Spring BootOs Binder utilities (which is what
@ConfigurationProperties does), you need to have a property in the target bean of type
java.util.List (or Set) and you either need to provide a setter or initialize it with a mutable value.

For example, the following example binds to the properties shown previously:

@ConfigurationProperties(prefix="my")
public class Config {

E private List<String> servers = new ArrayList<String>();
E public List<String> getServers() {

E return this.servers;

E }

}

Exposing YAML as Properties in the Spring Environment

The YamlPropertySourcelLoaderclass can be used to expose YAML as a PropertySource in the Spring
Environment Doing so lets you use the @Valueannotation with placeholders syntax to access YAML
properties.

Multi-profile YAML Documents

You can specify multiple profile-specific YAML documents in a single file by using a spring.profiles
key to indicate when the document applies, as shown in the following example:

59

server:

E address: 192.168.1.100
spring:

E profiles: development
server:

E address: 127.0.0.1

spring:

E profiles: production & eu-central
server:

E address: 192.168.1.120

In the preceding example, if the development profile is active, the server.address property is
127.0.0.1 . Similarly, if the production and eu-central profiles are active, the server.address property
is 192.168.1.120. If the development production and eu-central profiles are not enabled, then the
value for the property is 192.168.1.100.

spring.profiles can therefore contain a profile name (for example production) or a
profile expression. A profile expression allows for more complicated profile logic

to be expressed, for example production & (eu-central | eu-west) . Check the
reference guide for more details.

If none are explicitly active when the application context starts, the default profiles are activated.
So, in the following YAML, we set a value for spring.security.user.password that is available only in
the "default” profile:

server:

E port: 8000
spring:

E profiles: default
E security:

E user:
E password: weak

m

Whereas, in the following example, the password is always set because it is not attached to any
profile, and it would have to be explicitly reset in all other profiles as necessary:

server:

E port: 8000

spring:

E security:

E user:

E password: weak

60

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/core.html#beans-definition-profiles-java

Spring profiles designated by using the spring.profiles element may optionally be negated by using
the ! character. If both negated and non-negated profiles are specified for a single document, at
least one non-negated profile must match, and no negated profiles may match.

YAML Shortcomings

YAML files cannot be loaded by using the ~ @PropertySourceannotation. So, in the case that you need
to load values that way, you need to use a properties file.

Using the multi YAML document syntax in profile-specific YAML files can lead to unexpected
behavior. For example, consider the following config in a file:

application-dev.yml

server:
E port: 8000
spring:
E profiles: "ltest"
security:
user:
password: "secret"

T > mp

If you run the application with the argument --spring.profiles.active=dev you might expect
security.user.password to be set to OsecretO, but this is not the case.

The nested document will be filtered because the main file is named application-dev.yml . It is
already considered to be profile-specific, and nested documents will be ignored.

We recommend that you donOt mix profile-specific YAML files and multiple YAML
. documents. Stick to using only one of them.

4.2.8. Type-safe Configuration Properties

Using the @Value("${property}") annotation to inject configuration properties can sometimes be
cumbersome, especially if you are working with multiple properties or your data is hierarchical in
nature. Spring Boot provides an alternative method of working with properties that lets strongly
typed beans govern and validate the configuration of your application.

| See also the differences between @Valuend type-safe configuration properties

JavaBean properties binding

It is possible to bind a bean declaring standard JavaBean properties as shown in the following
example:

61

62

package com.example;
import java.net.InetAddress;
import java.util. ArrayList;
import java.util.Collections;
import java.util.List;

import org.springframework.boot.context.properties.ConfigurationProperties;

@cConfigurationProperties("acme")
public class AcmeProperties {

E private boolean enabled,;

E private InetAddress remoteAddress;

E private final Security security = new Security();

E public boolean isEnabled() { ... }

E public void setEnabled(boolean enabled) { ... }

E public InetAddress getRemoteAddress() { ... }

E public void setRemoteAddress(InetAddress remoteAddress) { ... }
E public Security getSecurity() { ... }

E public static class Security {

E private String username;

E private String password,;

E private List<String> roles = new ArrayList<>(Collections.singleton("USER"));
E public String getUsername() { ... }

E public void setUsername(String username) { ... }

E public String getPassword() { ... }

E public void setPassword(String password) { ... }

E public List<String> getRoles() { ... }

E public void setRoles(List<String> roles) { ... }

The preceding POJO defines the following properties:

¥ acme.enabled with a value of false by default.

¥ acme.remote-address with a type that can be coerced from String .

¥ acme.security.username, with a nested "security" object whose name is determined by the name
of the property. In particular, the return type is not used at all there and could have been
SecurityProperties

¥ acme.security.password .

¥ acme.security.roles , with a collection of String that defaults to USER

The properties that map to ~ @ConfigurationProperties classes available in Spring
Boot, which are configured via properties files, YAML files, environment variables

etc., are public APl but the accessors (getters/setters) of the class itself are not
meant to be used directly.

Such arrangement relies on a default empty constructor and getters and setters
are usually mandatory, since binding is through standard Java Beans property
descriptors, just like in Spring MVC. A setter may be omitted in the following cases:

¥ Maps, as long as they are initialized, need a getter but not necessarily a setter,
since they can be mutated by the binder.

¥ Collections and arrays can be accessed either through an index (typically with
YAML) or by using a single comma-separated value (properties). In the latter
case, a setter is mandatory. We recommend to always add a setter for such
types. If you initialize a collection, make sure it is not immutable (as in the
preceding example).

¥ If nested POJO properties are initialized (like the Security field in the preceding
example), a setter is not required. If you want the binder to create the instance
on the fly by using its default constructor, you need a setter.

Some people use Project Lombok to add getters and setters automatically. Make
sure that Lombok does not generate any particular constructor for such a type, as
it is used automatically by the container to instantiate the object.

Finally, only standard Java Bean properties are considered and binding on static
properties is not supported.

Constructor binding

The example in the previous section can be rewritten in an immutable fashion as shown in the
following example:

package com.example;

import java.net.InetAddress;
import java.util.List;

63

64

import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.boot.context.properties.ConstructorBinding;
import org.springframework.boot.context.properties.bind.DefaultValue;

@ConstructorBinding
@-ConfigurationProperties("acme")
public class AcmeProperties {

E

m

v [T

m [T [T [T

m m T T T m

> T e e mp me m

T

private final boolean enabled;
private final InetAddress remoteAddress;
private final Security security;

public AcmeProperties(boolean enabled, InetAddress remoteAddress, Security

ecurity) {

this.enabled = enabled;
this.remoteAddress = remoteAddress;
this.security = security;

}

public boolean isEnabled() { ... }
public InetAddress getRemoteAddress() { ... }
public Security getSecurity() { ... }
public static class Security {
private final String username;
private final String password;
private final List<String> roles;
public Security(String username, String password,
@DefaultValue("USER") List<String> roles) {
this.username = username;

this.password = password;
this.roles = roles;

}

public String getUsername() { ... }
public String getPassword() { ... }

public List<String> getRoles() { ... }

In this setup, the @ConstructorBinding annotation is used to indicate that constructor binding should
be used. This means that the binder will expect to find a constructor with the parameters that you
wish to have bound.

Nested members of a @ConstructorBinding class (such as Security in the example above) will also be
bound via their constructor.

Default values can be specified using ~@DefaultValueand the same conversion service will be applied
to coerce the String value to the target type of a missing property. By default, if no properties are
bound to Security , the AcmeProperties instance will contain a null value for security . If you wish
you return a non-null instance of Security even when no properties are bound to it, you can use an
empty @DefaultValueannotation to do so:

package com.example;
import java.net.InetAddress;
import java.util.List;

import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.boot.context.properties.ConstructorBinding;
import org.springframework.boot.context.properties.bind.DefaultValue;

@ConstructorBinding
@ConfigurationProperties("acme")
public class AcmeProperties {

T

private final boolean enabled;

m

private final InetAddress remoteAddress;
E private final Security security;

E public AcmeProperties(boolean enabled, InetAddress remoteAddress, @DefaultValue
Security security) {

this.enabled = enabled,;

this.remoteAddress = remoteAddress;

this.security = security;

}

~ T M mp mp

To use constructor binding the <class must be enabled using
@EnableConfigurationProperties or configuration property scanning. You cannot
use constructor binding with beans that are created by the regular Spring
mechanisms (e.g. @Componeitieans, beans created via @Beammethods or beans
loaded using @Imporj}

65

I If you have more than one constructor for your class you can also use
. @ConstructorBinding directly on the constructor that should be bound.

The use of java.util.Optional with @ConfigurationProperties is not recommended
as it is primarily intended for use as a return type. As such, it is not well-suited to
configuration property injection. For consistency with properties of other types, if

you do declare an Optional property and it has no value, null rather than an empty
Optional will be bound.

Enabling @ConfigurationProperties-annotated types

Spring Boot provides infrastructure to bind @ConfigurationProperties types and register them as
beans. You can either enable configuration properties on a class-by-class basis or enable
configuration property scanning that works in a similar manner to component scanning.

Sometimes, classes annotated with @ ConfigurationProperties might not be suitable for scanning, for
example, if youOre developing your own auto-configuration or you want to enable them
conditionally. In these cases, specify the list of types to process wusing the
@EnableConfigurationProperties annotation. This can be done on any ~ @Configuration class, as shown
in the following example:

@ Configuration(proxyBeanMethods = false)
@EnableConfigurationProperties(AcmeProperties.class)
public class MyConfiguration {

}

To use configuration property scanning, add the @ConfigurationPropertiesScan annotation to your
application. Typically, it is added to the main application class that is annotated with
@SpringBootApplication but it can be added to any @Configuration class. By default, scanning will
occur from the package of the class that declares the annotation. If you want to define specific
packages to scan, you can do so as shown in the following example:

@SpringBootApplication
@ConfigurationPropertiesScan({ "com.example.app", "org.acme.another" })
public class MyApplication {

}

When the @ConfigurationProperties bean is registered using configuration
property scanning or via @EnableConfigurationProperties , the bean has a
conventional name: <prefix>-<fgqn> , where <prefix> is the environment key prefix
specified in the @ConfigurationProperties annotation and <fgn> is the fully
gualified name of the bean. If the annotation does not provide any prefix, only the

fully qualified name of the bean is used.

The bean name in the example above is acme-com.example.AcmeProperties

66

We recommend that @ConfigurationProperties only deal with the environment and, in particular,
does not inject other beans from the context. For corner cases, setter injection can be used or any of

the *Awareinterfaces provided by the framework (such as EnvironmentAwaref you need access to the
Environment). If you still want to inject other beans using the constructor, the configuration
properties bean must be annotated with @Componeand use JavaBean-based property binding.

Using @ConfigurationProperties-annotated types

This style of configuration works particularly well with the SpringApplication external YAML
configuration, as shown in the following example:

application.yml

acme:

E remote-address: 192.168.1.1
E security:

E username: admin
E roles:

E - USER

E - ADMIN

additional configuration as required

To work with @ConfigurationProperties beans, you can inject them in the same way as any other
bean, as shown in the following example:

@Service
public class MyService {

m

private final AcmeProperties properties;

@Autowired
public MyService(AcmeProperties properties) {
this.properties = properties;

}

m [T [T [T

m

...

@PostConstruct
public void openConnection() {

Server server = new Server(this.properties.getRemoteAddress());
...

T [T [T 1> [T

—

67

Using @ConfigurationProperties also lets you generate metadata files that can be
I used by IDEs to offer auto-completion for your own keys. See the appendix for
details.

Third-party Configuration

As well as using @ConfigurationProperties to annotate a class, you can also use it on public ~ @Bean
methods. Doing so can be particularly useful when you want to bind properties to third-party
components that are outside of your control.

To configure a bean from the Environment properties, add @ConfigurationProperties to its bean
registration, as shown in the following example:

@ConfigurationProperties(prefix = "another")
@Bean

public AnotherComponent anotherComponent() {
E

}

Any JavaBean property defined with the another prefix is mapped onto that AnotherComponenbean
in manner similar to the preceding AcmeProperties example.

Relaxed Binding

Spring Boot uses some relaxed rules for binding Environment properties to @ConfigurationProperties
beans, so there does not need to be an exact match between the Environment property name and the
bean property name. Common examples where this is useful include dash-separated environment
properties (for example, context-path binds to contextPath), and capitalized environment properties
(for example, PORMDinds to port).

As an example, consider the following ~ @ConfigurationProperties class:

@ConfigurationProperties(prefix="acme.my-project.person™)
public class OwnerProperties {

[T

private String firstName;

public String getFirstName() {
return this.firstName;

T > m»

public void setFirstName(String firstName) {
this.firstName = firstName;

™ m> [mp

—

With the preceding code, the following properties names can all be used:

68

Table 5. relaxed binding

Property Note

acme.my- Kebab case, which is recommended for use in .properties and .yml files.

project.person.fir
st-name

acme.myProject.per Standard camel case syntax.
son.firstName

acme.my_project.pe Underscore notation, which is an alternative format for use in

rson.first_name yml files.

ACME_MYPROJECTURE& case format, which is recommended when using system environment

SON_FIRSTNAME variables.

The prefix value for the annotation must
. separated by -, such as acme.my-project.person

Table 6. relaxed binding rules per property source

Property Source Simple

Properties Files Camel case, kebab case, or underscore
notation

YAML Files Camel case, kebab case, or underscore
notation

Environment Upper case format with underscore as

Variables the delimiter (see Binding from

Environment Variables).

System properties Camel case, kebab case, or underscore

be in kebab case (lowercase and

).

List

Standard list syntax using [] or
comma-separated values

Standard YAML list syntax or comma-
separated values

Numeric values surrounded by
underscores (see Binding from
Environment Variables)

Standard list syntax using [] or

notation comma-separated values
I We recommend that, when possible, properties are stored in lower-case kebab
. format, such as my.property-name=acme

Binding Maps

When binding to Mapproperties, if the key contains anything other than lowercase alpha-numeric
characters or -, you need to use the bracket notation so that the original value is preserved. If the

key is not surrounded by [] , any characters that are not alpha-numeric or

example, consider binding the following properties to a Map

E "[/keyl]": valuel
E "[/key2]": value2
E /key3: value3

The properties above will bindtoa Mapwith /keyl, /key2 and

key3 as the keys in the map.

.properties and

- are removed. For

69

For YAML files, the brackets need to be surrounded by quotes for the keys to be
. parsed properly.
Binding from Environment Variables

Most operating systems impose strict rules around the names that can be used for environment
variables. For example, Linux shell variables can contain only letters (ato z or Ato 2), numbers (0to
9) or the underscore character (). By convention, Unix shell variables will also have their names in
UPPERCASE.

Spring BootOs relaxed binding rules are, as much as possible, designed to be compatible with these
naming restrictions.

To convert a property name in the canonical-form to an environment variable name you can follow
these rules:

¥ Replace dots (.) with underscores ().
¥ Remove any dashes (-).

¥ Convert to uppercase.

For example, the configuration property spring.main.log-startup-info would be an environment
variable named SPRING_MAIN LOGSTARTUPINFO

Environment variables can also be used when binding to object lists. To bind to a List , the element
number should be surrounded with underscores in the variable name.

For example, the configuration property my.acme[0].other would use an environment variable
named MY_ACME_0 OTHER

Merging Complex Types
When lists are configured in more than one place, overriding works by replacing the entire list.

For example, assume a MyPojoobject with nameand description attributes that are null by default.
The following example exposes a list of MyPojoobjects from AcmeProperties:

@ConfigurationProperties("acme")
public class AcmeProperties {

E private final List<MyPojo> list = new ArrayList<>();

public List<MyPojo> getList() {
return this.list;

[T [T T

—

Consider the following configuration:

70

acme:
E list:

E -name: my name

E description: my description
spring:

E profiles: dev

acme:

E list:

E - name: my another name

If the dev profile is not active, AcmeProperties.list contains one MyPojoentry, as previously defined.

If the dev profile is enabled, however, the list still contains only one entry (with a name of my
another name and a description of null). This configuration does not add a second MyPojoinstance to
the list, and it does not merge the items.

When a List is specified in multiple profiles, the one with the highest priority (and only that one) is
used. Consider the following example:

- name: my name
description: my description

- name: another name
description: another description

spring:

E profiles: dev

acme:

E list:

E - name: my another name

In the preceding example, if the dev profile is active, AcmeProperties.list contains one MyPojoentry
(with a name of my another nameand a description of null). For YAML, both comma-separated lists
and YAML lists can be used for completely overriding the contents of the list.

For Mapproperties, you can bind with property values drawn from multiple sources. However, for
the same property in multiple sources, the one with the highest priority is used. The following
example exposes a Map<String, MyPojo>from AcmeProperties.

71

@ConfigurationProperties("acme")
public class AcmeProperties {

[T»

private final Map<String, MyPojo> map = new HashMap<>();

public Map<String, MyPojo> getMap() {
return this.map;

}

T > m»

—

Consider the following configuration:

acme:
map:
keyl:
name: my name 1
description: my description 1

[T [T [T [Th

spring:

E profiles: dev

acme:

E map:

E keyl:
name: dev name 1

key2:
name: dev name 2
description: dev description 2

If the dev profile is not active, AcmeProperties.mapcontains one entry with key keyl (with a name of
my name Jland a description of my description 1). If the dev profile is enabled, however, mapcontains
two entries with keys keyl (with a name of dev name land a description of my description 1) and
key2 (with a name of dev name 2and a description of dev description 2).

The preceding merging rules apply to properties from all property sources and not
. just YAML files.

Properties Conversion

Spring Boot attempts to coerce the external application properties to the right type when it binds to

the @ConfigurationProperties beans. If you need custom type conversion, you can provide a
ConversionService bean (with a bean named conversionService) or custom property editors (through
a CustomEditorConfigurer bean) or custom Converters (with bean definitions annotated as
@ConfigurationPropertiesBinding).

72

As this bean is requested very early during the application lifecycle, make sure to

limit the dependencies that your ConversionService is using. Typically, any
dependency that you require may not be fully initialized at creation time. You may

want to rename your custom ConversionService if it is not required for
configuration keys coercion and only rely on custom converters qualified with
@ConfigurationPropertiesBinding .

Converting durations

Spring Boot has dedicated support for expressing durations. If you expose a java.time.Duration
property, the following formats in application properties are available:

¥ A regular long representation (using milliseconds as the default unit unless a @DurationUnit has
been specified)

¥ The standard 1SO-8601 format used by java.time.Duration

¥ A more readable format where the value and the unit are coupled (e.g. 10s means 10 seconds)

Consider the following example:

@ConfigurationProperties("app.system")
public class AppSystemProperties {

@DurationUnit(ChronoUnit. SECONDS)
private Duration sessionTimeout = Duration.ofSeconds(30);

m™ [Ty

m

private Duration readTimeout = Duration.ofMillis(1000);

public Duration getSessionTimeout() {
return this.sessionTimeout;

T [T TP

public void setSessionTimeout(Duration sessionTimeout) {
this.sessionTimeout = sessionTimeout;

m [Ty [T

public Duration getReadTimeout() {
return this.readTimeout;

™ [T [T

public void setReadTimeout(Duration readTimeout) {
this.readTimeout = readTimeout;

T [T TP

—

To specify a session timeout of 30 seconds, 30, PT30Sand 30s are all equivalent. A read timeout of
500ms can be specified in any of the following form: 500, PT0.5Sand 500ms

73

https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-
https://docs.oracle.com/javase/8/docs/api/java/time/Duration.html#parse-java.lang.CharSequence-

You can also use any of the supported units. These are:

¥ ns for nanoseconds
¥ us for microseconds
¥ msfor milliseconds
¥ s for seconds
¥ mfor minutes
¥ h for hours
¥ d for days
The default unit is milliseconds and can be overridden using @DurationUnit as illustrated in the

sample above. Note that @DurationUnit is only supported with JavaBean-style property binding
using getters and setters. It is not supported with constructor binding.

If you are upgrading a Long property, make sure to define the unit (using
I @DurationUnit) if it isnOt milliseconds. Doing so gives a transparent upgrade path
while supporting a much richer format.

Converting periods

In addition to durations, Spring Boot can also work with java.time.Period type. The following
formats can be used in application properties:

¥ An regular int representation (using days as the default unit unless a @PeriodUnit has been
specified)

¥ The standard 1SO-8601 format used by java.time.Period

¥ A simpler format where the value and the unit pairs are coupled (e.g. ly3d means 1 year and 3
days)

The following units are supported with the simple format:

¥ y for years
¥ mfor months

¥ wfor weeks

¥ d for days
I The java.time.Period type never actually stores the number of weeks, it is a
. shortcut that means O7 daysO.

Converting Data Sizes

Spring Framework has a DataSize value type that expresses a size in bytes. If you expose a DataSize
property, the following formats in application properties are available:

¥ A regular long representation (using bytes as the default unit unless a @DataSizeUnithas been

74

https://docs.oracle.com/javase/8/docs/api/java/time/Period.html#parse-java.lang.CharSequence-
https://docs.oracle.com/javase/8/docs/api/java/time/Period.html#parse-java.lang.CharSequence-

specified)

¥ A more readable format where the value and the unit are coupled (e.qg.

megabytes)

Consider the following example:

@ConfigurationProperties("app.io")
public class ApploProperties {

m m»

m

public DataSize getBufferSize() {
return this.bufferSize;

T [T [T

}

this.bufferSize = bufferSize;

T [T [T

}

return this.sizeThreshold;

m [T [m»

}

T [T [T

}

—

To specify a buffer size of 10 megabytes,
can be specified as 2560r 256B

public DataSize getSizeThreshold() {

@DataSizeUnit(DataUnit. MEGABYTES)
private DataSize bufferSize = DataSize.ofMegabytes(2);

private DataSize sizeThreshold = DataSize.ofBytes(512);

public void setBufferSize(DataSize bufferSize) {

public void setSizeThreshold(DataSize sizeThreshold) {
this.sizeThreshold = sizeThreshold;

10 and 10MBare equivalent. A size threshold of 256 bytes

You can also use any of the supported units. These are:

¥ Bfor bytes

¥ KBfor kilobytes

¥ MBor megabytes
¥ GBfor gigabytes

¥ TBfor terabytes

The default unit is bytes and can be overridden using @DataSizeUnitas illustrated in the sample

above.

10MBmeans 10

75

If you are upgrading a Long property, make sure to define the unit (using
I @DataSizeUni} if it isnOt bytes. Doing so gives a transparent upgrade path while
supporting a much richer format.

@-ConfigurationProperties Validation

Spring Boot attempts to validate =~ @ConfigurationProperties classes whenever they are annotated
with SpringOs @Validated annotation. You can use JSR-303 javax.validation constraint annotations
directly on your configuration class. To do so, ensure that a compliant JSR-303 implementation is on
your classpath and then add constraint annotations to your fields, as shown in the following
example:

@ConfigurationProperties(prefix="acme")
@Validated
public class AcmeProperties {

@NotNull
private InetAddress remoteAddress;

T T

E // ... getters and setters

| You can also trigger validation by annotating the @Beamethod that creates the
configuration properties with @Validated

To ensure that validation is always triggered for nested properties, even when no properties are
found, the associated field must be annotated with @Valid The following example builds on the
preceding AcmeProperties example:

76

@ConfigurationProperties(prefix="acme")
@Validated
public class AcmeProperties {

@NotNull
private InetAddress remoteAddress;

T TP

@Valid
private final Security security = new Security();

[T TP

Il ... getters and setters

»

public static class Security {

@NotEmpty
public String username;

[T TP

T»

Il ... getters and setters

You can also add a custom Spring Validator by creating a bean definition called
configurationPropertiesValidator . The @Beamethod should be declared static . The configuration
properties validator is created very early in the applicationOs lifecycle, and declaring the @Bean
method as static lets the bean be created without having to instantiate the @Configuration class.
Doing so avoids any problems that may be caused by early instantiation.

The spring-boot-actuator module includes an endpoint that exposes all
@ConfigurationProperties beans. Point your web browser to /actuator/configprops
or use the equivalent JMX endpoint. See the " Production ready features " section
for details.

@ConfigurationProperties vs. @Value

The @Valuannotation is a core container feature, and it does not provide the same features as type-
safe configuration properties. The following table summarizes the features that are supported by
@ConfigurationProperties and @Value

Feature @ConfigurationProperti @Value
es
Relaxed binding Yes Limited (see note
below)
Meta-data support Yes No
SpElevaluation No Yes

7

If you do want to use @Valugwe recommend that you refer to property names
using their canonical form (kebab-case using only lowercase letters). This will
allow Spring Boot to use the same logic as it does when relaxed binding
@ConfigurationProperties . For example, @Value("{demo.item-price}") will pick up
demo.item-price and demo.itemPrice forms from the application.properties file, as
well as DEMO_ITEMPRICEEom the system environment. If you used
@Value("{demo.itemPrice}") instead, demo.item-price and DEMO_ITEMPRi@iild not
be considered.

If you define a set of configuration keys for your own components, we recommend you group them
in a POJO annotated with @ConfigurationProperties . Doing so will provide you with structured,
type-safe object that you can inject into your own beans.

While you can write a SpELexpression in @Valug such expressions are not processed from
application property files

4.3. Profiles

Spring Profiles provide a way to segregate parts of your application configuration and make it be
available only in certain environments. Any @Componer@®Configuration or @ConfigurationProperties
can be marked with @Profile to limit when it is loaded, as shown in the following example:

@Configuration(proxyBeanMethods = false)
@Profile("production™)
public class ProductionConfiguration {

E /..

}
If @ConfigurationProperties beans are registered via
@EnableConfigurationProperties instead of automatic scanning, the @Profile

I annotation needs to be specified on the @Configuration class that has the

. @EnableConfigurationProperties annotation. In the case where
@ConfigurationProperties are scanned, @Profile can be specified on the
@ConfigurationProperties class itself.

You can use a spring.profiles.active Environment property to specify which profiles are active. You

can specify the property in any of the ways described earlier in this chapter. For example, you
could include it in your application.properties , as shown in the following example:

spring.profiles.active=dev,hsqldb

You could also specify it on the command line by wusing the following switch:
--spring.profiles.active=dev,hsqldb

78

4.3.1. Adding Active Profiles

The spring.profiles.active property follows the same ordering rules as other properties: The
highest PropertySource wins. This means that you can specify active profiles in
application.properties and then replace them by using the command line switch.

Sometimes, it is useful to have profile-specific properties that add to the active profiles rather than
replace them. The spring.profiles.include property can be used to unconditionally add active
profiles. The SpringApplication entry point also has a Java API for setting additional profiles (that is,
on top of those activated by the spring.profiles.active property). See the setAdditionalProfiles()
method in SpringApplication

For example, when an application with the following properties is run by using the switch,
--spring.profiles.active=prod , the proddb and prodmgprofiles are also activated:

my.property: fromyamilfile
spring.profiles: prod
spring.profiles.include:

E - proddb

E - prodmq

Remember that the spring.profiles property can be defined in a YAML document
to determine when this particular document is included in the configuration. See
Change Configuration Depending on the Environment for more details.

4.3.2. Programmatically Setting Profiles

You can programmatically set active profiles by calling SpringApplication.setAdditionalProfiles(E
) before your application runs. It is also possible to activate profiles by using SpringOs
ConfigurableEnvironment interface.

4.3.3. Profile-specific Configuration Files

Profile-specific variants of both application.properties (or application.yml) and files referenced
through ~@ConfigurationProperties are considered as files and loaded. See " Profile-specific
Properties " for details.

4.4. Logging

Spring Boot uses Commons Logging for all internal logging but leaves the underlying log
implementation open. Default configurations are provided for Java Util Logging , Log4J2, and
Logback. In each case, loggers are pre-configured to use console output with optional file output

also available.

By default, if you use the OStartersO, Logback is used for logging. Appropriate Logback routing is

79

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/SpringApplication.html
https://commons.apache.org/logging
https://docs.oracle.com/javase/8/docs/api/java/util/logging/package-summary.html
https://logging.apache.org/log4j/2.x/
https://logback.qos.ch/

also included to ensure that dependent libraries that use Java Util Logging, Commons Logging,
Log4J, or SLF4J all work correctly.

There are a lot of logging frameworks available for Java. Do not worry if the above
list seems confusing. Generally, you do not need to change your logging
dependencies and the Spring Boot defaults work just fine.

When you deploy your application to a servlet container or application server,
logging performed via the Java Util Logging APl is not routed into your

I applicationOs logs. This prevents logging performed by the container or other
applications that have been deployed to it from appearing in your applicationOs
logs.

4.4.1. Log Format

The default log output from Spring Boot resembles the following example:

2019-03-05 10:57:51.112 INFO 45469 --- main]
org.apache.catalina.core.StandardEngine : Starting Servlet Engine: Apache
Tomcat/7.0.52

2019-03-05 10:57:51.253 INFO 45469 --- [ost-startStop-1]
o.a.c.c.C.[Tomcat].[localhost].[/] > Initializing Spring embedded
WebApplicationContext

2019-03-05 10:57:51.253 INFO 45469 --- [ost-startStop-1]
0.s.web.context.ContextLoader : Root WebApplicationContext: initialization
completed in 1358 ms

2019-03-05 10:57:51.698 INFO 45469 --- [ost-startStop-1]
0.s.b.c.e.ServletRegistrationBean : Mapping servlet: 'dispatcherServlet' to [/]
2019-03-05 10:57:51.702 INFO 45469 --- [ost-startStop-1]
0.s.b.c.embedded.FilterRegistrationBean : Mapping filter: 'hiddenHttpMethodFilter'
to: [/*]

The following items are output:

¥ Date and Time: Millisecond precision and easily sortable.

¥ Log Level: ERROQRVARMNNFQDEBU®r TRACE

¥ Process ID.

¥ A --- separator to distinguish the start of actual log messages.

¥ Thread name: Enclosed in square brackets (may be truncated for console output).
¥ Logger name: This is usually the source class name (often abbreviated).

¥ The log message.

| Logback does not have a FATAIllevel. It is mapped to ERROR

80

4.4.2. Console Output

The default log configuration echoes messages to the console as they are written. By default, ERROR
-level, WARNvel, and INFGlevel messages are logged. You can also enable a OdebugO mode by
starting your application with a --debug flag.

$ java -jar myapp.jar --debug

| You can also specify debug=true in your application.properties

When the debug mode is enabled, a selection of core loggers (embedded container, Hibernate, and
Spring Boot) are configured to output more information. Enabling the debug mode does not
configure your application to log all messages with DEBUIBvel.

Alternatively, you can enable a OtraceO mode by starting your application with a --trace flag (or
trace=true in your application.properties). Doing so enables trace logging for a selection of core
loggers (embedded container, Hibernate schema generation, and the whole Spring portfolio).

Color-coded Output

If your terminal supports ANSI, color output is used to aid readability. You can set
spring.output.ansi.enabled to a supported value to override the auto-detection.

Color coding is configured by using the %clr conversion word. In its simplest form, the converter
colors the output according to the log level, as shown in the following example:

%clr(%5p)

The following table describes the mapping of log levels to colors:

Level Color
FATAL Red
ERROR Red
WARN Yellow
INFO Green
DEBUG Green
TRACE Green

Alternatively, you can specify the color or style that should be used by providing it as an option to
the conversion. For example, to make the text yellow, use the following setting:

%oclr(%d{yyyy-MM-dd HH:mm:ss.SSS}){yellow}

The following colors and styles are supported:

81

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/ansi/AnsiOutput.Enabled.html

¥ blue

¥ cyan

¥ faint

¥ green

¥ magenta
¥ red

¥ yellow

4.4.3. File Output

By default, Spring Boot logs only to the console and does not write log files. If you want to write log
files in addition to the console output, you need to set a logging.file.name or logging.file.path
property (for example, in your application.properties).

The following table shows how the logging.* properties can be used together:

Table 7. Logging properties

logging.file logging.file Example Description

.name .path

(none) (none) Console only logging.

Specific file (none) my.log Writes to the specified log file. Names can be an exact

location or relative to the current directory.

(none) Specific Ivar/log Writes spring.log to the specified directory. Names can
directory be an exact location or relative to the current directory.

Log files rotate when they reach 10 MB and, as with console output, ERRQIvel, WARMNvel, and INFO
-level messages are logged by default. Size limits can be changed using the logging.file.max-size
property. Rotated log files of the last 7 days are kept by default unless the logging.file.max-history
property has been set. The total size of log archives can be capped using logging.file.total-size-

cap. When the total size of log archives exceeds that threshold, backups will be deleted. To force log
archive cleanup on application startup, use the logging.file.clean-history-on-start property.

Logging properties are independent of the actual logging infrastructure. As a
result, specific configuration keys (such as logback.configurationFile for Logback)
are not managed by spring Boot.

4.4.4. Log Levels

All the supported logging systems can have the logger levels set in the Spring Environment (for
example, in application.properties) by using logging.level.<logger-name>=<level> where level is
one of TRACE, DEBUG, INFO, WARN, ERROR, FATAL, or OFF. Theroot logger can be configured by
using logging.level.root

The following example shows potential logging settings in application.properties

82

logging.level.root=warn
logging.level.org.springframework.web=debug
logging.level.org.hibernate=error

ItOs also possible to set logging levels using environment variables. For example,
LOGGING_LEVEL_ORG_SPRINGFRAMEWORHKyilN4EB=@§ Bt gframework.web to DEBUG

The above approach will only work for package level logging. Since relaxed
binding always converts environment variables to lowercase, itOs not possible to
configure logging for an individual class in this way. If you need to configure
logging for a class, you can use the SPRING_APPLICATION_ J&a@able.

4.4.5. Log Groups

ItOs often useful to be able to group related loggers together so that they can all be configured at the
same time. For example, you might commonly change the logging levels for all Tomcat related
loggers, but you canOt easily remember top level packages.

To help with this, Spring Boot allows you to define logging groups in your Spring Environment. For

example, hereOs how you could define a OtomcatO group by adding it to your application.properties
logging.group.tomcat=org.apache.catalina, org.apache.coyote, org.apache.tomcat

Once defined, you can change the level for all the loggers in the group with a single line:

logging.level.tomcat=TRACE

Spring Boot includes the following pre-defined logging groups that can be used out-of-the-box:

Name Loggers

web org.springframework.core.codec , org.springframework.http

org.springframework.web , org.springframework.boot.actuate.endpoint.web
org.springframework.boot.web.servlet.ServletContextinitializerBeans

sql org.springframework.jdbc.core , org.hibernate.SQL ,
org.joog.tools.LoggerListener

4.4.6. Custom Log Configuration

The various logging systems can be activated by including the appropriate libraries on the
classpath and can be further customized by providing a suitable configuration file in the root of the
classpath or in a location specified by the following Spring Environment property: logging.config

You <can force Spring Boot to wuse a particular logging system by using the
org.springframework.boot.logging.LoggingSystem system property. The value should be the fully
qualified class name of a LoggingSystemimplementation. You can also disable Spring BootOs logging

83

configuration entirely by using a value of none

Since logging is initialized before the ApplicationContext is created, it is not
possible to control logging from @PropertySourcesin Spring @Configuration files.
The only way to change the logging system or disable it entirely is via System
properties.

Depending on your logging system, the following files are loaded:

Logging System Customization

Logback

Log4j2

logback-spring.xml , logback-spring.groovy
logback.xml, or logback.groovy

log4j2-spring.xml or log4j2.xml

JDK (Java Util Logging) logging.properties

To help with the customization, some other properties are transferred from the Spring

When possible, we recommend that you use the -spring variants for your logging
configuration (for example, logback-spring.xml rather than logback.xml). If you use
standard configuration locations, Spring cannot completely control log
initialization.

There are known classloading issues with Java Util Logging that cause problems
when running from an 'executable jar'. We recommend that you avoid it when
running from an ‘executable jar' if at all possible.

to System properties, as described in the following table:

Spring Environment System Property Comments
logging.exception-conversion- LOG_EXCEPTION_CONVERSION TWO®aversion word used
word when logging exceptions.
logging.file.clean-history-on- LOG_FILE_CLEAN_HISTORY_ONv#&Rer to clean the archive
start T

log files on startup (if LOG_FILE
enabled). (Only supported with
the default Logback setup.)

logging file.name LOG_FILE If defined, it is used in the

default log configuration.

logging.file.max-size LOG_FILE_MAX_SIZE Maximum log file size (if

LOG_FILE enabled). (Only
supported with the default
Logback setup.)

logging.file.max-history LOG_FILE_MAX_HISTORY Maximum number of archive

84

log files to keep (if LOG_FILE
enabled). (Only supported with
the default Logback setup.)

Environment

Spring Environment

logging.file.path

logging.file.total-size-cap

logging.pattern.console

logging.pattern.dateformat

logging.pattern.file

logging.pattern.level

logging.pattern.rolling-file-
name

PID

System Property
LOG_PATH

LOG_FILE_TOTAL_SIZE_CAP

CONSOLE_LOG_PATTERN

LOG_DATEFORMAT_PATTERN

FILE_LOG_PATTERN

LOG_LEVEL_PATTERN

Comments

If defined, it is used in the
default log configuration.

Total size of log backups to be
kept (if LOG_FILE enabled).
(Only supported with the
default Logback setup.)

The log pattern to use on the
console (stdout). (Only
supported with the default
Logback setup.)

Appender pattern for log date
format. (Only supported with
the default Logback setup.)

The log pattern to use in a file
(if LOG_FILEs enabled). (Only
supported with the default
Logback setup.)

The format to use when
rendering the log level (default
%5)p. (Only supported with the
default Logback setup.)

ROLLING_FILE_NAME_PATTERN pattern for rolled-over log file

PID

names (default
${LOG_FILE}.%d{yyyy-MM-

dd}.%i.gz). (Only supported
with the default Logback setup.)

The current process ID
(discovered if possible and
when not already defined as an
OS environment variable).

All the supported logging systems can consult System properties when parsing their configuration

files. See the default configurations in

¥ Logback
¥ Log4j 2

¥ Java Util logging

If you want to use a placeholder in a logging property, you should use
BootOs syntaxand not the syntax of the underlying framework. Notably, if you use
. as the delimiter between a property name and its

Logback, you should use

spring-boot.jar

default value and not use :- .

for examples:

Spring

85

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot/src/main/resources/org/springframework/boot/logging/logback/defaults.xml
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot/src/main/resources/org/springframework/boot/logging/log4j2/log4j2.xml
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot/src/main/resources/org/springframework/boot/logging/java/logging-file.properties

You can add MDC and other ad-hoc content to log lines by overriding only the
LOG_LEVEL_PATT@®RMNgging.pattern.level with Logback). For example, if you use
logging.pattern.level=user:%X{user} %5p , then the default log format contains an
MDC entry for "user", if it exists, as shown in the following example.

2019-08-30 12:30:04.031 user:someone INFO 22174 --- [nio-8080-exec-0]
demo.Controller
Handling authenticated request

4.4.7. Logback Extensions

Spring Boot includes a number of extensions to Logback that can help with advanced configuration.
You can use these extensions in your logback-spring.xml configuration file.

Because the standard logback.xml configuration file is loaded too early, you cannot
use extensions in it. You need to either use logback-spring.xml or define a
logging.config property.

The extensions cannot be used with LogbackOs configuration scanning . If you
attempt to do so, making changes to the configuration file results in an error
similar to one of the following being logged:

ERROR in ch.qos.logback.core.joran.spi.Interpreter@4:71 - no applicable action for
[springProperty], current ElementPath is [[configuration][springProperty]]

ERROR in ch.qos.logback.core.joran.spi.Interpreter@4:71 - no applicable action for
[springProfile], current ElementPath is [[configuration][springProfile]]

Profile-specific Configuration

The <springProfile> tag lets you optionally include or exclude sections of configuration based on

the active Spring profiles. Profile sections are supported anywhere within the <configuration>
element. Use the name attribute to specify which profile accepts the configuration. The
<springProfile> tag can contain a profile name (for example staging) or a profile expression. A
profile expression allows for more complicated profile logic to be expressed, for example
production & (eu-central | eu-west) . Check the reference guide for more details. The following
listing shows three sample profiles:

86

https://logback.qos.ch/manual/configuration.html#autoScan
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/core.html#beans-definition-profiles-java

<springProfile name="staging">
E <!-- configuration to be enabled when the "staging" profile is active -->
</springProfile>

<springProfile name="dev | staging">
E <!-- configuration to be enabled when the "dev" or "staging" profiles are active
-->

</springProfile>

<springProfile name="Iproduction">
E <!-- configuration to be enabled when the "production” profile is not active -->
</springProfile>

Environment Properties

The <springProperty> tag lets you expose properties from the Spring Environment for use within
Logback. Doing so can be useful if you want to access values from your application.properties file
in your Logback configuration. The tag works in a similar way to LogbackOs standard <property> tag.
However, rather than specifying a direct value, you specify the source of the property (from the
Environment). If you need to store the property somewhere other than in local scope, you can use
the scope attribute. If you need a fallback value (in case the property is not set in the Environment),
you can use the defaultValue attribute. The following example shows how to expose properties for

use within Logback:

<springProperty scope="context" name="fluentHost" source="myapp.fluentd.host"

E defaultValue="localhost"/>

<appender name="FLUENT" class="ch.qos.logback.more.appenders.DataFluentAppender">
E <remoteHost>${fluentHost}</remoteHost>

E
</appender>
The source must be specified in kebab case (such as my.property-name). However,
. properties can be added to the Environment by using the relaxed rules.

4.5. Internationalization

Spring Boot supports localized messages so that your application can cater to users of different
language preferences. By default, Spring Boot looks for the presence of a messagegesource bundle
at the root of the classpath.

The auto-configuration applies when the default properties file for the configured
resource bundle is available (i.e. messages.properties by default). If your resource
bundle contains only language-specific properties files, you are required to add
the default. If no properties file is found that matches any of the configured base
names, there will be no auto-configured MessageSource

87

The basename of the resource bundle as well as several other attributes can be configured using
the spring.messages namespace, as shown in the following example:

spring.messages.basename=messages,config.il8n.messages
spring.messages.fallback-to-system-locale=false

spring.messages.basename supports comma-separated list of locations, either a
. package qualifier or a resource resolved from the classpath root.

SeeMessageSourcePropertiesfor more supported options.

4.6. JSON

Spring Boot provides integration with three JISON mapping libraries:

¥ Gson
¥ Jackson

¥ JSON-B

Jackson is the preferred and default library.

4.6.1. Jackson

Auto-configuration for Jackson is provided and Jackson is part of spring-boot-starter-json . When
Jackson is on the classpath an ObjectMapperbean is automatically configured. Several configuration
properties are provided for customizing the configuration of the ObjectMapper

4.6.2. Gson

Auto-configuration for Gson is provided. When Gson is on the classpath a Gsonbean is automatically
configured. Several spring.gson.* configuration properties are provided for customizing the
configuration. To take more control, one or more GsonBuilderCustomizer beans can be used.

4.6.3. JSON-B

Auto-configuration for JSON-B is provided. When the JSON-B API and an implementation are on the
classpath a Jsonb bean will be automatically configured. The preferred JSON-B implementation is
Apache Johnzon for which dependency management is provided.

4.7. Developing Web Applications

Spring Boot is well suited for web application development. You can create a self-contained HTTP
server by using embedded Tomcat, Jetty, Undertow, or Netty. Most web applications use the spring-
boot-starter-web module to get up and running quickly. You can also choose to build reactive web
applications by using the spring-boot-starter-webflux module.

88

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/context/MessageSourceProperties.java

If you have not yet developed a Spring Boot web application, you can follow the "Hello World!"
example in the Getting started section.

4.7.1. The OSpring Web MVC FrameworkO

The Spring Web MVC framework (often referred to as OSpring MVCO) is a rich Omodel view
controllerO web framework. Spring MVC lets you create special @Controller or @RestController
beans to handle incoming HTTP requests. Methods in your controller are mapped to HTTP by using
@RequestMappirannotations.

The following code shows a typical @RestController that serves JSON data:

@RestController
@RequestMapping(value="/users")
public class MyRestController {

@RequestMapping(value="/{user}", method=RequestMethod.GET)
public User getUser(@PathVariable Long user) {
...

m > mp [mp

@RequestMapping(value="/{user}/customers”, method=RequestMethod.GET)
List<Customer> getUserCustomers(@PathVariable Long user) {
...

m M mp [mp

@RequestMapping(value="/{user}", method=RequestMethod.DELETE)
public User deleteUser(@PathVariable Long user) {
...

T ™ T [Th

—

Spring MVC is part of the core Spring Framework, and detailed information is available in the
reference documentation . There are also several guides that cover Spring MVC available at
spring.io/guides .

Spring MVC Auto-configuration

Spring Boot provides auto-configuration for Spring MVC that works well with most applications.
The auto-configuration adds the following features on top of SpringOs defaults:

¥ Inclusion of ContentNegotiatingViewResolver and BeanNameViewResolveeans.

¥ Support for serving static resources, including support for WebJars (covered later in this
document)).

¥ Automatic registration of Converter, GenericConverter, and Formatter beans.

¥ Support for HttpMessageConverters(covered later in this document).

89

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#mvc
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#mvc
https://spring.io/guides

¥ Automatic registration of MessageCodesResolvecovered later in this document).
¥ Static index.html support.
¥ Custom Favicon support (covered later in this document).

¥ Automatic use of a ConfigurableWebBindinglnitializer ~ bean (covered later in this document).

If you want to keep those Spring Boot MVC customizations and make more MVC customizations
(interceptors, formatters, view controllers, and other features), you can add your own
@Configuration class of type WebMvcConfigurebut without @EnableWebMvc

If you want to provide custom instances of RequestMappingHandlerMapping
RequestMappingHandlerAdapteror ExceptionHandlerExceptionResolver , and still keep the Spring Boot
MVC customizations, you can declare a bean of type = WebMvcRegistrations and use it to provide
custom instances of those components.

If you want to take complete control of Spring MVC, you can add your own @Configuration
annotated with @EnableWebMvoor alternatively add your own @Configuration-annotated
DelegatingWebMvcConfiguration as described in the Javadoc of @EnableWebMvc

HttpMessageConverters

Spring MVC uses the HitpMessageConverter interface to convert HTTP requests and responses.
Sensible defaults are included out of the box. For example, objects can be automatically converted

to JSON (by using the Jackson library) or XML (by using the Jackson XML extension, if available, or

by using JAXB if the Jackson XML extension is not available). By default, strings are encoded in UTF-
8.

If you need to add or customize converters, you can use Spring BootOs HttpMessageConvertersclass,
as shown in the following listing:

import org.springframework.boot.autoconfigure.http.HttpMessageConverters;
import org.springframework.context.annotation.;
import org.springframewaork.http.converter.*;

@Configuration(proxyBeanMethods = false)
public class MyConfiguration {

E @Bean

E public HttpMessageConverters customConverters() {

E HttpMessageConverter<?> additional = ...

E HttpMessageConverter<?> another = ...

E return new HttpMessageConverters(additional, another);
E }

}

Any HttpMessageConverterbean that is present in the context is added to the list of converters. You
can also override default converters in the same way.

90

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#mvc

Custom JSON Serializers and Deserializers

If you use Jackson to serialize and deserialize JSON data, you might want to write your own
JsonSerializer and JsonDeserializer classes. Custom serializers are usually registered with Jackson
through a module , but Spring Boot provides an alternative @JsonComponeanotation that makes it
easier to directly register Spring Beans.

You can use the @JsonComponerdnnotation directly on JsonSerializer , JsonDeserializer or
KeyDeserializer implementations. You can also wuse it on classes that contain
serializers/deserializers as inner classes, as shown in the following example:

import java.io.*;

import com.fasterxml.jackson.core.*;
import com.fasterxml.jackson.databind.*;
import org.springframework.boot.jackson.*;

@JsonComponent
public class Example {

public static class Serializer extends JsonSerializer<SomeObject> {
...

T > m»

public static class Deserializer extends JsonDeserializer<SomeObject> {
...

m T [mp

—

All @JsonComponelieans in the ApplicationContext are automatically registered with Jackson.
Because @JsonComponeig meta-annotated with ~@Componenthe usual component-scanning rules
apply.

Spring Boot also provides JsonObjectSerializer and JsonObjectDeserializer base classes that
provide useful alternatives to the standard Jackson versions when serializing objects. See
JsonObjectSerializer and JsonObjectDeserializer in the Javadoc for details.

MessageCodesResolver

Spring MVC has a strategy for generating error codes for rendering error messages from binding
errors: MessageCodesResolverlf you set the spring.mvc.message-codes-resolver-format property
PREFIX_ERROR_GC&®[EOSTFIX_ERROR_CSrbag Boot creates one for you (see the enumeration in
DefaultMessageCodesResolver.Format

Static Content

By default, Spring Boot serves static content from a directory called [/static (or /public or
/resources or /META-INF/resources) in the classpath or from the root of the ServletContext . It uses
the ResourceHttpRequestHandlerfrom Spring MVC so that you can modify that behavior by adding

91

https://github.com/FasterXML/jackson-docs/wiki/JacksonHowToCustomSerializers
https://github.com/FasterXML/jackson-docs/wiki/JacksonHowToCustomSerializers
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jackson/JsonObjectSerializer.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jackson/JsonObjectDeserializer.java
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/jackson/JsonObjectSerializer.html
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/jackson/JsonObjectDeserializer.html
https://docs.spring.io/spring/docs/5.2.12.RELEASE/javadoc-api/org/springframework/validation/DefaultMessageCodesResolver.Format.html

your own WebMvcConfigureand overriding the addResourceHandleramethod.

In a stand-alone web application, the default servlet from the container is also enabled and acts as

a fallback, serving content from the root of the ServletContext if Spring decides not to handle it.
Most of the time, this does not happen (unless you modify the default MVC configuration), because
Spring can always handle requests through the DispatcherServiet .

By default, resources are mapped on /** | but you can tune that with the spring.mvc.static-path-
pattern property. For instance, relocating all resources to /resources/** can be achieved as follows:

spring.mvc.static-path-pattern=/resources/**

You can also customize the static resource locations by using the spring.resources.static-locations
property (replacing the default values with a list of directory locations). The root Servlet context
path, "/* ,is automatically added as a location as well.

In addition to the OstandardO static resource locations mentioned earlier, a special case is made for
Webjars content . Any resources with a path in /webjars/** are served from jar files if they are
packaged in the Webjars format.

Do not use the src/main/webapp directory if your application is packaged as a jar.
I Although this directory is a common standard, it works only with war packaging,
and it is silently ignored by most build tools if you generate a jar.

Spring Boot also supports the advanced resource handling features provided by Spring MVC,
allowing use cases such as cache-busting static resources or using version agnostic URLs for
Webjars.

To use version agnostic URLs for Webjars, add the webjars-locator-core dependency. Then declare
your Webjar. Using jQuery as an example, adding "lwebjars/jquery/jquery.min.js" results in
"lwebjars/jquery/x.y.z/jquery.min.js" where x.y.z is the Webjar version.

If you use JBoss, you need to declare the webjars-locator-jboss-vfs dependency
instead of the webjars-locator-core . Otherwise, all Webjars resolve asa 404

To use cache busting, the following configuration configures a cache busting solution for all static
resources, effectively adding a content hash, such as <link href="/css/spring-
2a2d595e6ed9a0b24f027f2b63b134d6.css"/>n URLS:

spring.resources.chain.strategy.content.enabled=true
spring.resources.chain.strategy.content.paths=/**

92

https://www.webjars.org/

Links to resources are rewritten in templates at runtime, thanks to a
ResourceUrlEncodingFilter that is auto-configured for Thymeleaf and FreeMarker.
You should manually declare this filter when using JSPs. Other template engines
are currently not automatically supported but can be with custom template
macros/helpers and the use of the ResourceUrlProvider .

When loading resources dynamically with, for example, a JavaScript module loader, renaming files
is not an option. That is why other strategies are also supported and can be combined. A "fixed"
strategy adds a static version string in the URL without changing the file name, as shown in the
following example:

spring.resources.chain.strategy.content.enabled=true
spring.resources.chain.strategy.content.paths=/**
spring.resources.chain.strategy.fixed.enabled=true
spring.resources.chain.strategy.fixed.paths=/js/lib/
spring.resources.chain.strategy.fixed.version=v12

With this configuration, JavaScript modules located under "lis/lib/" use a fixed versioning
strategy ("/v12/js/lib/mymodule.js"), while other resources still use the content one (<link
href="/css/spring-2a2d595e6ed9a0b24f027f2b63b134d6.css"/>).

SeeResourceProperties for more supported options.

I This feature has been thoroughly described in a dedicated blog post and in Spring
. FrameworkOs reference documentation

Welcome Page

Spring Boot supports both static and templated welcome pages. It first looks for an index.html file in
the configured static content locations. If one is not found, it then looks for an index template. If
either is found, it is automatically used as the welcome page of the application.

Custom Favicon

As with other static resources, Spring Boot looks for a favicon.ico in the configured static content
locations. If such a file is present, it is automatically used as the favicon of the application.

Path Matching and Content Negotiation

Spring MVC can map incoming HTTP requests to handlers by looking at the request path and
matching it to the mappings defined in your application (for example, @GetMappingnnotations on
Controller methods).

Spring Boot chooses to disable suffix pattern matching by default, which means that requests like
"GET /projects/spring-boot.json" wonOt be matched to @GetMapping("/projects/spring-boot")
mappings. This is considered as a best practice for Spring MVC applications . This feature was
mainly useful in the past for HTTP clients which did not send proper "Accept” request headers; we
needed to make sure to send the correct Content Type to the client. Nowadays, Content Negotiation

93

https://docs.spring.io/spring/docs/5.2.12.RELEASE/javadoc-api/org/springframework/web/servlet/resource/ResourceUrlProvider.html
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ResourceProperties.java
https://spring.io/blog/2014/07/24/spring-framework-4-1-handling-static-web-resources
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#mvc-config-static-resources
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#mvc-ann-requestmapping-suffix-pattern-match

is much more reliable.

There are other ways to deal with HTTP clients that donOt consistently send proper "Accept” request
headers. Instead of using suffix matching, we can use a query parameter to ensure that requests

like "GET /projects/spring-boot?format=json" will be mapped to @GetMapping("/projects/spring-
boot") :

spring.mvc.contentnegotiation.favor-parameter=true

We can change the parameter name, which is "format" by default:
spring.mvc.contentnegotiation.parameter-name=myparam

We can also register additional file extensions/media types with:
spring.mvc.contentnegotiation.media-types.markdown=text/markdown

Suffix pattern matching is deprecated and will be removed in a future release. If you understand
the caveats and would still like your application to use suffix pattern matching, the following
configuration is required:

spring.mvc.contentnegotiation.favor-path-extension=true
spring.mvc.pathmatch.use-suffix-pattern=true

Alternatively, rather than open all suffix patterns, itOs more secure to only support registered suffix
patterns:

spring.mvc.contentnegotiation.favor-path-extension=true
spring.mvc.pathmatch.use-registered-suffix-pattern=true

You can also register additional file extensions/media types with:
spring.mvc.contentnegotiation.media-types.adoc=text/asciidoc

ConfigurableWebBindinglnitializer

Spring MVC uses a WebBindinglnitializer to initialize a WebDataBindefor a particular request. If you
create your own ConfigurableWebBindinglnitializer @BeanSpring Boot automatically configures
Spring MVC to use it.

Template Engines

As well as REST web services, you can also use Spring MVC to serve dynamic HTML content. Spring
MVC supports a variety of templating technologies, including Thymeleaf, FreeMarker, and JSPs.
Also, many other templating engines include their own Spring MVC integrations.

Spring Boot includes auto-configuration support for the following templating engines:

¥ FreeMarker

¥ Groovy

94

https://freemarker.apache.org/docs/
https://docs.groovy-lang.org/docs/next/html/documentation/template-engines.html#_the_markuptemplateengine

¥ Thymeleaf

¥ Mustache

| If possible, JSPs should be avoided. There are several known limitations when
using them with embedded servlet containers.

When you use one of these templating engines with the default configuration, your templates are
picked up automatically from src/main/resources/templates

Depending on how you run your application, your IDE may order the classpath
differently. Running your application in the IDE from its main method results in a
different ordering than when you run your application by using Maven or Gradle
or from its packaged jar. This can cause Spring Boot to fail to find the expected
template. If you have this problem, you can reorder the classpath in the IDE to
place the moduleOs classes and resources first.

Error Handling

By default, Spring Boot provides an /error mapping that handles all errors in a sensible way, and it
is registered as a OglobalO error page in the servlet container. For machine clients, it produces a
JSON response with details of the error, the HTTP status, and the exception message. For browser
clients, there is a OwhitelabelO error view that renders the same data in HTML format (to customize
it, add a Viewthat resolves to error).

There are a number of server.error properties that can be set if you want to customize the default
error handling behavior. See the ~ OServer PropertiesO section of the Appendix.

To replace the default behavior completely, you can implement ErrorController and register a bean
definition of that type or add a bean of type ErrorAttributes to use the existing mechanism but
replace the contents.

The BasicErrorController can be used as a base class for a custom ErrorController
This is particularly useful if you want to add a handler for a new content type (the
default is to handle text/html specifically and provide a fallback for everything
else). To do so, extend BasicErrorController , add a public method with a
@RequestMappirtbat has a produces attribute, and create a bean of your new type.

You can also define a class annotated with ~ @ControllerAdvice to customize the JSON document to
return for a particular controller and/or exception type, as shown in the following example:

95

https://www.thymeleaf.org
https://mustache.github.io/

@cControllerAdvice(basePackageClasses = AcmeController.class)
public class AcmeControllerAdvice extends ResponseEntityExceptionHandler {

@ExceptionHandler(YourException.class)
@ResponseBody
ResponseEntity<?> handleControllerException(HttpServietRequest request, Throwable

x) {

@ [Ty [Ty TP

HttpStatus status = getStatus(request);
return new ResponseEntity<>(new CustomErrorType(status.value(),
x.getMessage()), status);

}

T [T

m @d

E private HttpStatus getStatus(HttpServietRequest request) {
E Integer statusCode = (Integer)
request.getAttribute("javax.servlet.error.status_code");

E if (statusCode == null) {

E return HttpStatus.INTERNAL_SERVER_ERROR;
E)

E return HttpStatus.valueOf(statusCode);

E }

}

In the preceding example, if YourException is thrown by a controller defined in the same package as
AcmeController, a JSON representation of the CustomErrorType POJO is used instead of the
ErrorAttributes representation.

Custom Error Pages

If you want to display a custom HTML error page for a given status code, you can add a file to an
/error directory. Error pages can either be static HTML (that is, added under any of the static
resource directories) or be built by using templates. The name of the file should be the exact status
code or a series mask.

For example, to map 404to a static HTML file, your directory structure would be as follows:

E +-java/
E | +<source code>

E +- resources/

E +- public/

E +- error/

E | +-404.html

E +- <other public assets>

To map all 5xx errors by using a FreeMarker template, your directory structure would be as follows:

96

src/
E+- main/
+- java/
| + <source code>
+- resources/
+- templates/
+- error/
| +- 5xx.ftlh
+- <other templates>

[T [T T [Th [T [T> [Th

For more complex mappings, you can also add beans that implement the ErrorViewResolver
interface, as shown in the following example:

public class MyErrorViewResolver implements ErrorViewResolver {

E @Override

E public ModelAndView resolveErrorView(HttpServletRequest request,
E HttpStatus status, Map<String, Object> model) {

E /I Use the request or status to optionally return a ModelAndView
E return...

E }

}

You can also use regular Spring MVC features such as @ExceptionHandler methods and
@ControllerAdvice . The ErrorController then picks up any unhandled exceptions.

Mapping Error Pages outside of Spring MVC

For applications that do not use Spring MVC, you can use the ErrorPageRegistrar interface to
directly register ErrorPages. This abstraction works directly with the underlying embedded servlet
container and works even if you do not have a Spring MVC DispatcherServlet .

97

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#mvc-exceptionhandlers
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#mvc-exceptionhandlers
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#mvc-ann-controller-advice

@Bean
public ErrorPageRegistrar errorPageRegistrar(){
E return new MyErrorPageRegistrar();

}

...

private static class MyErrorPageRegistrar implements ErrorPageRegistrar {

E @Override
E public void registerErrorPages(ErrorPageRegistry registry) {
E registry.addErrorPages(new ErrorPage(HttpStatus.BAD REQUEST, "/400"));
E }
}
If you register an ErrorPage with a path that ends up being handled by a Filter (as
I is common with some non-Spring web frameworks, like Jersey and Wicket), then
. the Filter has to be explicitly registered as an ERROGBispatcher, as shown in the
following example:
@Bean

public FilterRegistrationBean myFilter() {
FilterRegistrationBean registration = new FilterRegistrationBean();
registration.setFilter(new MyFilter());

registration.setDispatcherTypes(EnumSet.allOf(DispatcherType.class));
return registration;

=~ [T> [T> > [T» T»

Note that the default FilterRegistrationBean does not include the ERRO@ispatcher type.

Error handling in a war deployment

When deployed to a servlet container, Spring Boot uses its error page filter to forward a request
with an error status to the appropriate error page. This is necessary as the Servlet specification
does not provide an API for registering error pages. Depending on the container that you are
deploying your war file to and the technologies that your application uses, some additional
configuration may be required.

The error page filter can only forward the request to the correct error page if the response has not
already been committed. By default, WebSphere Application Server 8.0 and later commits the
response upon successful completion of a servletOs service method. You should disable this behavior
by setting com.ibm.ws.webcontainer.invokeFlushAfterService to false .

If you are using Spring Security and want to access the principal in an error page, you must
configure Spring SecurityOs filter to be invoked on error dispatches. To do so, set the

98

spring.security.filter.dispatcher-types property to async, error, forward, request

Spring HATEOAS

If you develop a RESTful API that makes use of hypermedia, Spring Boot provides auto-
configuration for Spring HATEOAS that works well with most applications. The auto-configuration
replaces the need to use @EnableHypermediaSuppoand registers a number of beans to ease building
hypermedia-based applications, including a LinkDiscoverers (for client side support) and an
ObjectMapper configured to correctly marshal responses into the desired representation. The
ObjectMapperis customized by setting the various spring.jackson.* properties or, if one exists, by a
Jackson20bjectMapperBuilder bean.

You can take control of Spring HATEOASOs configuration by using @EnableHypermediaSupporNote
that doing so disables the ObjectMappercustomization described earlier.

CORS Support

Cross-origin resource sharing (CORS) is aW3C specification implemented by most browsers that
lets you specify in a flexible way what kind of cross-domain requests are authorized., instead of
using some less secure and less powerful approaches such as IFRAME or JSONP.

As of version 4.2, Spring MVC supports CORS. Using controller method CORS configuration with
@CrossOrigin annotations in your Spring Boot application does not require any specific
configuration. Global CORS configuration can be defined by registering a WebMvcConfigurerbean
with a customized addCorsMappings(CorsRegistry) method, as shown in the following example:

@ Configuration(proxyBeanMethods = false)
public class MyConfiguration {

@Bean
public WebMvcConfigurer corsConfigurer() {
return new WebMvcConfigurer() {
@Override
public void addCorsMappings(CorsRegistry registry) {
registry.addMapping("/api/**");
}
15
}

S~ [T [T e mp me mp e mp e

4.7.2. The OSpring WebFlux FrameworkO

Spring WebFlux is the new reactive web framework introduced in Spring Framework 5.0. Unlike
Spring MVC, it does not require the Servlet API, is fully asynchronous and non-blocking, and
implements the Reactive Streams specification through the Reactor project .

Spring WebFlux comes in two flavors: functional and annotation-based. The annotation-based one
is quite close to the Spring MVC model, as shown in the following example:

99

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://www.w3.org/TR/cors/
https://caniuse.com/#feat=cors
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#mvc-cors
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#mvc-cors-controller
https://docs.spring.io/spring/docs/5.2.12.RELEASE/javadoc-api/org/springframework/web/bind/annotation/CrossOrigin.html
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#mvc-cors-global
https://www.reactive-streams.org/
https://projectreactor.io/

@RestController
@RequestMapping("/users")
public class MyRestController {

@GetMapping("/{user}")
public Mono<User> getUser(@PathVariable Long user) {
...

T [T [T [T

}

@GetMapping(“/{user}/customers")
public Flux<xCustomer> getUserCustomers(@PathVariable Long user) {
...

T [T [T [T

}

@DeleteMapping("/{user}")
public Mono<User> deleteUser(@PathVariable Long user) {
...

[T [T [T [T

}

—

OWebFlux.fnO, the functional variant, separates the routing configuration from the actual handling
of the requests, as shown in the following example:

100

@Configuration(proxyBeanMethods = false)
public class RoutingConfiguration {

@Bean
public RouterFunction<ServerResponse> monoRouterFunction(UserHandler userHandler)

return route(GET("/{user}").and(accept(APPLICATION_JSON)),
serHandler::getUser)
.andRoute(GET("/{user}/customers").and(accept(APPLICATION_JSON)),
serHandler::getUserCustomers)
.andRoute(DELETE("H{user}").and(accept(APPLICATION_JSON)),
serHandler::deleteUser);

}

cCmS meS m mm

T

}

@Component
public class UserHandler {

E public Mono<ServerResponse> getUser(ServerRequest request) {
E ...
E }
E public Mono<ServerResponse> getUserCustomers(ServerRequest request) {
E ...
E }
E public Mono<ServerResponse> deleteUser(ServerRequest request) {
E ...
E }
}
WebFlux is part of the Spring Framework and detailed information is available in its reference

documentation .

You can define as many RouterFunction beans as you like to modularize the
. definition of the router. Beans can be ordered if you need to apply a precedence.

To get started, add the spring-boot-starter-webflux module to your application.

Adding both spring-boot-starter-web and spring-boot-starter-webflux modules in

your application results in Spring Boot auto-configuring Spring MVC, not WebFlux.

This behavior has been chosen because many Spring developers add spring-boot-
. starter-webflux to their Spring MVC application to use the reactive WebClient You

can still enforce your choice by setting the chosen application type to

SpringApplication.setWebApplicationType(WebApplicationType.REACTIVE) .

101

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web-reactive.html#webflux-fn
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web-reactive.html#webflux-fn

Spring WebFlux Auto-configuration

Spring Boot provides auto-configuration for Spring WebFlux that works well with most
applications.

The auto-configuration adds the following features on top of SpringOs defaults:

¥ Configuring codecs for HttpMessageReadeland HttpMessageWriter instances (described later in
this document).

¥ Support for serving static resources, including support for WebJars (described later in this
document).
If you want to keep Spring Boot WebFlux features and you want to add additional WebFlux

configuration , you can add your own @Configuration class of type WebFluxConfigurer but without
@EnableWebFlux

If you want to take complete control of Spring WebFlux, you can add your own @Configuration
annotated with @EnableWebFlux

HTTP Codecs with HttpMessageReaders and HttpMessageWriters

Spring WebFlux uses the HttpMessageReaderand HttpMessageWriter interfaces to convert HTTP
requests and responses. They are configured with CodecConfigurer to have sensible defaults by
looking at the libraries available in your classpath.

Spring Boot provides dedicated configuration properties for codecs, spring.codec.* . It also applies
further customization by using CodecCustomizer instances. For example, spring.jackson.*
configuration keys are applied to the Jackson codec.

If you need to add or customize codecs, you can create a custom CodecCustomizercomponent, as
shown in the following example:

import org.springframework.boot.web.codec.CodecCustomizer;

@Configuration(proxyBeanMethods = false)
public class MyConfiguration {

E @Bean

E public CodecCustomizer myCodecCustomizer() {
E return codecConfigurer -> {

E ...

E)

E }

}

You can also leverage BootOs custom JSON serializers and deserializers .

102

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web-reactive.html#webflux-config
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web-reactive.html#webflux-config

Static Content

By default, Spring Boot serves static content from a directory called [static (or /public or
/resources or /META-INF/resources) in the classpath. It uses the ResourceWebHandlefrom Spring
WebFlux so that you can modify that behavior by adding your own WebFluxConfigurer and

overriding the addResourceHandleramethod.

By default, resources are mapped on [**, but you can tune that by setting the
spring.webflux.static-path-pattern property. For instance, relocating all resources to /resources/**
can be achieved as follows:

spring.webflux.static-path-pattern=/resources/**

You can also customize the static resource locations by using spring.resources.static-locations
Doing so replaces the default values with a list of directory locations. If you do so, the default
welcome page detection switches to your custom locations. So, if there is an index.html in any of
your locations on startup, it is the home page of the application.

In addition to the OstandardO static resource locations listed earlier, a special case is made for
Webjars content . Any resources with a path in /webjars/** are served from jar files if they are
packaged in the Webjars format.

Spring WebFlux applications do not strictly depend on the Servlet API, so they
cannot be deployed as war files and do not use the src/main/webapp directory.

Welcome Page

Spring Boot supports both static and templated welcome pages. It first looks for an index.html file in
the configured static content locations. If one is not found, it then looks for an index template. If
either is found, it is automatically used as the welcome page of the application.

Template Engines

As well as REST web services, you can also use Spring WebFlux to serve dynamic HTML content.
Spring WebFlux supports a variety of templating technologies, including Thymeleaf, FreeMarker,
and Mustache.

Spring Boot includes auto-configuration support for the following templating engines:

¥ FreeMarker
¥ Thymeleaf

¥ Mustache

When you use one of these templating engines with the default configuration, your templates are
picked up automatically from src/main/resources/templates

103

https://www.webjars.org/
https://freemarker.apache.org/docs/
https://www.thymeleaf.org
https://mustache.github.io/

Error Handling

Spring Boot provides a WebExceptionHandlerthat handles all errors in a sensible way. Its position in
the processing order is immediately before the handlers provided by WebFlux, which are
considered last. For machine clients, it produces a JSON response with details of the error, the HTTP
status, and the exception message. For browser clients, there is a OwhitelabelO error handler that
renders the same data in HTML format. You can also provide your own HTML templates to display
errors (see the next section).

The first step to customizing this feature often involves using the existing mechanism but replacing
or augmenting the error contents. For that, you can add a bean of type ErrorAttributes

To change the error handling behavior, you can implement ErrorWebExceptionHandlerand register a
bean definition of that type. Because a WebExceptionHandleris quite low-level, Spring Boot also
provides a convenient AbstractErrorWebExceptionHandler to let you handle errors in a WebFlux
functional way, as shown in the following example:

public class CustomErrorWebExceptionHandler extends AbstractErrorWebExceptionHandler {
E // Define constructor here
E @Override

E protected RouterFunction<ServerResponse> getRoutingFunction(ErrorAttributes
errorAttributes) {

E return RouterFunctions

E .route(aPredicate, aHandler)

E .andRoute(anotherPredicate, anotherHandler);
E }

}

For a more complete picture, you can also subclass DefaultErrorWebExceptionHandler directly and
override specific methods.

Custom Error Pages

If you want to display a custom HTML error page for a given status code, you can add a file to an
/error directory. Error pages can either be static HTML (that is, added under any of the static
resource directories) or built with templates. The name of the file should be the exact status code or
a series mask.

For example, to map 404to a static HTML file, your directory structure would be as follows:

104

src/
E+- main/
+- java/
| + <source code>
+- resources/
+- public/
+- error/
| +-404.html
+- <other public assets>

[T [T T [Th [T [T> [Th

To map all 5xx errors by using a Mustache template, your directory structure would be as follows:

src/

E+- main/

+- java/

| + <source code>

+- resources/

+- templates/

+- error/
| +- 5xx.mustache
+- <other templates>

T > [T My e T [mp

Web Filters

Spring WebFlux provides a WebFilter interface that can be implemented to filter HTTP request-
response exchanges. WebFilter beans found in the application context will be automatically used to
filter each exchange.

Where the order of the filters is important they can implement Orderedor be annotated with @Order
Spring Boot auto-configuration may configure web filters for you. When it does so, the orders
shown in the following table will be used:

Web Filter Order

MetricsWebFilter Ordered.HIGHEST PRECEDENCE + 1
WebFilterChainProxy (Spring Security) -100

HttpTraceWebFilter Ordered.LOWEST_PRECEDENCE - 10

4.7.3. JAX-RS and Jersey

If you prefer the JAX-RS programming model for REST endpoints, you can use one of the available
implementations instead of Spring MVC. Jersey and Apache CXF work quite well out of the box. CXF
requires you to register its ~ Servlet or Filter as a @Beaim your application context. Jersey has some
native Spring support, so we also provide auto-configuration support for it in Spring Boot, together

with a starter.

To get started with Jersey, include the spring-boot-starter-jersey as a dependency and then you

105

https://jersey.github.io/
https://cxf.apache.org/

need one @Beamf type ResourceConfig in which you register all the endpoints, as shown in the
following example:

@Component
public class JerseyConfig extends ResourceConfig {

public JerseyConfig() {
register(Endpoint.class);

}

T > [mp

—

JerseyOs support for scanning executable archives is rather limited. For example, it
cannot scan for endpoints in a package found in a fully executable jar file or in
WEB-INF/classeswhen running an executable war file. To avoid this limitation, the
packages method should not be used, and endpoints should be registered
individually by using the register method, as shown in the preceding example.

For more advanced customizations, you can also register an arbitrary number of beans that
implement ResourceConfigCustomizer.

All the registered endpoints should be @Componentwith HTTP resource annotations (@GE&nd
others), as shown in the following example:

@Component
@Path("/hello")
public class Endpoint {

E @GET

E public String message() {
E return "Hello";

E }

}

Since the Endpoint is a Spring @Componerits lifecycle is managed by Spring and you can use the
@Autowiredannotation to inject dependencies and use the @Valueannotation to inject external
configuration. By default, the Jersey servlet is registered and mapped to /* . You can change the
mapping by adding @ApplicationPath to your ResourceConfig

By default, Jersey is set up as a Servlet in a @Bearof type ServletRegistrationBean named
jerseyServletRegistration . By default, the servlet is initialized lazily, but you can customize that
behavior by setting spring.jersey.servlet.load-on-startup . You can disable or override that bean
by creating one of your own with the same name. You can also use a filter instead of a servlet by
setting spring.jersey.type=filter (in which case, the @Beanto replace or override is
jerseyFilterRegistration). The filter has an @Order which you can set with
spring.jersey.filter.order . Both the servlet and the filter registrations can be given init

106

parameters by using spring.jersey.init.* to specify a map of properties.

4.7.4. Embedded Servlet Container Support

Spring Boot includes support for embedded Tomcat, Jetty, and Undertow servers. Most developers
use the appropriate OStarterO to obtain a fully configured instance. By default, the embedded server
listens for HTTP requests on port 808Q

Servlets, Filters, and listeners

When using an embedded servlet container, you can register servlets, filters, and all the listeners
(such as HttpSessionListener) from the Servlet spec, either by using Spring beans or by scanning for
Servlet components.

Registering Servlets, Filters, and Listeners as Spring Beans

Any Servlet , Filter , or servlet *Listener instance that is a Spring bean is registered with the
embedded container. This can be particularly convenient if you want to refer to a value from your
application.properties during configuration.

By default, if the context contains only a single Servlet, it is mapped to /. In the case of multiple
servlet beans, the bean name is used as a path prefix. Filters map to * .

If convention-based mapping is not flexible enough, you can use the ServletRegistrationBean
FilterRegistrationBean , and ServletListenerRegistrationBean classes for complete control.

It is usually safe to leave Filter beans unordered. If a specific order is required, you should annotate

the Filter with @Ordeonr make it implement Ordered You cannot configure the order of a Filter by
annotating its bean method with @OrderIf you cannot change the Filter class to add @Orderor
implement Ordered, you must define a FilterRegistrationBean for the Filter and set the registration
beanOs order using the setOrder(int) method. Avoid configuring a Filter that reads the request body

at Ordered.HIGHEST_PRECEDESIAte it might go against the character encoding configuration of
your application. If a Servlet filter wraps the request, it should be configured with an order that is

less than or equal to OrderedFilter. REQUEST _WRAPPER_FILTER_MAX_ORDER

To see the order of every Filter in your application, enable debug level logging for
l the weblogging group (logging.level.web=debug). Details of the registered filters,
including their order and URL patterns, will then be logged at startup.

Take care when registering Filter beans since they are initialized very early in the
application lifectyle. If you need to register a Filter that interacts with other
beans, consider using a DelegatingFilterProxyRegistrationBean instead.

Servlet Context Initialization

Embedded servlet containers do not directly execute the Servlet 3.0+
javax.servlet.ServletContainerlinitializer interface or SpringOs
org.springframework.web.WebApplicationlnitializer interface. This is an intentional design decision
intended to reduce the risk that third party libraries designed to run inside a war may break Spring

107

https://tomcat.apache.org/
https://www.eclipse.org/jetty/
https://github.com/undertow-io/undertow
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/web/servlet/DelegatingFilterProxyRegistrationBean.html

Boot applications.

If you need to perform servlet context initialization in a Spring Boot application, you should
register a bean that implements the
org.springframework.boot.web.servlet.ServletContextlnitializer interface. The single onStartup
method provides access to the ServletContext and, if necessary, can easily be used as an adapter to
an existing WebApplicationlInitializer

Scanning for Servlets, Filters, and listeners

When using an embedded container, automatic registration of classes annotated with @WebServlet
@WebFilter and @WebListenecan be enabled by using @ServletComponentScan

@ServletComponentScarhas no effect in a standalone container, where the
containerOs built-in discovery mechanisms are used instead.

The ServletWebServerApplicationContext

Under the hood, Spring Boot uses a different type of ApplicationContext for embedded servlet

container support. The ServletWebServerApplicationContext is a special type of
WebApplicationContext that bootstraps itself by searching for a single ServletWebServerFactory bean.
Usually a TomcatServletWebServerFactory JettyServletWebServerFactory , or

UndertowServletWebServerFactoryhas been auto-configured.

You usually do not need to be aware of these implementation classes. Most
| applications are auto-configured, and the appropriate ApplicationContext and
ServletWebServerFactory are created on your behalf.

Customizing Embedded Servlet Containers

Common servlet container settings can be configured by using Spring Environment properties.
Usually, you would define the properties in your application.properties file.

Common server settings include:
¥ Network settings: Listen port for incoming HTTP requests (server.port), interface address to

bind to server.address , and so on.

¥ Session settings: Whether the session is persistent (server.servlet.session.persistent), session
timeout (server.servlet.session.timeout), location of session data
(server.servlet.session.store-dir), and session-cookie configuration
(server.servlet.session.cookie.*).

¥ Error management: Location of the error page (server.error.path) and so on.
¥ SSL
¥ HTTP compression
Spring Boot tries as much as possible to expose common settings, but this is not always possible. For

those cases, dedicated namespaces offer server-specific customizations (see server.tomcat and
server.undertow). For instance, access logs can be configured with specific features of the embedded

108

servlet container.
| See the ServerProperties class for a complete list.

Programmatic Customization

If you need to programmatically configure your embedded servlet container, you can register a

Spring bean that implements the WebServerFactoryCustomizerinterface. WebServerFactoryCustomizer
provides access to the ConfigurableServletWebServerFactory , which includes numerous
customization setter methods. The following example shows programmatically setting the port:

import org.springframework.boot.web.server.WebServerFactoryCustomizer;

import
org.springframework.boot.web.servlet.server.ConfigurableServietWebServerFactory;
import org.springframework.stereotype.Component;

@Component
public class CustomizationBean implements
WebServerFactoryCustomizer<ConfigurableServletWebServerFactory> {

E @Override

E public void customize(ConfigurableServietWebServerFactory server) {

E server.setPort(9000);

E }

}
TomcatServletWebServerFactory JettyServletWebServerFactory and
UndertowServletWebServerFactory are dedicated variants of

ConfigurableServletWebServerFactory that have additional customization setter
methods for Tomcat, Jetty and Undertow respectively.

Customizing ConfigurableServietWebServerFactory Directly

If the preceding customization techniques are too limited, you can register the

TomcatServletWebServerFactory JettyServletWebServerFactory , or UndertowServietWebServerFactory
bean yourself.

@Bean

public ConfigurableServletWebServerFactory webServerFactory() {
TomcatServletWebServerFactory factory = new TomcatServletWebServerFactory();
factory.setPort(9000);

factory.setSessionTimeout(10, TimeUnit. MINUTES);

factory.addErrorPages(new ErrorPage(HttpStatus.NOT_FOUND, "/notfound.html"));
return factory;

=~ [T [Tp T [T T

109

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/web/ServerProperties.java

Setters are provided for many configuration options. Several protected method OhooksO are also
provided should you need to do something more exotic. See the source code documentation for
details.

JSP Limitations

When running a Spring Boot application that uses an embedded servlet container (and is packaged
as an executable archive), there are some limitations in the JSP support.

¥ With Jetty and Tomcat, it should work if you use war packaging. An executable war will work
when launched with java -jar , and will also be deployable to any standard container. JSPs are
not supported when using an executable jar.

¥ Undertow does not support JSPs.

¥ Creating a custom error.jsp page does not override the default view for error handling . Custom
error pages should be used instead.

4.7.5. Embedded Reactive Server Support

Spring Boot includes support for the following embedded reactive web servers: Reactor Netty,
Tomcat, Jetty, and Undertow. Most developers use the appropriate OStarterO to obtain a fully
configured instance. By default, the embedded server listens for HTTP requests on port 8080.

4.7.6. Reactive Server Resources Configuration

When auto-configuring a Reactor Netty or Jetty server, Spring Boot will create specific beans that
will provide HTTP resources to the server instance: ReactorResourceFactory or JettyResourceFactory .

By default, those resources will be also shared with the Reactor Netty and Jetty clients for optimal
performances, given:

¥ the same technology is used for server and client

¥ the client instance is built using the ~ WebClient.Builder bean auto-configured by Spring Boot

Developers can override the resource configuration for Jetty and Reactor Netty by providing a
custom ReactorResourceFactory or JettyResourceFactory bean - this will be applied to both clients
and servers.

You can learn more about the resource configuration on the client side in the WebClient Runtime
section .

4.8. Graceful shutdown

Graceful shutdown is supported with all four embedded web servers (Jetty, Reactor Netty, Tomcat,

and Undertow) and with both reactive and Servlet-based web applications. It occurs as part of
closing the application context and is performed in the earliest phase of stopping SmartLifecycle
beans. This stop processing uses a timeout which provides a grace period during which existing
requests will be allowed to complete but no new requests will be permitted. The exact way in which

new requests are not permitted varies depending on the web server that is being used. Jetty,

110

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/web/servlet/server/ConfigurableServletWebServerFactory.html

Reactor Netty, and Tomcat will stop accepting requests at the network layer. Undertow will accept
requests but respond immediately with a service unavailable (503) response.

| Graceful shutdown with Tomcat requires Tomcat 9.0.33 or later.

To enable graceful shutdown, configure the server.shutdown property, as shown in the following
example:

server.shutdown=graceful

To configure the timeout period, configure the spring.lifecycle.timeout-per-shutdown-phase
property, as shown in the following example:

spring.lifecycle.timeout-per-shutdown-phase=20s

Using graceful shutdown with your IDE may not work properly if it does not send
a proper SIGTERBIgnal. Refer to the documentation of your IDE for more details.

4.9. RSocket

RSocket is a binary protocol for use on byte stream transports. It enables symmetric interaction
models via async message passing over a single connection.

The spring-messaging module of the Spring Framework provides support for RSocket requesters
and responders, both on the client and on the server side. See the RSocket section of the Spring
Framework reference for more details, including an overview of the RSocket protocol.

4.9.1. RSocket Strategies Auto-configuration

Spring Boot auto-configures an RSocketStrategies bean that provides all the required infrastructure
for encoding and decoding RSocket payloads. By default, the auto-configuration will try to configure
the following (in order):

1. CBORcodecs with Jackson

2. JSON codecs with Jackson

The spring-boot-starter-rsocket starter provides both dependencies. Check outthe Jackson support
section to know more about customization possibilities.

Developers can customize the RSocketStrategies component by creating beans that implement the
RSocketStrategiesCustomizer interface. Note that their ~ @Orderis important, as it determines the
order of codecs.

4.9.2. RSocket server Auto-configuration

Spring Boot provides RSocket server auto-configuration. The required dependencies are provided

111

https://rsocket.io
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web-reactive.html#rsocket-spring
https://cbor.io/

by the spring-boot-starter-rsocket

Spring Boot allows exposing RSocket over WebSocket from a WebFlux server, or standing up an
independent RSocket server. This depends on the type of application and its configuration.

For WebFlux application (i.e. of type WebApplicationType.REACTIVJE the RSocket server will be

plugged into the Web Server only if the following properties match:

spring.rsocket.server.mapping-path=/rsocket # a mapping path is defined
spring.rsocket.server.transport=websocket # websocket is chosen as a transport
#spring.rsocket.server.port= # no port is defined

n Plugging RSocket into a web server is only supported with Reactor Netty, as
RSocket itself is built with that library.

Alternatively, an RSocket TCP or websocket server is started as an independent, embedded server.
Besides the dependency requirements, the only required configuration is to define a port for that
server:

spring.rsocket.server.port=9898 # the only required configuration
spring.rsocket.server.transport=tcp # you're free to configure other properties

4.9.3. Spring Messaging RSocket support
Spring Boot will auto-configure the Spring Messaging infrastructure for RSocket.

This means that Spring Boot will create a RSocketMessageHandlebean that will handle RSocket
requests to your application.

4.9.4. Calling RSocket Services with RSocketRequester

Once the RSocketchannel is established between server and client, any party can send or receive
requests to the other.

As a server, you can get injected with an RSocketRequesterinstance on any handler method of an
RSocket @Controller. As a client, you need to configure and establish an RSocket connection first.
Spring Boot auto-configures an RSocketRequester.Builder for such cases with the expected codecs.

The RSocketRequester.Builder instance is a prototype bean, meaning each injection point will
provide you with a new instance . This is done on purpose since this builder is stateful and you
shouldnOt create requesters with different setups using the same instance.

The following code shows a typical example:

112

@Service
public class MyService {

E private final Mono<RSocketRequester> rsocketRequester;

E public MyService(RSocketRequester.Builder rsocketRequesterBuilder) {
E this.rsocketRequester = rsocketRequesterBuilder

E .connectTcp("example.org”, 9898).cache();

E }

E public Mono<User> someRSocketCall(String name) {

E return this.rsocketRequester.flatMap(req ->

E req.route("user").data(name).retrieveMono(User.class));

E }

}

4.10. Security

If Spring Security is on the classpath, then web applications are secured by default. Spring Boot
relies on Spring SecurityOs content-negotiation strategy to determine whether to use httpBasic or
formLogin. To add method-level security to a web application, you can also add
@EnableGlobalMethodSecuritywith your desired settings. Additional information can be found in the
Spring Security Reference Guide

The default UserDetailsService has a single user. The user name is user, and the password is
random and is printed at INFO level when the application starts, as shown in the following
example:

Using generated security password: 78fa095d-3f4c-48b1-ad50-e24c¢31d5c¢f35

If you fine-tune your logging configuration, ensure that the
| org.springframework.boot.autoconfigure.security category is set to log INFQlevel
messages. Otherwise, the default password is not printed.

You can change the username and password by providing a spring.security.user.name and
spring.security.user.password

The basic features you get by default in a web application are:

¥ A UserDetailsService (or ReactiveUserDetailsService in case of a WebFlux application) bean
with in-memory store and a single user with a generated password (see SecurityProperties.User
for the properties of the user).

¥ Form-based login or HTTP Basic security (depending on the Accept header in the request) for the
entire application (including actuator endpoints if actuator is on the classpath).

¥ A DefaultAuthenticationEventPublisher for publishing authentication events.

113

https://spring.io/projects/spring-security
https://docs.spring.io/spring-security/site/docs/5.3.6.RELEASE/reference/html5/#jc-method
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/autoconfigure/security/SecurityProperties.User.html

You can provide a different AuthenticationEventPublisher by adding a bean for it.

4.10.1. MVC Security

The default security configuration is implemented in SecurityAutoConfiguration and
UserDetailsServiceAutoConfiguration . SecurityAutoConfiguration imports
SpringBootWebSecurityConfiguration for web security and UserDetailsServiceAutoConfiguration
configures authentication, which is also relevant in non-web applications. To switch off the default

web application security configuration completely or to combine multiple Spring Security
components such as OAuth 2 Client and Resource Server, add a bean of type
WebSecurityConfigurerAdapter (doing so does not disable the UserDetailsService configuration or
ActuatorOs security).

To also switch off the UserDetailsService configuration, you can add a bean of type
UserDetailsService , AuthenticationProvider , or AuthenticationManager .

Access rules can be overridden by adding a custom WebSecurityConfigurerAdapter. Spring Boot
provides convenience methods that can be used to override access rules for actuator endpoints and

static resources. EndpointRequest can be used to create a RequestMatcherthat is based on the
management.endpoints.web.base-pathproperty. PathRequestcan be used to create a RequestMatcherfor
resources in commonly used locations.

4.10.2. WebFlux Security

Similar to Spring MVC applications, you can secure your WebFlux applications by adding the
spring-boot-starter-security dependency. The default security configuration is implemented in
ReactiveSecurityAutoConfiguration and UserDetailsServiceAutoConfiguration
ReactiveSecurityAutoConfiguration imports WebFluxSecurityConfiguration for web security and
UserDetailsServiceAutoConfiguration configures authentication, which is also relevant in non-web
applications. To switch off the default web application security configuration completely, you can

add a bean of type WebFilterChainProxy (doing so does not disable the UserDetailsService
configuration or ActuatorOs security).

To also switch off the UserDetailsService configuration, you can add a bean of type
ReactiveUserDetailsService or ReactiveAuthenticationManager .

Access rules and the use of multiple Spring Security components such as OAuth 2 Client and
Resource Server can be configured by adding a custom SecurityWebFilterChain bean. Spring Boot
provides convenience methods that can be used to override access rules for actuator endpoints and

static resources. EndpointRequestcan be used to create a ServerWebExchangeMatchéhat is based on
the management.endpoints.web.base-pathproperty.

PathRequest can be used to create a ServerWebExchangeMatchedior resources in commonly used
locations.

For example, you can customize your security configuration by adding something like:

114

@Bean
public SecurityWebFilterChain springSecurityFilterChain(ServerHttpSecurity http) {
return http
.authorizeExchange()
.matchers(PathRequest.toStaticResources().atCommonLocations()).permitAll()
.pathMatchers("/foo", "/bar")
.authenticated().and()
formLogin().and()
Jbuild();

= [T [T [T M [T mp [mp

4.10.3. OAuth2

OAuth2 is a widely used authorization framework that is supported by Spring.

Client

If you have spring-security-oauth2-client on your classpath, you can take advantage of some auto-
configuration to set up an OAuth2/Open ID Connect clients. This configuration makes use of the
properties under OAuth2ClientProperties . The same properties are applicable to both servlet and
reactive applications.

You can register multiple OAuth2 clients and providers under the spring.security.oauth?2.client
prefix, as shown in the following example:

115

https://oauth.net/2/

spring.security.oauth2.client.registration.my-client-1.client-id=abcd
spring.security.oauth2.client.registration.my-client-1.client-secret=password
spring.security.oauth2.client.registration.my-client-1.client-name=Client for user
scope
spring.security.oauth2.client.registration.my-client-1.provider=my-oauth-provider
spring.security.oauth2.client.registration.my-client-1.scope=user
spring.security.oauth2.client.registration.my-client-1.redirect-uri=https://my-
redirect-uri.com
spring.security.oauth2.client.registration.my-client-1.client-authentication-
method=basic
spring.security.oauth2.client.registration.my-client-1.authorization-grant-
type=authorization_code

spring.security.oauth2.client.registration.my-client-2.client-id=abcd
spring.security.oauth2.client.registration.my-client-2.client-secret=password
spring.security.oauth2.client.registration.my-client-2.client-name=Client for email
scope
spring.security.oauth2.client.registration.my-client-2.provider=my-oauth-provider
spring.security.oauth2.client.registration.my-client-2.scope=email
spring.security.oauth2.client.registration.my-client-2.redirect-uri=https://my-
redirect-uri.com
spring.security.oauth2.client.registration.my-client-2.client-authentication-
method=Dbasic
spring.security.oauth2.client.registration.my-client-2.authorization-grant-
type=authorization_code

spring.security.oauth2.client.provider.my-oauth-provider.authorization-uri=https://my-
auth-server/oauth/authorize
spring.security.oauth2.client.provider.my-oauth-provider.token-uri=https://my-auth-
server/oauth/token
spring.security.oauth2.client.provider.my-oauth-provider.user-info-uri=https://my-
auth-server/userinfo
spring.security.oauth2.client.provider.my-oauth-provider.user-info-authentication-
method=header
spring.security.oauth2.client.provider.my-oauth-provider.jwk-set-uri=https://my-auth-
server/token_keys
spring.security.oauth2.client.provider.my-oauth-provider.user-name-attribute=name

For OpenlD Connect providers that support OpenlID Connect discovery , the configuration can be

further simplified. The provider needs to be configured with an issuer-uri which is the URI that the
it asserts as its Issuer Identifier. For example, if the issuer-uri provided is "https://example.com”,
then an OpenID Provider Configuration Request will be made to "https://example.com/.well-

known/openid-configuration". The result is expected to be an OpenlID Provider Configuration

Response The following example shows how an OpenlD Connect Provider can be configured with
the issuer-uri

spring.security.oauth2.client.provider.oidc-provider.issuer-uri=https://dev-
123456.0ktapreview.com/oauth2/default/

116

https://openid.net/specs/openid-connect-discovery-1_0.html

By default, Spring SecurityOs OAuth2LoginAuthenticationFilter only processes URLs matching
/loginfoauth2/code/* . If you want to customize the redirect-uri to use a different pattern, you need
to provide configuration to process that custom pattern. For example, for servlet applications, you

can add your own WebSecurityConfigurerAdapter that resembles the following:

public class OAuth2LoginSecurityConfig extends WebSecurityConfigurerAdapter {

@Override
protected void configure(HttpSecurity http) throws Exception {
http
.authorizeRequests()
.anyRequest().authenticated()
.and()
.0auth2Login()
.redirectionEndpoint()
.baseUri("/custom-callback");

S~ > m» mp mp mp mp mp mp mpy e

OAuth2 client registration for common providers

For common OAuth2 and OpenlD providers, including Google, Github, Facebook, and Okta, we
provide a set of provider defaults (google, github , facebook, and okta, respectively).

If you do not need to customize these providers, you can set the provider attribute to the one for
which you need to infer defaults. Also, if the key for the client registration matches a default
supported provider, Spring Boot infers that as well.

In other words, the two configurations in the following example use the Google provider:
spring.security.oauth2.client.registration.my-client.client-id=abcd

spring.security.oauth2.client.registration.my-client.client-secret=password
spring.security.oauth2.client.registration.my-client.provider=google

spring.security.oauth2.client.registration.google.client-id=abcd
spring.security.oauth2.client.registration.google.client-secret=password

Resource Server

If you have spring-security-oauth2-resource-server on your classpath, Spring Boot can set up an
OAuth2 Resource Server. For JWT configuration, a JWK Set URI or OIDC Issuer URI needs to be
specified, as shown in the following examples:

spring.security.oauth2.resourceserver.jwt.jwk-set-
uri=https://example.com/oauth2/default/vl/keys

117

spring.security.oauth2.resourceserver.jwt.issuer-uri=https://dev-
123456.oktapreview.com/oauth2/default/

If the authorization server does not support a JWK Set URI, you can configure the
resource server with the Public Key used for verifying the signature of the JWT.
This can be done using the spring.security.oauth2.resourceserver.jwt.public-key-
location property, where the value needs to point to a file containing the public
key in the PEM-encoded x509 format.

The same properties are applicable for both servlet and reactive applications.

Alternatively, you can define your own JwtDecoder bean for servlet applications or a
ReactiveJwtDecoderfor reactive applications.

In cases where opaque tokens are used instead of JWTSs, you can configure the following properties
to validate tokens via introspection:

spring.security.oauth2.resourceserver.opaquetoken.introspection-
uri=https://example.com/check-token
spring.security.oauth2.resourceserver.opaquetoken.client-id=my-client-id
spring.security.oauth2.resourceserver.opaquetoken.client-secret=my-client-secret

Again, the same properties are applicable for both servlet and reactive applications.

Alternatively, you can define your own OpaqueTokenintrospector bean for servlet applications or a
ReactiveOpaqueTokenlintrospector for reactive applications.

Authorization Server

Currently, Spring Security does not provide support for implementing an OAuth 2.0 Authorization
Server. However, this functionality is available from the Spring Security OAuth project, which will
eventually be superseded by Spring Security completely. Until then, you can use the spring-
security-oauth2-autoconfigure module to easily set up an OAuth 2.0 authorization server; see its
documentation for instructions.

4.10.4. SAML 2.0

Relying Party

If you have spring-security-saml2-service-provider on your classpath, you can take advantage of
some auto-configuration to set up a SAML 2.0 Relying Party. This configuration makes use of the
properties under Saml2RelyingPartyProperties .

A relying party registration represents a paired configuration between an Identity Provider, IDP,
and a Service Provider, SP. You can register multiple relying parties under the
spring.security.saml2.relyingparty prefix, as shown in the following example:

118

https://spring.io/projects/spring-security-oauth
https://docs.spring.io/spring-security-oauth2-boot/

spring.security.saml2.relyingparty.registration.my-relying-
partyl.signing.credentials[0].private-key-location=path-to-private-key
spring.security.saml2.relyingparty.registration.my-relying-
partyl.signing.credentials[0].certificate-location=path-to-certificate
spring.security.saml2.relyingparty.registration.my-relying-
partyl.identityprovider.verification.credentials[O].certificate-location=path-to-
verification-cert
spring.security.saml2.relyingparty.registration.my-relying-
partyl.identityprovider.entity-id=remote-idp-entity-id1
spring.security.saml2.relyingparty.registration.my-relying-
partyl.identityprovider.sso-url=https://remoteidpl.sso.url

spring.security.saml2.relyingparty.registration.my-relying-
party2.signing.credentials[0].private-key-location=path-to-private-key
spring.security.saml2.relyingparty.registration.my-relying-
party2.signing.credentials[0].certificate-location=path-to-certificate
spring.security.saml2.relyingparty.registration.my-relying-
party2.identityprovider.verification.credentials[O].certificate-location=path-to-
other-verification-cert
spring.security.saml2.relyingparty.registration.my-relying-
party2.identityprovider.entity-id=remote-idp-entity-id2
spring.security.saml2.relyingparty.registration.my-relying-
party2.identityprovider.sso-url=https://remoteidp2.sso.url

4.10.5. Actuator Security

For security purposes, all actuators other than /health and /info are disabled by default. The
management.endpoints.web.exposure.include property can be used to enable the actuators.

If Spring Security is on the classpath and no other WebSecurityConfigurerAdapter is present, all
actuators other than /health and /info are secured by Spring Boot auto-configuration. If you define
a custom WebSecurityConfigurerAdapter, Spring Boot auto-configuration will back off and you will be
in full control of actuator access rules.

Before setting the management.endpoints.web.exposure.include, ensure that the
exposed actuators do not contain sensitive information and/or are secured by
placing them behind a firewall or by something like Spring Security.

Cross Site Request Forgery Protection

Since Spring Boot relies on Spring SecurityOs defaults, CSRF protection is turned on by default. This
means that the actuator endpoints that require a POST(shutdown and loggers endpoints), PUTor
DELETH®ill get a 403 forbidden error when the default security configuration is in use.

We recommend disabling CSRF protection completely only if you are creating a
service that is used by non-browser clients.

Additional information about CSRF protection can be found in the Spring Security Reference Guide

119

https://docs.spring.io/spring-security/site/docs/5.3.6.RELEASE/reference/html5/#csrf

4.11. Working with SQL Databases

The Spring Framework provides extensive support for working with SQL databases, from direct
JDBC access using JdbcTemplate to complete Oobject relational mappingO technologies such as
Hibernate. Spring Data provides an additional level of functionality: creating Repository
implementations directly from interfaces and using conventions to generate queries from your
method names.

4.11.1. Configure a DataSource

JavaOsjavax.sql.DataSource interface provides a standard method of working with database
connections. Traditionally, a 'DataSource' uses a URLalong with some credentials to establish a
database connection.

Seethe OHow-t0O section for more advanced examples, typically to take full control
over the configuration of the DataSource.

Embedded Database Support

It is often convenient to develop applications by using an in-memory embedded database.
Obviously, in-memory databases do not provide persistent storage. You need to populate your
database when your application starts and be prepared to throw away data when your application
ends.

The OHow-toO section includes a section on how to initialize a database

Spring Boot can auto-configure embedded H2, HSQL, and Derby databases. You need not provide
any connection URLs. You need only include a build dependency to the embedded database that
you want to use.

If you are using this feature in your tests, you may notice that the same database is
reused by your whole test suite regardless of the number of application contexts

that you use. If you want to make sure that each context has a separate embedded
database, you should set spring.datasource.generate-unique-name to true .

For example, the typical POM dependencies would be as follows:

<dependency>

E <groupld>org.springframework.boot</groupld>

E <artifactld>spring-boot-starter-data-jpa</artifactid>
</dependency>

<dependency>

E <groupld>org.hsqldb</groupld>

E <artifactld>hsgldb</artifactld>

E <scope>runtime</scope>

</dependency>

120

https://spring.io/projects/spring-framework
https://spring.io/projects/spring-data
https://www.h2database.com
http://hsqldb.org/
https://db.apache.org/derby/

You need a dependency on spring-jdbc for an embedded database to be auto-
configured. In this example, it is pulled in transitively through spring-boot-
starter-data-jpa

If, for whatever reason, you do configure the connection URL for an embedded
database, take care to ensure that the databaseOs automatic shutdown is disabled.

If you use H2, you should use DB_CLOSE_ON_EXIT=FL&Eso. If you use HSQLDB,
you should ensure that shutdown=true is not used. Disabling the databaseOs
automatic shutdown lets Spring Boot control when the database is closed, thereby
ensuring that it happens once access to the database is no longer needed.

Connection to a Production Database

Production database connections can also be auto-configured by using a pooling DataSource Spring
Boot uses the following algorithm for choosing a specific implementation:

1

If

We prefer HikariCP for its performance and concurrency. If HikariCP is available, we always
choose it.

. Otherwise, if the Tomcat pooling DataSourceis available, we use it.
. If neither HikariCP nor the Tomcat pooling datasource are available and if Commons DBCP2 is

available, we use it.

you use the spring-boot-starter-jdbc or spring-boot-starter-data-jpa OstartersO, you

automatically get a dependency to HikariCP.

You can bypass that algorithm completely and specify the connection pool to use
by setting the spring.datasource.type property. This is especially important if you
run your application in a Tomcat container, as tomcat-jdbc is provided by default.

Additional connection pools can always be configured manually. If you define your
own DataSourcebean, auto-configuration does not occur.

DataSource configuration is controlled by external configuration properties in spring.datasource.*
For example, you might declare the following section in application.properties

spring.datasource.url=jdbc:mysql://localhost/test
spring.datasource.username=dbuser
spring.datasource.password=dbpass
spring.datasource.driver-class-name=com.mysql.jdbc.Driver

You should at least specify the URL by setting the spring.datasource.url property.
Otherwise, Spring Boot tries to auto-configure an embedded database.

I You often do not need to specify the driver-class-name , since Spring Boot can
deduce it for most databases from the url .

121

https://github.com/brettwooldridge/HikariCP
https://commons.apache.org/proper/commons-dbcp/

For a pooling DataSourceto be created, we need to be able to verify that a valid
Driver class is available, so we check for that before doing anything. In other
words, if you set spring.datasource.driver-class-name=com.mysq|l.jdbc.Driver , then
that class has to be loadable.

See DataSourceProperties for more of the supported options. These are the standard options that
work regardless of the actual implementation. It is also possible to fine-tune implementation-
specific settings by using their respective prefix (spring.datasource.hikari.*
spring.datasource.tomcat.* , and spring.datasource.dbcp2.*). Refer to the documentation of the
connection pool implementation you are using for more details.

For instance, if you use the Tomcat connection pool , you could customize many additional settings,
as shown in the following example:

Number of ms to wait before throwing an exception if no connection is available.
spring.datasource.tomcat.max-wait=10000

Maximum number of active connections that can be allocated from this pool at the
same time.
spring.datasource.tomcat.max-active=50

Validate the connection before borrowing it from the pool.
spring.datasource.tomcat.test-on-borrow=true

Connection to a JNDI DataSource

If you deploy your Spring Boot application to an Application Server, you might want to configure
and manage your DataSource by using your Application ServerOs built-in features and access it by
using JNDI.

The spring.datasource.jndi-name property can be wused as an alternative to the
spring.datasource.url , spring.datasource.username , and spring.datasource.password properties to
access the DataSource from a specific JNDI location. For example, the following section in
application.properties ~ shows how you can access a JBoss AS defined DataSource

spring.datasource.jndi-name=java:jboss/datasources/customers

4.11.2. Using JdbcTemplate

SpringOs JdbcTemplate and NamedParameterJdbcTemplatelasses are auto-configured, and you can
@Autowirethem directly into your own beans, as shown in the following example:

122

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jdbc/DataSourceProperties.java
https://tomcat.apache.org/tomcat-9.0-doc/jdbc-pool.html#Common_Attributes

import org.springframework.beans.factory.annotation.Autowired,;
import org.springframework.jdbc.core.JdbcTemplate;
import org.springframewaork.stereotype.Component;

@Component
public class MyBean {

m»

private final JdbcTemplate jdbcTemplate;

@Autowired
public MyBean(JdbcTemplate jdbcTemplate) {
this.jdbcTemplate = jdbcTemplate;

}

T T T [Th

m»

...

You can customize some properties of the template by using the spring.jdbc.template.* properties,
as shown in the following example:

spring.jdbc.template.max-rows=500

The NamedParameterJdbcTemplateuses the same JdbcTemplateinstance behind the
scenes. If more than one JdbcTemplateis defined and no primary candidate exists,
the NamedParameterJdbcTemplaig not auto-configured.

4.11.3. JPA and Spring Data JPA

The Java Persistence API is a standard technology that lets you OmapO objects to relational
databases. The spring-boot-starter-data-jpa POM provides a quick way to get started. It provides
the following key dependencies:

¥ Hibernate: One of the most popular JPA implementations.

¥ Spring Data JPA: Helps you to implement JPA-based repositories.

¥ Spring ORM: Core ORM support from the Spring Framework.

We do not go into too many details of JPA or Spring Data here. You can follow the
I OAccessing Data with JPAOguide from spring.io and read the Spring Data JPA and
Hibernate reference documentation.

Entity Classes

Traditionally, JPA OEntityO classes are specified in a persistence.xml file. With Spring Boot, this file is
not necessary and OEntity ScanningO is used instead. By default, all packages below your main
configuration class (the one annotated with @EnableAutoConfiguration or @SpringBootApplication)

123

https://spring.io/projects/spring-data
https://spring.io/guides/gs/accessing-data-jpa/
https://spring.io
https://spring.io/projects/spring-data-jpa
https://hibernate.org/orm/documentation/

are searched.
Any classes annotated with @Entity, @Embeddabler @MappedSuperclasare considered. A typical

entity class resembles the following example:

package com.example.myapp.domain;

import java.io.Serializable;
import javax.persistence.*;

@Entity
public class City implements Serializable {

@Id
@GeneratedValue
private Long id;

T T [TP

@Column(nullable = false)
private String name;

m m»

@Column(nullable = false)
private String state;

m M

m

/[... additional members, often include @OneToMany mappings

protected City() {
/I no-args constructor required by JPA spec
/I this one is protected since it shouldn't be used directly

m [T [T [T

}

public City(String name, String state) {
this.name = name;
this.state = state;

T [T [T [T

}

public String getName() {
return this.name;

™ [T [T

}

public String getState() {
return this.state;

T [T [T

}

T

/l ... etc

You can customize entity scanning locations by using the @EntityScanannotation.
. See the GBeparate @Entity Definitions from Spring Configuration O how-to.

124

Spring Data JPA Repositories

Spring Data JPA repositories are interfaces that you can define to access data. JPA queries are

created automatically from your method names. For example, a CityRepository interface might
declare a findAlIByState(String state) method to find all the cities in a given state.
For more complex queries, you can annotate your method with Spring DataOs Queryannotation.

Spring Data repositories usually extend from the Repository or CrudRepository interfaces. If you use
auto-configuration, repositories are searched from the package containing your main configuration
class (the one annotated with @EnableAutoConfigurationor @SpringBootApplication) down.

The following example shows a typical Spring Data repository interface definition:

package com.example.myapp.domain;

import org.springframework.data.domain.*;
import org.springframework.data.repository.*;

public interface CityRepository extends Repository<City, Long> {

E Page<City> findAll(Pageable pageable):

[T»

City findByNameAndStateAlllgnoringCase(String name, String state);

Spring Data JPA repositories support three different modes of bootstrapping: default, deferred, and

lazy. To enable deferred or lazy bootstrapping, set the spring.data.jpa.repositories.bootstrap-mode
property to deferred or lazy respectively. When using deferred or lazy bootstrapping, the auto-
configured EntityManagerFactoryBuilder will use the contextOs AsyncTaskExecutor if any, as the
bootstrap executor. If more than one exists, the one named applicationTaskExecutor will be used.

When using deferred or lazy bootstraping, make sure to defer any access to the JPA
infrastructure after the application context bootstrap phase.

We have barely scratched the surface of Spring Data JPA. For complete details, see
- the Spring Data JPA reference documentation

Creating and Dropping JPA Databases

By default, JPA databases are automatically created only if you use an embedded database (H2,
HSQL, or Derby). You can explicitly configure JPA settings by using spring.jpa.* properties. For
example, to create and drop tables you can add the following line to your application.properties

spring.jpa.hibernate.ddl-auto=create-drop

125

https://spring.io/projects/spring-data-jpa
https://docs.spring.io/spring-data/jpa/docs/2.3.6.RELEASE/api/org/springframework/data/jpa/repository/Query.html
https://docs.spring.io/spring-data/commons/docs/2.3.6.RELEASE/api/org/springframework/data/repository/Repository.html
https://docs.spring.io/spring-data/commons/docs/2.3.6.RELEASE/api/org/springframework/data/repository/CrudRepository.html
https://docs.spring.io/spring-data/jdbc/docs/2.0.6.RELEASE/reference/html/

HibernateOs own internal property name for this (if you happen to remember it
better) is hibernate.hbm2ddl.auto . You can set it, along with other Hibernate native
properties, by using spring.jpa.properties.* (the prefix is stripped before adding
them to the entity manager). The following line shows an example of setting JPA
properties for Hibernate:

spring.jpa.properties.hibernate.globally_quoted_identifiers=true

The line in the preceding example passes a value of true for the
hibernate.globally _quoted_identifiers property to the Hibernate entity manager.
By default, the DDL execution (or validation) is deferred until the ApplicationContext has started.

There is also a spring.jpa.generate-ddl flag, but it is not used if Hibernate auto-configuration is
active, because the ddl-auto settings are more fine-grained.

Open EntityManager in View

If you are running a web application, Spring Boot by default registers
OpenEntityManagerinViewInterceptor to apply the OOpen EntityManager in ViewO pattern, to allow
for lazy loading in web views. If you do not want this behavior, you should set spring.jpa.open-in-
view to false in your application.properties

4.11.4. Spring Data JDBC

Spring Data includes repository support for JDBC and will automatically generate SQL for the
methods on CrudRepository. For more advanced queries, a @Quergnnotation is provided.

Spring Boot will auto-configure Spring DataOs JDBC repositories when the necessary dependencies
are on the classpath. They can be added to your project with a single dependency on spring-boot-
starter-data-jdbc . If necessary, you can take control of Spring Data JDBCOs configuration by adding
the @EnableJdbcRepositoriesannotation or a JdbcConfiguration subclass to your application.

' For complete details of Spring Data JDBC, please refer to the reference
. documentation .

4.11.5. Using H20s Web Console

The H2 database provides a browser-based console that Spring Boot can auto-configure for you. The
console is auto-configured when the following conditions are met:

¥ You are developing a servlet-based web application.
¥ com.h2database:h2is on the classpath.

¥ You are using Spring BootOs developer tools .

126

https://docs.spring.io/spring/docs/5.2.12.RELEASE/javadoc-api/org/springframework/orm/jpa/support/OpenEntityManagerInViewInterceptor.html
https://docs.spring.io/spring-data/jdbc/docs/2.0.6.RELEASE/reference/html/
https://docs.spring.io/spring-data/jdbc/docs/2.0.6.RELEASE/reference/html/
https://www.h2database.com
https://www.h2database.com/html/quickstart.html#h2_console

If you are not using Spring BootOs developer tools but would still like to make use
| of H20s console, you can configure the spring.h2.console.enabled property with a
value of true .

The H2 console is only intended for use during development, so you should take
care to ensure that spring.h2.console.enabled is not set to true in production.

Changing the H2 ConsoleOs Path

By default, the console is available at /h2-console . You can customize the consoleOs path by using the
spring.h2.console.path property.

4.11.6. Using jOOQ

jOOQ Object Oriented Querying (JOOQ) is a popular product from Data Geekery which generates
Java code from your database and lets you build type-safe SQL queries through its fluent API. Both
the commercial and open source editions can be used with Spring Boot.

Code Generation

In order to use jOOQ type-safe queries, you need to generate Java classes from your database
schema. You can follow the instructions in the jOOQ user manual . If you use the joog-codegen-maven
plugin and you also use the spring-boot-starter-parent Oparent POMO, you can safely omit the
pluginOs <version> tag. You can also use Spring Boot-defined version variables (such as h2.version)
to declare the pluginOs database dependency. The following listing shows an example:

127

https://www.jooq.org/
https://www.datageekery.com/
https://www.jooq.org/doc/3.13.6/manual-single-page/#jooq-in-7-steps-step3

<plugin>

= <groupld>org.joog</groupld>
<artifactld>joog-codegen-maven</artifactld>
<executions>

</executions>
<dependencies>
<dependency>
<groupld>com.h2database</groupld>
<artifactld>h2</artifactld>
<version>${h2.version}</version>
</dependency>
</dependencies>
<configuration>
<jdbc>
<driver>org.h2.Driver</driver>
<url>jdbc:h2:~/yourdatabase</url>
</jdbc>
<generator>

</generator>
</configuration>
</plugin>

[T e e e [T e [T T e me me me me me me me me me e mp

Using DSLContext

The fluent API offered by jOOQ is initiated through the org.jooq.DSLContext interface. Spring Boot
auto-configures a DSLContextas a Spring Bean and connects it to your application DataSource To use
the DSLContextyou can @Autowireit, as shown in the following example:

@Component
public class JoogExample implements CommandLineRunner {

T

private final DSLContext create;

@Autowired
public JoogExample(DSLContext dslContext) {
this.create = dslContext;

[T T TP [T

—

The jOOQ manual tends to use a variable named create to hold the DSLContext

You can then use the DSLContexto construct your queries, as shown in the following example:

128

public List<GregorianCalendar> authorsBornAfter1980() {

E return this.create.selectFrom(AUTHOR)

E .where(AUTHOR.DATE_OF_BIRTH.greaterThan(new GregorianCalendar(1980, 0, 1)))
E .fetch(AUTHOR.DATE_OF_BIRTH);
}

m

jOOQ SQL Dialect

Unless the spring.jooq.sql-dialect property has been configured, Spring Boot determines the SQL
dialect to use for your datasource. If Spring Boot could not detect the dialect, it uses DEFAULT

Spring Boot can only auto-configure dialects supported by the open source version
of jO0Q.

Customizing jOOQ

More advanced customizations can be achieved by defining your own @Beauefinitions, which is
used when the JOOQ Configuration is created. You can define beans for the following jOOQ Types:

¥ ConnectionProvider

¥ ExecutorProvider

¥ TransactionProvider

¥ RecordMapperProvider

¥ RecordUnmapperProvider

¥ Settings

¥ RecordListenerProvider

¥ ExecuteListenerProvider

¥ VisitListenerProvider

¥ TransactionListenerProvider

You can also create your own org.joog.Configuration ~ @Beaif you want to take complete control of
the jOOQ configuration.

4.11.7. Using R2DBC

The Reactive Relational Database Connectivity (R2DBQ) project brings reactive programming APIs
to relational databases. R2DBCOs io.r2dbc.spi.Connection provides a standard method of working
with non-blocking database connections. Connections are provided via a ConnectionFactory, similar
to a DataSourcewith jdbc.

ConnectionFactory configuration is controlled by external configuration properties in
spring.r2dbc.* . For example, you might declare the following section in application.properties

129

https://r2dbc.io

spring.r2dbc.url=r2dbc:postgresql://localhost/test
spring.r2dbc.username=dbuser
spring.r2dbc.password=dbpass

You do not need to specify a driver class name, since Spring Boot obtains the
driver from R2DBCOs Connection Factory discovery.

At least the url should be provided. Information specified in the URL takes

precedence over individual properties, i.e. name username password and pooling
options.

The OHow-toO section includes a section on how to initialize a database

To customize the connections created by a ConnectionFactory, i.e., set specific parameters that you
do not want (or cannot) configure in your central database configuration, you can use a
ConnectionFactoryOptionsBuilderCustomizer @BeanThe following example shows how to manually
override the database port while the rest of the options is taken from the application configuration:

@Bean
public ConnectionFactoryOptionsBuilderCustomizer connectionFactoryPortCustomizer() {

E return (builder) -> builder.option(PORT, 5432);
}

The following examples shows how to set some PostgreSQL connection options:

@Bean

public ConnectionFactoryOptionsBuilderCustomizer postgresCustomizer() {
E Map<String, String> options = new HashMap<>();
options.put(“lock_timeout", "30s");

options.put('statement_timeout", "60s");

return (builder) -> builder.option(OPTIONS, options);

~ [T M M m

When a ConnectionFactory bean is available, the regular JDBC DataSourceauto-configuration backs
off. If you want to retain the JDBC DataSourceauto-configuration, and are comfortable with the risk
of using the blocking JDBC API in a reactive application, add

@Import(DataSourceAutoConfiguration.class) on a @Configuration class in your application to re-
enable it.

Embedded Database Support

Similarly to the JDBC support, Spring Boot can automatically configure an embedded database for
reactive usage. You need not provide any connection URLs. You need only include a build
dependency to the embedded database that you want to use, as shown in the following example:

130

<dependency>

E <groupld>io.r2dbc</groupld>
E <artifactld>r2dbc-h2</artifactld>
E <scope>runtime</scope>
</dependency>

If you are using this feature in your tests, you may notice that the same database is
reused by your whole test suite regardless of the number of application contexts

that you use. If you want to make sure that each context has a separate embedded
database, you should set spring.r2dbc.generate-unique-name to true .

Using DatabaseClient

Spring DataOs DatabaseClient class is auto-configured, and you can ~ @Autowireit directly into your
own beans, as shown in the following example:

import org.springframework.beans.factory.annotation.Autowired,;
import org.springframework.data.r2dbc.function.DatabaseClient;
import org.springframework.stereotype.Component;

@Component
public class MyBean {

T

private final DatabaseClient databaseClient;

@Autowired
public MyBean(DatabaseClient databaseClient) {
this.databaseClient = databaseClient;

[T [T [T [T

T

...

Spring Data R2DBC Repositories

Spring Data R2DBC repositories are interfaces that you can define to access data. Queries are

created automatically from your method names. For example, a CityRepository interface might
declare a findAlIByState(String state) method to find all the cities in a given state.
For more complex queries, you can annotate your method with Spring DataOs Queryannotation.

Spring Data repositories usually extend from the Repository or CrudRepository interfaces. If you use
auto-configuration, repositories are searched from the package containing your main configuration
class (the one annotated with ~ @EnableAutoConfigurationor @SpringBootApplication) down.

The following example shows a typical Spring Data repository interface definition:

131

https://spring.io/projects/spring-data-r2dbc
https://docs.spring.io/spring-data/r2dbc/docs/1.1.6.RELEASE/api/org/springframework/data/r2dbc/repository/Query.html
https://docs.spring.io/spring-data/commons/docs/2.3.6.RELEASE/api/org/springframework/data/repository/Repository.html
https://docs.spring.io/spring-data/commons/docs/2.3.6.RELEASE/api/org/springframework/data/repository/CrudRepository.html

package com.example.myapp.domain;
import org.springframework.data.domain.*;
import org.springframework.data.repository.*;
import reactor.core.publisher.Mono;

public interface CityRepository extends Repository<City, Long> {

E Mono<City> findByNameAndStateAlllgnoringCase(String name, String state):

We have barely scratched the surface of Spring Data R2DBC. For complete details,
see the Spring Data R2DBC reference documentation

4.12. Working with NoSQL Technologies

Spring Data provides additional projects that help you access a variety of NoSQL technologies,
including:

¥ MongoDB

¥ Neo4J

¥ Elasticsearch

¥ Solr

¥ Redis

¥ GemFire or Geode

¥ Cassandra

¥ Couchbase

¥ LDAP
Spring Boot provides auto-configuration for Redis, MongoDB, Neo4j, Elasticsearch, Solr Cassandra,

Couchbase, and LDAP. You can make use of the other projects, but you must configure them
yourself. Refer to the appropriate reference documentation at spring.io/projects/spring-data

4.12.1. Redis

Redis is a cache, message broker, and richly-featured key-value store. Spring Boot offers basic auto-
configuration for the Lettuce and Jedis client libraries and the abstractions on top of them provided
by Spring Data Redis .

There is a spring-boot-starter-data-redis OstarterO for collecting the dependencies in a convenient
way. By default, it uses Lettuce . That starter handles both traditional and reactive applications.

132

https://docs.spring.io/spring-data/r2dbc/docs/1.1.6.RELEASE/reference/html/
https://spring.io/projects/spring-data-mongodb
https://spring.io/projects/spring-data-neo4j
https://spring.io/projects/spring-data-elasticsearch
https://spring.io/projects/spring-data-solr
https://spring.io/projects/spring-data-redis
https://spring.io/projects/spring-data-gemfire
https://spring.io/projects/spring-data-geode
https://spring.io/projects/spring-data-cassandra
https://spring.io/projects/spring-data-couchbase
https://spring.io/projects/spring-data-ldap
https://spring.io/projects/spring-data
https://redis.io/
https://github.com/lettuce-io/lettuce-core/
https://github.com/xetorthio/jedis/
https://github.com/spring-projects/spring-data-redis
https://github.com/lettuce-io/lettuce-core/

we also provide a spring-boot-starter-data-redis-reactive OsStarterO for
consistency with the other stores with reactive support.

Connecting to Redis

You can inject an auto-configured RedisConnectionFactory, StringRedisTemplate, or vanilla
RedisTemplateinstance as you would any other Spring Bean. By default, the instance tries to connect
to a Redis server at localhost:6379 . The following listing shows an example of such a bean:

@Component
public class MyBean {

E private StringRedisTemplate template;

E @Autowired

E public MyBean(StringRedisTemplate template) {
E this.template = template;

E }

E /..

}

You can also register an arbitrary number of beans that implement
l LettuceClientConfigurationBuilderCustomizer for more advanced customizations.
If you use Jedis, JedisClientConfigurationBuilderCustomizer is also available.

If you add your own @Beanf any of the auto-configured types, it replaces the default (except in the
case of RedisTemplate when the exclusion is based on the bean name, redisTemplate, not its type). By
default, if commons-pool2s on the classpath, you get a pooled connection factory.

4.12.2. MongoDB

MongoDB is an open-source NoSQL document database that uses a JSON-like schema instead of
traditional table-based relational data. Spring Boot offers several conveniences for working with
MongoDB, including the spring-boot-starter-data-mongodb and spring-boot-starter-data-mongodb-
reactive OStartersO.

Connecting to a MongoDB Database

To access MongoDB databases, you can inject an auto-configured
org.springframework.data.mongodb.MongoDatabaseFactory. By default, the instance tries to connect to
a MongoDB server at mongodb://localhost/test . The following example shows how to connect to a
MongoDB database:

133

https://www.mongodb.com/

import org.springframework.data.mongodb.MongoDatabaseFactory;
import com.mongodb.client. MongoDatabase;

@Component
public class MyBean {

m

private final MongoDatabaseFactory mongo;

@Autowired
public MyBean(MongoDatabaseFactory mongo) {
this.mongo = mongo;

}

m [T [T [T

m

...

public void example() {
MongoDatabase db = mongo.getMongoDatabase();
...

m [T [me [mp

—

You can set the spring.data.mongodb.uri property to change the URL and configure additional
settings such as the replica set, as shown in the following example:

spring.data.mongodb.uri=mongodb://user:secret@mongol.example.com:12345,mongo2.example.
com:23456/test

Alternatively, you can specify connection details using discrete properties. For example, you might
declare the following settings in your application.properties

spring.data.mongodb.host=mongoserver.example.com
spring.data.mongodb.port=27017
spring.data.mongodb.database=test
spring.data.mongodb.username=user
spring.data.mongodb.password=secret

If you have defined your own MongoClient, it will be used to auto-configure a suitable
MongoDatabaseFactory

The auto-configured MongoClient is created using MongoClientSettings. To fine-tune its
configuration, declare one or more MongoClientSettingsBuilderCustomizer beans. Each will be called
in order with the MongoClientSettings.Builder that is used to build the MongoClientSettings .

If spring.data.mongodb.port is not specified, the default of 27017is used. You could
. delete this line from the example shown earlier.

134

If you do not use Spring Data MongoDB, you can inject a ~ MongoClient bean instead
I of using MongoDatabaseFactorylf you want to take complete control of establishing
. the MongoDB connection, you can also declare your own MongoDatabaseFactonor
MongoClient bean.

If you are using the reactive driver, Netty is required for SSL. The auto-
configuration configures this factory automatically if Netty is available and the
factory to use hasnOt been customized already.

MongoTemplate

Spring Data MongoDB provides a MongoTemplatelass that is very similar in its design to SpringOs
JdbcTemplate As with JdbcTemplate Spring Boot auto-configures a bean for you to inject the
template, as follows:

import org.springframework.data.mongodb.core.MongoTemplate;
import org.springframework.stereotype.Component;

@Component
public class MyBean {

E private final MongoTemplate mongoTemplate;

E public MyBean(MongoTemplate mongoTemplate) {
E this.mongoTemplate = mongoTemplate;

E }

E /..

}

See the MongoOperationslavadoc for complete details.

Spring Data MongoDB Repositories

Spring Data includes repository support for MongoDB. As with the JPA repositories discussed
earlier, the basic principle is that queries are constructed automatically, based on method names.

In fact, both Spring Data JPA and Spring Data MongoDB share the same common infrastructure. You
could take the JPA example from earlier and, assuming that City is now a MongoDB data class
rather than a JPA @Entity, it works in the same way, as shown in the following example:

135

https://spring.io/projects/spring-data-mongodb
https://docs.spring.io/spring-data/mongodb/docs/3.0.6.RELEASE/api/org/springframework/data/mongodb/core/MongoTemplate.html
https://docs.spring.io/spring-data/mongodb/docs/3.0.6.RELEASE/api/org/springframework/data/mongodb/core/MongoOperations.html
https://docs.spring.io/spring-data/mongodb/docs/3.0.6.RELEASE/api/org/springframework/data/mongodb/core/MongoOperations.html

package com.example.myapp.domain;

import org.springframework.data.domain.*;
import org.springframework.data.repository.*;

public interface CityRepository extends Repository<City, Long> {

E Page<City> findAll(Pageable pageable);

E City findByNameAndStateAlllgnoringCase(String name, String state);

}
| You can customize document scanning locations by using the @EntityScan
. annotation.
| For complete details of Spring Data MongoDB, including its rich object mapping

technologies, refer to its reference documentation

Embedded Mongo

Spring Boot offers auto-configuration for Embedded Mongo . To use it in your Spring Boot
application, add a dependency on de.flapdoodle.embed:de.flapdoodle.embed.mongo .

The port that Mongo listens on can be configured by setting the spring.data.mongodb.port property.
To use a randomly allocated free port, use a value of 0. The MongoClient created by
MongoAutoConfiguration is automatically configured to use the randomly allocated port.

If you do not configure a custom port, the embedded support uses a random port
(rather than 27017) by default.

If you have SLF4J on the classpath, the output produced by Mongo is automatically routed to a
logger named org.springframework.boot.autoconfigure.mongo.embedded.EmbeddedMongo

You can declare your own [IMongodConfigand IRuntimeConfig beans to take control of the Mongo
instanceOs configuration and logging routing. The download configuration can be customized by
declaring a DownloadConfigBuilderCustomizer bean.

4.12.3. Neod;

Neo4j is an open-source NoSQL graph database that uses a rich data model of nodes connected by
first class relationships, which is better suited for connected big data than traditional RDBMS
approaches. Spring Boot offers several conveniences for working with Neo4j, including the spring-
boot-starter-data-neo4j OStarterO.

Connecting to a Neo4j Database

To access a Neodj server, you can inject an auto-configured org.neodj.ogm.session.Session . By

136

https://spring.io/projects/spring-data-mongodb
https://github.com/flapdoodle-oss/de.flapdoodle.embed.mongo
https://neo4j.com/

default, the instance tries to connect to a Neo4j server at localhost:7687 using the Bolt protocol. The
following example shows how to inject a Neo4;j Session:

@Component
public class MyBean {

E private final Session session;
@Autowired

public MyBean(Session session) {
this.session = session;

m > mp [mp

mp

...

You can configure the uri and credentials to use by setting the spring.data.neo4j.* properties, as
shown in the following example:

spring.data.neo4j.uri=bolt://my-server:7687
spring.data.neo4j.username=neo4j
spring.data.neodj.password=secret

You can take full control over the session creation by adding either an
org.neodj.ogm.config.Configuration ~ bean or an org.neo4j.ogm.session.SessionFactory bean.

Using the Embedded Mode

If you add org.neodj:neodj-ogm-embedded-driver to the dependencies of your application, Spring
Boot automatically configures an in-process embedded instance of Neo4j that does not persist any
data when your application shuts down.

As the embedded Neo4j OGM driver does not provide the Neo4j kernel itself, you
have to declare org.neo4j:neo4j as dependency yourself. Refer to the Neo4] OGM
documentation for a list of compatible versions.

The embedded driver takes precedence over the other drivers when there are multiple drivers on
the classpath. You can explicity disable the embedded mode by setting
spring.data.neo4j.embedded.enabled=false

Data Neo4j Tests automatically make use of an embedded Neo4j instance if the embedded driver
and Neo4j kernel are on the classpath as described above.

You can enable persistence for the embedded mode by providing a path to a

! database file in your configuration, e.g.
spring.data.neod4j.uri=file://var/tmp/graph.db

137

https://neo4j.com/docs/ogm-manual/current/reference/#reference:getting-started
https://neo4j.com/docs/ogm-manual/current/reference/#reference:getting-started

Using Native Types

Neo4j-OGM can map some types, like those in java.time.* , to String -based properties or to one of
the native types that Neo4j provides. For backwards compatibility reasons the default for Neo4j-

OGM is to use a String -based representation. To use native types, add a dependency on either
org.neodj:neo4j-ogm-bolt-native-types or org.neo4j:neo4j-ogm-embedded-native-types , and
configure the spring.data.neo4j.use-native-types property as shown in the following example:

spring.data.neo4j.use-native-types=true

Neo4jSession

By default, if you are running a web application, the session is bound to the thread for the entire
processing of the request (that is, it uses the "Open Session in View" pattern). If you do not want this
behavior, add the following line to your application.properties file:

spring.data.neo4j.open-in-view=false

Spring Data Neo4j Repositories
Spring Data includes repository support for Neo4;.

Spring Data Neo4j shares the common infrastructure with Spring Data JPA as many other Spring

Data modules do. You could take the JPA example from earlier and define City as Neo4j OGM
@NodeEntityrather than JPA @Entity and the repository abstraction works in the same way, as
shown in the following example:

package com.example.myapp.domain;

import java.util.Optional;

import org.springframework.data.neo4j.repository.*;

public interface CityRepository extends Neo4jRepository<City, Long> {

E Optional<City> findOneByNameAndState(String name, String state);

The spring-boot-starter-data-neo4j OsStarterO enables the repository support as well as transaction
management. You can customize the locations to look for repositories and entities by using
@EnableNeo4jRepositoriesand @EntityScanrespectively on a @Configuration-bean.

For complete details of Spring Data Neo4j, including its object mapping
technologies, refer to the reference documentation

138

https://docs.spring.io/spring-data/neo4j/docs/5.3.6.RELEASE/reference/html/

4.12.4. Solr

Apache Solr is a search engine. Spring Boot offers basic auto-configuration for the Solr 5 client
library and the abstractions on top of it provided by Spring Data Solr . There is a spring-boot-
starter-data-solr ~ OStarterO for collecting the dependencies in a convenient way.

Connecting to Solr

You can inject an auto-configured SolrClient instance as you would any other Spring bean. By
default, the instance tries to connect to a server at localhost:8983/solr . The following example
shows how to inject a Solr bean:

@Component
public class MyBean {

m»

private SolrClient solr;

@Autowired
public MyBean(SolrClient solr) {
this.solr = solr;

T [T T [Th

mp

...

If you add your own @Beaof type SolrClient , it replaces the default.

Spring Data Solr Repositories

Spring Data includes repository support for Apache Solr. As with the JPA repositories discussed
earlier, the basic principle is that queries are automatically constructed for you based on method
names.

In fact, both Spring Data JPA and Spring Data Solr share the same common infrastructure. You
could take the JPA example from earlier and, assuming that City is now a @SolrDocumerdlass rather
than a JPA @Entity, it works in the same way.

IP: For complete details of Spring Data Solr, refer to the reference documentation

4.12.5. Elasticsearch

Elasticsearch is an open source, distributed, RESTful search and analytics engine. Spring Boot offers
basic auto-configuration for Elasticsearch.

Spring Boot supports several clients:

¥ The official Java "Low Level" and "High Level" REST clients

¥ The ReactiveElasticsearchClient provided by Spring Data Elasticsearch

139

https://lucene.apache.org/solr/
https://github.com/spring-projects/spring-data-solr
http://localhost:8983/solr
https://docs.spring.io/spring-data/solr/docs/4.2.6.RELEASE/reference/html/
https://www.elastic.co/products/elasticsearch

Spring Boot provides a dedicated OStarterO, spring-boot-starter-data-elasticsearch

Connecting to Elasticsearch using REST clients

Elasticsearch ships two different REST clients that you can use to query a cluster: the "Low Level"
client and the "High Level" client.

If you have the org.elasticsearch.client:elasticsearch-rest-client dependency on the classpath,
Spring Boot will auto-configure and register a RestClient bean that by default targets
localhost:9200 . You can further tune how RestClient is configured, as shown in the following
example:

spring.elasticsearch.rest.uris=https://search.example.com:9200
spring.elasticsearch.rest.read-timeout=10s
spring.elasticsearch.rest.username=user
spring.elasticsearch.rest.password=secret

You can also register an arbitrary number of beans that implement RestClientBuilderCustomizer for
more advanced customizations. To take full control over the registration, define a RestClientBuilder

bean.

If you have the org.elasticsearch.client:elasticsearch-rest-high-level-client dependency on the

classpath, Spring Boot will auto-configure a RestHighLevelClient , which leverages any existing
RestClientBuilder bean, reusing its HTTP configuration.

Connecting to Elasticsearch using Reactive REST clients

Spring Data Elasticsearch ships ReactiveElasticsearchClient for querying Elasticsearch instances in
a reactive fashion. It is built on top of WebFluxOs WebClient, so both spring-boot-starter-
elasticsearch and spring-boot-starter-webflux dependencies are useful to enable this support.

By default, Spring Boot will auto-configure and register a ReactiveElasticsearchClient bean that
targets localhost:9200 . You can further tune how it is configured, as shown in the following
example:

spring.data.elasticsearch.client.reactive.endpoints=search.example.com:9200
spring.data.elasticsearch.client.reactive.use-ssl=true
spring.data.elasticsearch.client.reactive.socket-timeout=10s
spring.data.elasticsearch.client.reactive.username=user
spring.data.elasticsearch.client.reactive.password=secret

If the configuration properties are not enough and youOd like to fully control the client
configuration, you can register a custom ClientConfiguration bean.

Connecting to Elasticsearch by Using Spring Data

To connect to Elasticsearch, a RestHighLevelClient bean must be defined, auto-configured by Spring
Boot or manually provided by the application (see previous sections). With this configuration in

140

https://www.elastic.co/guide/en/elasticsearch/client/java-rest/current/index.html
http://localhost:9200
https://spring.io/projects/spring-data-elasticsearch
http://localhost:9200

place, an ElasticsearchRestTemplate can be injected like any other Spring bean, as shown in the
following example:

@Component
public class MyBean {

E private final ElasticsearchRestTemplate template;

E public MyBean(ElasticsearchRestTemplate template) {
E this.template = template;

E }

E /..

}

In the presence of spring-data-elasticsearch and the required dependencies for using a WebClient
(typically spring-boot-starter-webflux), Spring Boot can also auto-configure a
ReactiveElasticsearchClient and a ReactiveElasticsearchTemplate as beans. They are the reactive
equivalent of the other REST clients.

Spring Data Elasticsearch Repositories

Spring Data includes repository support for Elasticsearch. As with the JPA repositories discussed
earlier, the basic principle is that queries are constructed for you automatically based on method
names.

In fact, both Spring Data JPA and Spring Data Elasticsearch share the same common infrastructure.
You could take the JPA example from earlier and, assuming that City is now an Elasticsearch
@Documentass rather than a JPA @Entity, it works in the same way.

For complete details of Spring Data Elasticsearch, refer to the reference
documentation .

Spring Boot supports both classic and reactive Elasticsearch repositories, using the
ElasticsearchRestTemplate or ReactiveElasticsearchnTemplate beans. Most likely those beans are
auto-configured by Spring Boot given the required dependencies are present.

If you wish to use your own template for backing the Elasticsearch repositories, you can add your

own ElasticsearchRestTemplate or ElasticsearchOperations @Begn as long as it is named
"elasticsearchTemplate" . Same applies to ReactiveElasticsearchTemplate and
ReactiveElasticsearchOperations , with the bean name ‘"reactiveElasticsearchTemplate"

You can choose to disable the repositories support with the following property:

spring.data.elasticsearch.repositories.enabled=false

141

https://docs.spring.io/spring-data/elasticsearch/docs/current/reference/html/
https://docs.spring.io/spring-data/elasticsearch/docs/current/reference/html/

4.12.6. Cassandra

Cassandra is an open source, distributed database management system designed to handle large
amounts of data across many commodity servers. Spring Boot offers auto-configuration for
Cassandra and the abstractions on top of it provided by Spring Data Cassandra . There is a spring-
boot-starter-data-cassandra OStarterO for collecting the dependencies in a convenient way.

Connecting to Cassandra

You can inject an auto-configured CassandraTemplateor a Cassandra CglSession instance as you
would with any other Spring Bean. The spring.data.cassandra.* properties can be used to
customize the connection. Generally, you provide keyspace-namend contact-points as well the local
datacenter name, as shown in the following example:

spring.data.cassandra.keyspace-name=mykeyspace
spring.data.cassandra.contact-points=cassandrahost1:9042,cassandrahost2:9042
spring.data.cassandra.local-datacenter=datacenterl

If the port is the same for all your contact points you can use a shortcut and only specify the host
names, as shown in the following example:

spring.data.cassandra.keyspace-name=mykeyspace
spring.data.cassandra.contact-points=cassandrahostl1,cassandrahost2
spring.data.cassandra.local-datacenter=datacenterl

| Those two examples are identical as the port default to 9042 If you need to
configure the port, use spring.data.cassandra.port

The Cassandra driver has its own configuration infrastructure that loads an
application.conf at the root of the classpath.

Spring Boot does not look for such a file and rather provides a number of
configuration properties via the spring.data.cassandra.* namespace. For more
advanced driver customizations, you can register an arbitrary number of beans

that implement DriverConfigLoaderBuilderCustomizer . The CqlSession can be
customized with a bean of type CqglSessionBuilderCustomizer .

If youOre using CglSessionBuilder to create multiple CglSession beans, keep in mind
. the builder is mutable so make sure to inject a fresh copy for each session.

The following code listing shows how to inject a Cassandra bean:

142

https://cassandra.apache.org/
https://github.com/spring-projects/spring-data-cassandra

@Component
public class MyBean {

[T»

private final CassandraTemplate template;

public MyBean(CassandraTemplate template) {
this.template = template;

}

T > m»

mp

...

If you add your own @Beaof type CassandraTemplateit replaces the default.

Spring Data Cassandra Repositories

Spring Data includes basic repository support for Cassandra. Currently, this is more limited than

the JPA repositories discussed earlier and needs to annotate finder methods with @Query
| For complete details of Spring Data Cassandra, refer to the reference
. documentation .

4.12.7. Couchbase

Couchbase is an open-source, distributed, multi-model NoSQL document-oriented database that is
optimized for interactive applications. Spring Boot offers auto-configuration for Couchbase and the
abstractions on top of it provided by Spring Data Couchbase . There are spring-boot-starter-data-
couchbase and spring-boot-starter-data-couchbase-reactive OStartersO for collecting the
dependencies in a convenient way.

Connecting to Couchbase

You can get a Cluster by adding the Couchbase SDK and some configuration. The spring.couchbase.*
properties can be used to customize the connection. Generally, you provide the connection string
username, and password, as shown in the following example:

spring.couchbase.connection-string=couchbase://192.168.1.123
spring.couchbase.username=user
spring.couchbase.password=secret

It is also possible to customize some of the ClusterEnvironment settings. For instance, the following
configuration changes the timeout to use to open a new Bucket and enables SSL support:

143

https://docs.spring.io/spring-data/cassandra/docs/
https://docs.spring.io/spring-data/cassandra/docs/
https://www.couchbase.com/
https://github.com/spring-projects/spring-data-couchbase
https://github.com/couchbaselabs/sdk-rfcs/blob/master/rfc/0011-connection-string.md

spring.couchbase.env.timeouts.connect=3000
spring.couchbase.env.ssl.key-store=/location/of/keystore.jks
spring.couchbase.env.ssl.key-store-password=secret

Check the spring.couchbase.env.* properties for more details. To take more
control, one or more ClusterEnvironmentBuilderCustomizer beans can be used.

Spring Data Couchbase Repositories

Spring Data includes repository support for Couchbase. For complete details of Spring Data
Couchbase, refer to the reference documentation

You can inject an auto-configured CouchbaseTemplaténstance as you would with any other Spring
Bean, provided a CouchbaseClientFactory bean is available. This happens when a Cluster is
available, as described above, and a bucket name has been specified:

spring.data.couchbase.bucket-name=my-bucket

The following examples shows how to inject a CouchbaseTemplatbean:

@Component
public class MyBean {

m»

private final CouchbaseTemplate template;

@Autowired
public MyBean(CouchbaseTemplate template) {
this.template = template;

}

[T [T > [Th

»

...

There are a few beans that you can define in your own configuration to override those provided by
the auto-configuration:

¥ A CouchbaseMappingContex@Beawith a name of couchbaseMappingContext
¥ A CustomConversions@Beawith a name of couchbaseCustomConversions

¥ A CouchbaseTemplaté@Beawith a name of couchbaseTemplate

To avoid hard-coding those names in your own config, you can reuse BeanNamegrovided by Spring
Data Couchbase. For instance, you can customize the converters to use, as follows:

144

https://docs.spring.io/spring-data/couchbase/docs/4.0.6.RELEASE/reference/html/

@Configuration(proxyBeanMethods = false)
public class SomeConfiguration {

@Bean(BeanNames.COUCHBASE_CUSTOM_CONVERSIONS)
public CustomConversions myCustomConversions() {
return new CustomConversions(...);

}

™ m> mp [mp

[T

...

4.12.8. LDAP

LDAP (Lightweight Directory Access Protocol) is an open, vendor-neutral, industry standard
application protocol for accessing and maintaining distributed directory information services over
an IP network. Spring Boot offers auto-configuration for any compliant LDAP server as well as
support for the embedded in-memory LDAP server from UnboundID .

LDAP abstractions are provided by Spring Data LDAP . There is a spring-boot-starter-data-ldap
OstarterO for collecting the dependencies in a convenient way.

Connecting to an LDAP Server

To connect to an LDAP server, make sure you declare a dependency on the spring-boot-starter-
data-ldap OStarterO or spring-ldap-core and then declare the URLs of your server in your
application.properties, as shown in the following example:

spring.ldap.urls=Idap://myserver:1235
spring.ldap.username=admin
spring.ldap.password=secret

If you need to customize connection settings, you can use the spring.ldap.base and
spring.ldap.base-environment properties.

An LdapContextSource is auto-configured based on these settings. If a
DirContextAuthenticationStrategy bean is available, it is associated to the auto-configured
LdapContextSource If you need to customize it, for instance to use a PooledContextSource you can
still inject the auto-configured LdapContextSource Make sure to flag your customized ContextSource
as @Primaryso that the auto-configured LdapTemplateuses it.

Spring Data LDAP Repositories

Spring Data includes repository support for LDAP. For complete details of Spring Data LDAP, refer to
the reference documentation

You can also inject an auto-configured LdapTemplateinstance as you would with any other Spring
Bean, as shown in the following example:

145

https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://ldap.com/unboundid-ldap-sdk-for-java/
https://github.com/spring-projects/spring-data-ldap
https://docs.spring.io/spring-data/ldap/docs/1.0.x/reference/html/

@Component
public class MyBean {

T

private final LdapTemplate template;

@Autowired
public MyBean(LdapTemplate template) {
this.template = template;

}

[T [T [T TP

T

...

Embedded In-memory LDAP Server

For testing purposes, Spring Boot supports auto-configuration of an in-memory LDAP server from
UnboundID . To configure the server, add a dependency to com.unboundid:unboundid-ldapsdk and
declare a spring.ldap.embedded.base-dn property, as follows:

spring.ldap.embedded.base-dn=dc=spring,dc=io
It is possible to define multiple base-dn values, however, since distinguished

names usually contain commas, they must be defined using the correct notation.
In yaml files, you can use the yaml list notation:
spring.ldap.embedded.base-dn:

E - dc=spring,dc=io
E - dc=pivotal,dc=io

In properties files, you must include the index as part of the property name:

spring.ldap.embedded.base-dn[0]=dc=spring,dc=io
spring.ldap.embedded.base-dn[1]=dc=pivotal,dc=io

By default, the server starts on a random port and triggers the regular LDAP support. There is no
need to specify a spring.ldap.urls property.

If there is a schema.ldif file on your classpath, it is used to initialize the server. If you want to load
the initialization script from a different resource, you can also use the spring.ldap.embedded.Idif
property.

By default, a standard schema is used to validate LDIFfiles. You can turn off validation altogether by
setting the spring.ldap.embedded.validation.enabled property. If you have custom attributes, you

146

https://ldap.com/unboundid-ldap-sdk-for-java/

can use spring.ldap.embedded.validation.schema to define your custom attribute types or object
classes.

4.12.9. InfluxDB

InfluxDB is an open-source time series database optimized for fast, high-availability storage and
retrieval of time series data in fields such as operations monitoring, application metrics, Internet-
of-Things sensor data, and real-time analytics.

Connecting to InfluxDB
Spring Boot auto-configures an InfluxDB instance, provided the influxdb-java client is on the
classpath and the URL of the database is set, as shown in the following example:

spring.influx.url=https://172.0.0.1:8086

If the connection to InfluxDB requires a user and password, you can set the spring.influx.user and
spring.influx.password properties accordingly.

InfluxDB relies on OkHttp. If you need to tune the http client InfluxDB uses behind the scenes, you
can register an InfluxDbOkHttpClientBuilderProvider bean.

4.13. Caching

The Spring Framework provides support for transparently adding caching to an application. At its
core, the abstraction applies caching to methods, thus reducing the number of executions based on
the information available in the cache. The caching logic is applied transparently, without any
interference to the invoker. Spring Boot auto-configures the cache infrastructure as long as caching
support is enabled via the ~@EnableCachingnnotation.

| Check the relevant section of the Spring Framework reference for more details.

In a nutshell, to add caching to an operation of your service add the relevant annotation to its
method, as shown in the following example:

import org.springframework.cache.annotation.Cacheable;
import org.springframework.stereotype.Component;

@Component
public class MathService {

E @Cacheable("piDecimals")

E public int computePiDecimal(int i) {
E ...

E }

}

147

https://www.influxdata.com/
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/integration.html#cache

This example demonstrates the use of caching on a potentially costly operation. Before invoking
computePiDecima] the abstraction looks for an entry in the piDecimals cache that matches the i
argument. If an entry is found, the content in the cache is immediately returned to the caller, and

the method is not invoked. Otherwise, the method is invoked, and the cache is updated before
returning the value.

You can also use the standard JSR-107 (JCache) annotations (such as @CacheResylt
$ transparently. However, we strongly advise you to not mix and match the Spring
Cache and JCache annotations.

If you do not add any specific cache library, Spring Boot auto-configures a simple provider that uses
concurrent maps in memory. When a cache is required (such as piDecimals in the preceding
example), this provider creates it for you. The simple provider is not really recommended for
production usage, but it is great for getting started and making sure that you understand the
features. When you have made up your mind about the cache provider to use, please make sure to

read its documentation to figure out how to configure the caches that your application uses. Nearly

all providers require you to explicitly configure every cache that you use in the application. Some

offer a way to customize the default caches defined by the spring.cache.cache-names property.

| It is also possible to transparently update or evict data from the cache.

4.13.1. Supported Cache Providers

The cache abstraction does not provide an actual store and relies on abstraction materialized by the
org.springframework.cache.Cache and org.springframework.cache.CacheManagerinterfaces.

If you have not defined a bean of type = CacheManageor a CacheResolvernamed cacheResolver (see
CachingConfigurer), Spring Boot tries to detect the following providers (in the indicated order):

[EEN

. Generic

JCache (JSR-107{EhCache 3, Hazelcast, Infinispan, and others)
EhCache 2.x

Hazelcast

Infinispan

Couchbase

Redis

Caffeine

© © N o g M W DN

Simple
It is also possible to force a particular cache provider by setting the

l spring.cache.type property. Use this property if you need to disable caching
altogether in certain environment (such as tests).

148

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/integration.html#cache-annotations-put
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/integration.html#cache-annotations-evict
https://docs.spring.io/spring/docs/5.2.12.RELEASE/javadoc-api/org/springframework/cache/annotation/CachingConfigurer.html

Use the spring-boot-starter-cache OsStarterO to quickly add basic caching
dependencies. The starter brings in spring-context-support . If you add
dependencies manually, you must include spring-context-support in order to use
the JCache, EhCache 2.x, or Caffeine support.

If the CacheManages auto-configured by Spring Boot, you can further tune its configuration before
it is fully initialized by exposing a bean that implements the CacheManagerCustomizenterface. The
following example sets a flag to say that null values should be passed down to the underlying map:

@Bean

public CacheManagerCustomizer<ConcurrentMapCacheManager> cacheManagerCustomizer() {

h

=~ > [T > [T [y [mp

Generic

return new CacheManagerCustomizer<ConcurrentMapCacheManager>() {
@Override
public void customize(ConcurrentMapCacheManager cacheManager) {
cacheManager.setAllowNullValues(false);

In the preceding example, an auto-configured ConcurrentMapCacheManageis
expected. If that is not the case (either you provided your own config or a different

cache provider was auto-configured), the customizer is not invoked at all. You can

have as many customizers as you want, and you can also order them by using
@Ordepr Ordered

Generic caching is used if the context defines at least one org.springframework.cache.Cache bean. A
CacheManagewnrapping all beans of that type is created.

JCache (JSR-107)

JCacheis bootstrapped through the presence of a javax.cache.spi.CachingProvider on the classpath
(that is, a JSR-107 compliant caching library exists on the classpath), and the JCacheCacheManager
provided by the spring-boot-starter-cache ~ OStarterO. Various compliant libraries are available, and
Spring Boot provides dependency management for Ehcache 3, Hazelcast, and Infinispan. Any other
compliant library can be added as well.

It might happen that more than one provider is present, in which case the provider must be
explicitly specified. Even if the JSR-107 standard does not enforce a standardized way to define the
location of the configuration file, Spring Boot does its best to accommodate setting a cache with
implementation details, as shown in the following example:

Only necessary if more than one provider is present
spring.cache.jcache.provider=com.acme.MyCachingProvider
spring.cache.jcache.config=classpath:acme.xml

149

https://jcp.org/en/jsr/detail?id=107

When a cache library offers both a native implementation and JSR-107 support,
Spring Boot prefers the JSR-107 support, so that the same features are available if
you switch to a different JSR-107 implementation.

Spring Boot has general support for Hazelcast . If a single Hazelcastinstance is
available, it is automatically reused for the CacheManageras well, unless the

spring.cache.jcache.config property is specified.

There are two ways to customize the underlying javax.cache.cacheManager.

¥ Caches can be created on startup by setting the spring.cache.cache-names property. If a custom
javax.cache.configuration.Configuration bean is defined, it is used to customize them.

¥ org.springframework.boot.autoconfigure.cache.JCacheManagerCustomizer beans are invoked with
the reference of the CacheManagefor full customization.

If a standard javax.cache.CacheManagerbean is defined, it is wrapped automatically
I in an org.springframework.cache.CacheManagerimplementation that the abstraction
expects. No further customization is applied to it.

EhCache 2.x

EhCache 2.x is used if a file named ehcache.xmlcan be found at the root of the classpath. If EhCache
2.x is found, the EhCacheCacheManagmovided by the spring-boot-starter-cache ~ OStarterO is used to
bootstrap the cache manager. An alternate configuration file can be provided as well, as shown in

the following example:

spring.cache.ehcache.config=classpath:config/another-config.xml

Hazelcast

Spring Boot has general support for Hazelcast . If a Hazelcastinstance has been auto-configured, it is
automatically wrapped ina CacheManager

Infinispan

Infinispan has no default configuration file location, so it must be specified explicitly. Otherwise,
the default bootstrap is used.

spring.cache.infinispan.config=infinispan.xmil

Caches can be created on startup by setting the spring.cache.cache-names property. If a custom
ConfigurationBuilder bean is defined, it is used to customize the caches.

150

https://www.ehcache.org/
https://infinispan.org/

The support of Infinispan in Spring Boot is restricted to the embedded mode and is
| quite basic. If you want more options, you should use the official Infinispan Spring
Boot starter instead. See InfinispanOs documentation for more details.

Couchbase

If Spring Data Couchbase is available and Couchbase is configured , a CouchbaseCacheManagsrauto-
configured. It is possible to create additional caches on startup by setting the spring.cache.cache-
namesproperty and cache defaults can be configured by using spring.cache.couchbase.* properties.
For instance, the following configuration creates cacheland cache2caches with an entry expiration
of 10 minutes:

spring.cache.cache-names=cachel,cache?2
spring.cache.couchbase.expiration=10m

If you need more control over the configuration, consider registering a
CouchbaseCacheManagerBuilderCustomizelbean. The following example shows a customizer that
configures a specific entry expiration for cacheland cache2

@Bean

public CouchbaseCacheManagerBuilderCustomizer

myCouchbaseCacheManagerBuilderCustomizer() {

return (builder) -> builder
.withCacheConfiguration("cachel",

T m> mp

CouchbaseCacheConfiguration.defaultCacheConfig().entryExpiry(Duration.ofSeconds(10)))
E .withCacheConfiguration("cache2",

E
CouchbaseCacheConfiguration.defaultCacheConfig().entryExpiry(Duration.ofMinutes(1)));

Redis

If Redis is available and configured, a RedisCacheManages auto-configured. It is possible to create
additional caches on startup by setting the spring.cache.cache-names property and cache defaults
can be configured by using spring.cache.redis.* properties. For instance, the following

configuration creates cacheland cache2caches with a time to live of 10 minutes:

spring.cache.cache-names=cachel,cache2
spring.cache.redis.time-to-live=600000

151

https://github.com/infinispan/infinispan-spring-boot
https://redis.io/

By default, a key prefix is added so that, if two separate caches use the same key,
Redis does not have overlapping keys and cannot return invalid values. We
strongly recommend keeping this setting enabled if you create your own

RedisCacheManager

You can take full control of the default configuration by adding a
RedisCacheConfiguration @Beanf your own. This can be useful if youOre looking for
customizing the default serialization strategy.

If you need more control over the configuration, consider registering a
RedisCacheManagerBuilderCustomizer bean. The following example shows a customizer that
configures a specific time to live for ~ cacheland cache2

@Bean
public RedisCacheManagerBuilderCustomizer myRedisCacheManagerBuilderCustomizer() {
E return (builder) -> builder

E .withCacheConfiguration("cachel",

E
RedisCacheConfiguration.defaultCacheConfig().entryTtl(Duration.ofSeconds(10)))
E .withCacheConfiguration("cache2",

E

RedisCacheConfiguration.defaultCacheConfig().entryTtl(Duration.ofMinutes(1)));

Caffeine

Caffeine is a Java 8 rewrite of GuavaOs cache that supersedes support for Guava. If Caffeine is
present, a CaffeineCacheManager(provided by the spring-boot-starter-cache OsStarterO) is auto-
configured. Caches can be created on startup by setting the spring.cache.cache-names property and
can be customized by one of the following (in the indicated order):

1. A cache spec defined by spring.cache.caffeine.spec
2. A com.github.benmanes.caffeine.cache.CaffeineSpec bean is defined
3. A com.github.benmanes.caffeine.cache.Caffeine bean is defined

For instance, the following configuration creates cacheland cache2caches with a maximum size of
500 and a time to live of 10 minutes

spring.cache.cache-names=cachel,cache2
spring.cache.caffeine.spec=maximumsSize=500,expireAfterAccess=600s

If a com.github.benmanes.caffeine.cache.CachelLoader bean is defined, it is automatically associated
to the CaffeineCacheManagerSince the CachelLoadeiis going to be associated with all caches managed
by the cache manager, it must be defined as CachelLoader<Object, Object>. The auto-configuration
ignores any other generic type.

152

https://github.com/ben-manes/caffeine

Simple

If none of the other providers can be found, a simple implementation using a ConcurrentHashMajs
the cache store is configured. This is the default if no caching library is present in your application.

By default, caches are created as needed, but you can restrict the list of available caches by setting

the cache-namesproperty. For instance, if you want only cachel and cache?2 caches, set the cache-
namesproperty as follows:

spring.cache.cache-names=cachel,cache?2

If you do so and your application uses a cache not listed, then it fails at runtime when the cache is
needed, but not on startup. This is similar to the way the "real" cache providers behave if you use
an undeclared cache.

None

When @EnableCaching present in your configuration, a suitable cache configuration is expected as
well. If you need to disable caching altogether in certain environments, force the cache type to none
to use a no-op implementation, as shown in the following example:

spring.cache.type=none

4.14. Messaging

The Spring Framework provides extensive support for integrating with messaging systems, from
simplified use of the JMS API using JmsTemplateto a complete infrastructure to receive messages
asynchronously. Spring AMQP provides a similar feature set for the Advanced Message Queuing
Protocol. Spring Boot also provides auto-configuration options for RabbitTemplate and RabbitMQ.
Spring WebSocket natively includes support for STOMP messaging, and Spring Boot has support for

that through starters and a small amount of auto-configuration. Spring Boot also has support for
Apache Kafka.

4.14.1. IMS

The javax.jms.ConnectionFactory interface provides a standard method of creating a
javax.jms.Connection for interacting with a JMS broker. Although Spring needs a ConnectionFactory
to work with JMS, you generally need not use it directly yourself and can instead rely on higher

level messaging abstractions. (See the relevant section of the Spring Framework reference
documentation for details.) Spring Boot also auto-configures the necessary infrastructure to send

and receive messages.

ActiveMQ Support

When ActiveMQ is available on the classpath, Spring Boot can also configure a ConnectionFactory. If
the broker is present, an embedded broker is automatically started and configured (provided no
broker URL is specified through configuration).

153

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/integration.html#jms
https://activemq.apache.org/

If you use spring-boot-starter-activemq , the necessary dependencies to connect or
embed an ActiveMQ instance are provided, as is the Spring infrastructure to
integrate with JMS.

ActiveMQ configuration is controlled by external configuration properties in spring.activemq.* . For
example, you might declare the following section in application.properties

spring.activemg.broker-url=tcp://192.168.1.210:9876
spring.activemqg.user=admin
spring.activemq.password=secret

By default, a CachingConnectionFactory wraps the native ConnectionFactory with sensible settings
that you can control by external configuration properties in spring.jms.*

spring.jms.cache.session-cache-size=5

If youOd rather use native pooling, you can do so by adding a dependency to
org.messaginghub:pooled-jms and configuring the JmsPoolConnectionFactoryaccordingly, as shown in
the following example:

spring.activemq.pool.enabled=true
spring.activemgq.pool.max-connections=50

See ActiveMQProperties for more of the supported options. You can also register an
arbitrary number of beans that implement ActiveMQConnectionFactoryCustomizer
for more advanced customizations.

By default, ActiveMQ creates a destination if it does not yet exist so that destinations are resolved
against their provided names.

Artemis Support

Spring Boot can auto-configure a ConnectionFactory when it detects that Artemis is available on the
classpath. If the broker is present, an embedded broker is automatically started and configured
(unless the mode property has been explicitly set). The supported modes are embeddedto make
explicit that an embedded broker is required and that an error should occur if the broker is not
available on the classpath) and native (to connect to a broker using the netty transport protocol).
When the latter is configured, Spring Boot configures a ConnectionFactory that connects to a broker
running on the local machine with the default settings.

If you use spring-boot-starter-artemis , the necessary dependencies to connect to
an existing Artemis instance are provided, as well as the Spring infrastructure to
integrate with JMS. Adding org.apache.activemq:artemis-jms-server to your
application lets you use embedded mode.

154

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/activemq/ActiveMQProperties.java
https://activemq.apache.org/components/artemis/

Artemis configuration is controlled by external configuration properties in spring.artemis.* . For
example, you might declare the following section in application.properties

spring.artemis.mode=native
spring.artemis.host=192.168.1.210
spring.artemis.port=9876
spring.artemis.user=admin
spring.artemis.password=secret

When embedding the broker, you can choose if you want to enable persistence and list the
destinations that should be made available. These can be specified as a comma-separated list to
create them with the default options, or you can define bean(s) of type
org.apache.activemgq.artemis.jms.server.config.JMSQueueConfiguration or
org.apache.activemq.artemis.jms.server.config. TopicConfiguration , for advanced queue and topic
configurations, respectively.

By default, a CachingConnectionFactory wraps the native ConnectionFactory with sensible settings
that you can control by external configuration properties in spring.jms.*

spring.jms.cache.session-cache-size=5

If youOd rather use native pooling, you can do so by adding a dependency to
org.messaginghub:pooled-jms and configuring the JmsPoolConnectionFactoryaccordingly, as shown in
the following example:

spring.artemis.pool.enabled=true
spring.artemis.pool.max-connections=50

SeeArtemisProperties for more supported options.

No JNDI lookup is involved, and destinations are resolved against their names, using either the name
attribute in the Artemis configuration or the names provided through configuration.

Using a JNDI ConnectionFactory

If you are running your application in an application server, Spring Boot tries to locate a JMS
ConnectionFactory by using JNDI. By default, the java:/JmsXA and java:/XAConnectionFactory location
are checked. You can use the spring.jms.jndi-name property if you need to specify an alternative
location, as shown in the following example:

spring.jms.jndi-name=java:/MyConnectionFactory

Sending a Message

SpringOsJmsTemplateis auto-configured, and you can autowire it directly into your own beans, as

155

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jms/artemis/ArtemisProperties.java

shown in the following example:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.jms.core.JmsTemplate;
import org.springframewaork.stereotype.Component;

@Component
public class MyBean {

E private final JnsTemplate jmsTemplate;

E @Autowired

E public MyBean(JmsTemplate jmsTemplate) {
E thisjmsTemplate = jmsTemplate;

E }

E /..

}

JmsMessagingTemplatean be injected in a similar manner. If a DestinationResolver
or a MessageConverterbean is defined, it is associated automatically to the auto-
configured JmsTemplate

Receiving a Message

When the JMS infrastructure is present, any bean can be annotated with @JmsListenerto create a
listener endpoint. If no JmsListenerContainerFactory has been defined, a default one is configured
automatically. If a DestinationResolver or a MessageConverterbeans is defined, it is associated
automatically to the default factory.

By default, the default factory is transactional. If you run in an infrastructure where a
JtaTransactionManager is present, it is associated to the listener container by default. If not, the
sessionTransacted flag is enabled. In that latter scenario, you can associate your local data store
transaction to the processing of an incoming message by adding @Transactional on your listener
method (or a delegate thereof). This ensures that the incoming message is acknowledged, once the
local transaction has completed. This also includes sending response messages that have been
performed on the same JMS session.

The following component creates a listener endpoint on the someQueudestination:

156

https://docs.spring.io/spring/docs/5.2.12.RELEASE/javadoc-api/org/springframework/jms/core/JmsMessagingTemplate.html

@Component
public class MyBean {

E @JmsListener(destination = "someQueue")
E public void processMessage(String content) {
E ...

E }

}

Seethe Javadoc of @EnableJmf®r more details.

If you need to create more JmsListenerContainerFactory instances or if you want to override the
default, Spring Boot provides a DefaultdmsListenerContainerFactoryConfigurer that you can use to

initialize a DefaultJmsListenerContainerFactory with the same settings as the one that is auto-
configured.

For instance, the following example exposes another factory that uses a specific MessageConverter

@Configuration(proxyBeanMethods = false)
static class JmsConfiguration {

@Bean
public DefaultJmsListenerContainerFactory myFactory(
DefaultdmsListenerContainerFactoryConfigurer configurer) {
DefaultJmsListenerContainerFactory factory =
new DefaultJmsListenerContainerFactory();

configurer.configure(factory, connectionFactory());
factory.setMessageConverter(myMessageConverter());
return factory;

[T [T [T [T Tp e Ty mp mp

—

Then you can use the factory inany ~ @JmsListenerannotated method as follows:

@Component
public class MyBean {

E @JmsListener(destination = "someQueue", containerFactory="myFactory")
E public void processMessage(String content) {

E ...

E }

}

157

https://docs.spring.io/spring/docs/5.2.12.RELEASE/javadoc-api/org/springframework/jms/annotation/EnableJms.html
https://docs.spring.io/spring/docs/5.2.12.RELEASE/javadoc-api/org/springframework/jms/annotation/EnableJms.html

4.14.2. AMQP

The Advanced Message Queuing Protocol (AMQP) is a platform-neutral, wire-level protocol for
message-oriented middleware. The Spring AMQP project applies core Spring concepts to the
development of AMQP-based messaging solutions. Spring Boot offers several conveniences for
working with AMQP through RabbitMQ, including the spring-boot-starter-amgp ~ OStarterO.

RabbitMQ support

RabbitMQ is a lightweight, reliable, scalable, and portable message broker based on the AMQP
protocol. Spring uses RabbitMQo communicate through the AMQP protocol.

RabbitMQ configuration is controlled by external configuration properties in spring.rabbitmg.* . For
example, you might declare the following section in application.properties

spring.rabbitmg.host=localhost
spring.rabbitmq.port=5672
spring.rabbitmg.username=admin
spring.rabbitmq.password=secret

Alternatively, you could configure the same connection using the addresses attribute:

spring.rabbitmg.addresses=amqp://admin:secret@localhost

When specifying addresses that way, the host and port properties are ignored. If
. the address uses the amqgpgrotocol, SSL support is enabled automatically.

If a ConnectionNameStrategybean exists in the context, it will be automatically used to name
connections created by the auto-configured ConnectionFactory. SeeRabbitProperties for more of the

supported options.

! SeeUnderstanding AMQP, the protocol used by RabbitMQ for more details.

Sending a Message

SpringOsAmgpTemplatand AmgpAdmiare auto-configured, and you can autowire them directly into
your own beans, as shown in the following example:

158

https://www.rabbitmq.com/
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/amqp/RabbitProperties.java
https://spring.io/blog/2010/06/14/understanding-amqp-the-protocol-used-by-rabbitmq/

import org.springframework.amgp.core.AmgpAdmin;

import org.springframework.amgp.core.AmgpTemplate;

import org.springframework.beans.factory.annotation.Autowired,;
import org.springframework.stereotype.Component;

@Component
public class MyBean {

private final AmgpAdmin amgpAdmin;
private final AmgpTemplate amgpTemplate;

T M

@Autowired

public MyBean(AmgpAdmin amgpAdmin, AmgpTemplate amgpTemplate) {
this.amgpAdmin = amgpAdmin;
this.amgpTemplate = amgpTemplate;

}

[T [T > [Th TP

T»

...

RabbitMessagingTemplatecan be injected in a similar manner. If a MessageConverter
bean is defined, it is associated automatically to the auto-configured AmqgpTemplate

If necessary, any org.springframework.amqgp.core.Queue that is defined as a bean is automatically
used to declare a corresponding queue on the RabbitMQ instance.

To retry operations, you can enable retries on the AmgpTemplatéfor example, in the event that the
broker connection is lost):

spring.rabbitmq.template.retry.enabled=true
spring.rabbitmg.template.retry.initial-interval=2s

Retries are disabled by default. You can also customize the RetryTemplate programmatically by
declaring a RabbitRetryTemplateCustomizer bean.

If you need to create more RabbitTemplate instances or if you want to override the default, Spring
Boot provides a RabbitTemplateConfigurer bean that you can use to initialize a RabbitTemplate with
the same settings as the factories used by the auto-configuration.

Receiving a Message

When the Rabbit infrastructure is present, any bean can be annotated with @RabbitListener to
create a listener endpoint. If no RabbitListenerContainerFactory has been defined, a default
SimpleRabbitListenerContainerFactory is automatically configured and you can switch to a direct
container using the spring.rabbitmg.listener.type property. If a MessageConverter or a
MessageRecoverebean is defined, it is automatically associated with the default factory.

159

https://docs.spring.io/spring-amqp/docs/2.2.13.RELEASE/api/org/springframework/amqp/rabbit/core/RabbitMessagingTemplate.html

The following sample component creates a listener endpoint on the someQueugueue:

@Component
public class MyBean {

E @RabbitListener(queues = "someQueue")
E public void processMessage(String content) {
E ...
E }
}
! Seethe Javadoc of @EnableRabbifor more details.

If you need to create more RabbitListenerContainerFactory instances or if you want to override the
default, Spring Boot provides a SimpleRabbitListenerContainerFactoryConfigurer and a
DirectRabbitListenerContainerFactoryConfigurer that you can use to initialize a
SimpleRabbitListenerContainerFactory and a DirectRabbitListenerContainerFactory with the same
settings as the factories used by the auto-configuration.

It does not matter which container type you chose. Those two beans are exposed
. by the auto-configuration.

For instance, the following configuration class exposes another factory that uses a specific
MessageConverter

@Configuration(proxyBeanMethods = false)
static class RabbitConfiguration {

@Bean
public SimpleRabbitListenerContainerFactory myFactory(
SimpleRabbitListenerContainerFactoryConfigurer configurer) {
SimpleRabbitListenerContainerFactory factory =
new SimpleRabbitListenerContainerFactory();

configurer.configure(factory, connectionFactory);
factory.setMessageConverter(myMessageConverter());
return factory;

T ™ > e e T T me mp

—

Then you can use the factory in any ~ @RabbitListener-annotated method, as follows:

160

https://docs.spring.io/spring-amqp/docs/2.2.13.RELEASE/api/org/springframework/amqp/rabbit/annotation/EnableRabbit.html
https://docs.spring.io/spring-amqp/docs/2.2.13.RELEASE/api/org/springframework/amqp/rabbit/annotation/EnableRabbit.html

@Component
public class MyBean {

E @RabbitListener(queues = "someQueue", containerFactory="myFactory")
E public void processMessage(String content) {

E ...

E }

}

You can enable retries to handle situations where your listener throws an exception. By default,
RejectAndDontRequeueRecoveres used, but you can define a MessageRecovereof your own. When
retries are exhausted, the message is rejected and either dropped or routed to a dead-letter
exchange if the broker is configured to do so. By default, retries are disabled. You can also
customize the RetryTemplate programmatically by declaringa RabbitRetryTemplateCustomizer bean.

By default, if retries are disabled and the listener throws an exception, the delivery
is retried indefinitely. You can modify this behavior in two ways: Set the

defaultRequeueRejected property to false so that zero re-deliveries are attempted
or throw an AmgpRejectAndDontRequeueExceptido signal the message should be
rejected. The latter is the mechanism used when retries are enabled and the
maximum number of delivery attempts is reached.

4.14.3. Apache Kafka Support

Apache Kafka is supported by providing auto-configuration of the spring-kafka project.
Kafka configuration is controlled by external configuration properties in spring.kafka.* . For
example, you might declare the following section in application.properties

spring.kafka.bootstrap-servers=localhost:9092
spring.kafka.consumer.group-id=myGroup

To create a topic on startup, add a bean of type NewTopicf the topic already exists,
. the bean is ignored.

SeeKafkaProperties for more supported options.

Sending a Message

SpringOsKafkaTemplate is auto-configured, and you can autowire it directly in your own beans, as
shown in the following example:

161

https://kafka.apache.org/
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/kafka/KafkaProperties.java

@Component
public class MyBean {

[T»

private final KafkaTemplate kafkaTemplate;

@Autowired
public MyBean(KafkaTemplate kafkaTemplate) {
this.kafkaTemplate = kafkaTemplate;

[T [T T [Th

}

T»

...

If the property spring.kafka.producer.transaction-id-prefix is defined, a
KafkaTransactionManager is automatically configured. Also, if a
RecordMessageConvertebean is defined, it is automatically associated to the auto-
configured KafkaTemplate

Receiving a Message

When the Apache Kafka infrastructure is present, any bean can be annotated with @KafkaListener
to create a listener endpoint. If no KafkaListenerContainerFactory has been defined, a default one is
automatically configured with keys defined in spring.kafka.listener.*
The following component creates a listener endpoint on the someTopictopic:

@Component

public class MyBean {

E @KafkaListener(topics = "someTopic")

E public void processMessage(String content) {
E ...

E }

}

If a KafkaTransactionManagerbean is defined, it is automatically associated to the container factory.
Similarly, if a ErrorHandler, AfterRollbackProcessor or ConsumerAwareRebalanceListenertbean is
defined, it is automatically associated to the default factory.

Depending on the listener type, a RecordMessageConverteror BatchMessageConverter bean is
associated to the default factory. If only a RecordMessageConverterbean is present for a batch
listener, it is wrapped ina BatchMessageConverter

A custom ChainedKafkaTransactionManagermust be marked @Primaryas it usually
. references the auto-configured KafkaTransactionManagerbean.

162

Kafka Streams

Spring for Apache Kafka provides a factory bean to create a StreamsBuilder object and manage the
lifecycle of its streams. Spring Boot auto-configures the required KafkaStreamsConfiguration bean as
long as kafka-streams is on the classpath and Kafka Streams is enabled via the =~ @EnableKafkaStreams
annotation.

Enabling Kafka Streams means that the application id and bootstrap servers must be set. The
former can be configured using spring.kafka.streams.application-id , defaulting to
spring.application.name if not set. The latter can be set globally or specifically overridden only for
streams.

Several additional properties are available using dedicated properties; other arbitrary Kafka
properties can be set using the spring.kafka.streams.properties namespace. See also Additional
Kafka Properties for more information.

To use the factory bean, wire StreamsBuilder into your @Beaas shown in the following example:
@Configuration(proxyBeanMethods = false)

@EnableKafkaStreams
public static class KafkaStreamsExampleConfiguration {

E @Bean

E public KStream<Integer, String> kStream(StreamsBuilder streamsBuilder) {
E KStream<Integer, String> stream = streamsBuilder.stream("ks1In");

E stream.map((k, v) -> new KeyValue<>(k, v.toUpperCase())).to("ks1Out",
E Produced.with(Serdes.Integer(), new JsonSerde<>()));

E return stream;

E }

}

By default, the streams managed by the StreamBuilder object it creates are started automatically.
You can customize this behaviour using the spring.kafka.streams.auto-startup property.

Additional Kafka Properties

The properties supported by auto configuration are shown in Common Application properties . Note
that, for the most part, these properties (hyphenated or camelCase) map directly to the Apache
Kafka dotted properties. Refer to the Apache Kafka documentation for details.

The first few of these properties apply to all components (producers, consumers, admins, and
streams) but can be specified at the component level if you wish to use different values. Apache
Kafka designates properties with an importance of HIGH, MEDIUM, or LOW. Spring Boot auto-
configuration supports all HIGH importance properties, some selected MEDIUM and LOW
properties, and any properties that do not have a default value.

Only a subset of the properties supported by Kafka are available directly through the
KafkaProperties class. If you wish to configure the producer or consumer with additional properties

163

that are not directly supported, use the following properties:

spring.kafka.properties.prop.one=first
spring.kafka.admin.properties.prop.two=second
spring.kafka.consumer.properties.prop.three=third
spring.kafka.producer.properties.prop.four=fourth
spring.kafka.streams.properties.prop.five=fifth

This sets the common prop.one Kafka property to first (applies to producers, consumers and
admins), the prop.two admin property to second the prop.three consumer property to third , the
prop.four producer property to fourth and the prop.five streams property to fifth

You can also configure the Spring Kafka JsonDeserializer as follows:

spring.kafka.consumer.value-
deserializer=org.springframework.kafka.support.serializer.JsonDeserializer
spring.kafka.consumer.properties.spring.json.value.default.type=com.example.Invoice
spring.kafka.consumer.properties.spring.json.trusted.packages=com.example,org.acme

Similarly, you can disable the JsonSerializer default behavior of sending type information in
headers:

spring.kafka.producer.value-
serializer=org.springframework.kafka.support.serializer.JsonSerializer
spring.kafka.producer.properties.spring.json.add.type.headers=false

Properties set in this way override any configuration item that Spring Boot
explicitly supports.

Testing with Embedded Kafka

Spring for Apache Kafka provides a convenient way to test projects with an embedded Apache
Kafka broker. To use this feature, annotate a test class with @EmbeddedKafi@m the spring-kafka-
test module. For more information, please see the Spring for Apache Kafka reference manual .

To make Spring Boot auto-configuration work with the aforementioned embedded Apache Kafka

broker, you need to remap a system property for embedded broker addresses (populated by the
EmbeddedKafkaBrokgrinto the Spring Boot configuration property for Apache Kafka. There are
several ways to do that:

¥ Provide a system property to map embedded broker addresses into spring.kafka.bootstrap-
servers in the test class:

164

https://docs.spring.io/spring-kafka/docs/2.5.10.RELEASE/reference/html/#embedded-kafka-annotation

static {
E System.setProperty(EmbeddedKafkaBroker.BROKER_LIST _PROPERTY,
"spring.kafka.bootstrap-servers");

}

¥ Configure a property name onthe ~ @EmbeddedKafaanotation:

@EmbeddedKafka(topics = "someTopic",
E bootstrapServersProperty = "spring.kafka.bootstrap-servers")

¥ Use a placeholder in configuration properties:

spring.kafka.bootstrap-servers=${spring.embedded.kafka.brokers}

4.15. Calling REST Services with RestTemplate

If you need to call remote REST services from your application, you can use the Spring FrameworkOs
RestTemplate class. Since RestTemplate instances often need to be customized before being used,
Spring Boot does not provide any single auto-configured RestTemplatebean. It does, however, auto-
configure a RestTemplateBuilder, which can be used to create RestTemplateinstances when needed.
The auto-configured RestTemplateBuilder ensures that sensible HttpMessageConvertersare applied to
RestTemplateinstances.

The following code shows a typical example:

@Service
public class MyService {

E private final RestTemplate restTemplate;

E public MyService(RestTemplateBuilder restTemplateBuilder) {

E this.restTemplate = restTemplateBuilder.build();

E }

E public Details someRestCall(String name) {

E return this.restTemplate.getForObject("/{name}/details", Details.class, name);
E }

}

RestTemplateBuilder includes a number of useful methods that can be used to
I quickly configure a RestTemplate For example, to add BASIC auth support, you can
use builder.basicAuthentication("user", "password").build()

165

https://docs.spring.io/spring/docs/5.2.12.RELEASE/javadoc-api/org/springframework/web/client/RestTemplate.html

4.15.1. RestTemplate Customization

There are three main approaches to RestTemplate customization, depending on how broadly you
want the customizations to apply.

To make the scope of any customizations as narrow as possible, inject the auto-configured
RestTemplateBuilder and then call its methods as required. Each method call returns a new
RestTemplateBuilder instance, so the customizations only affect this use of the builder.

To make an application-wide, additive customization, use a RestTemplateCustomizerbean. All such
beans are automatically registered with the auto-configured RestTemplateBuilder and are applied to
any templates that are built with it.

The following example shows a customizer that configures the use of a proxy for all hosts except
192.168.0.5:

static class ProxyCustomizer implements RestTemplateCustomizer {

@Override
public void customize(RestTemplate restTemplate) {

HttpHost proxy = new HitpHost("proxy.example.com”);

HttpClient httpClient = HttpClientBuilder.create().setRoutePlanner(new
DefaultProxyRoutePlanner(proxy) {

[T [T [T [T

E @Override

E public HttpHost determineProxy(HttpHost target, HttpRequest request,
HttpContext context)

E throws HttpException {

E if (target.getHostName().equals("192.168.0.5")) {

E return null;

E }

E return super.determineProxy(target, request, context);

E }

E D-build();

E restTemplate.setRequestFactory(new
HttpComponentsClientHttpRequestFactory(httpClient));

E }

}
Finally, the most extreme (and rarely used) option is to create your own RestTemplateBuilder bean.
Doing so switches off the auto-configuration of a RestTemplateBuilder and prevents any

RestTemplateCustomizerbeans from being used.

4.16. Calling REST Services with WebClient

If you have Spring WebFlux on your classpath, you can also choose to use WebClient to call remote
REST services. Compared to RestTemplateg this client has a more functional feel and is fully reactive.

166

You can learn more about the WebClientin the dedicated section in the Spring Framework docs

Spring Boot creates and pre-configures a WebClient.Builder for you; it is strongly advised to inject it

in your components and use it to create WebClient instances. Spring Boot is configuring that builder

to share HTTP resources, reflect codecs setup in the same fashion as the server ones (see WebFlux
HTTP codecs auto-configuration), and more.

The following code shows a typical example:

@Service
public class MyService {

E private final WebClient webClient;

public MyService(WebClient.Builder webClientBuilder) {
this.webClient = webClientBuilder.baseUrl("https://example.org").build();

}

[T [T T

public Mono<Details> someRestCall(String name) {
return this.webClient.get().uri("/{name}/details", name)
.retrieve().bodyToMono(Details.class);

™ > [mp [mp

—

4.16.1. WebClient Runtime

Spring Boot will auto-detect which ClientHttpConnector to use to drive WebClient, depending on the
libraries available on the application classpath. For now, Reactor Netty and Jetty RS client are
supported.

The spring-boot-starter-webflux starter depends on io.projectreactor.netty:reactor-netty by
default, which brings both server and client implementations. If you choose to use Jetty as a
reactive server instead, you should add a dependency on the Jetty Reactive HTTP client library,
org.eclipse.jetty:jetty-reactive-httpclient . Using the same technology for server and client has it
advantages, as it will automatically share HTTP resources between client and server.

Developers can override the resource configuration for Jetty and Reactor Netty by providing a
custom ReactorResourceFactory or JettyResourceFactory bean - this will be applied to both clients
and servers.

If you wish to override that choice for the client, you can define your own ClientHttpConnector bean
and have full control over the client configuration.

You can learn more about the WebClient configuration options in the Spring Framework reference
documentation .

167

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web-reactive.html#webflux-client
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web-reactive.html#webflux-client-builder
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web-reactive.html#webflux-client-builder
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web-reactive.html#webflux-client-builder

4.16.2. WebClient Customization

There are three main approaches to WebClient customization, depending on how broadly you want
the customizations to apply.

To make the scope of any customizations as narrow as possible, inject the auto-configured
WebClient.Builder and then call its methods as required. WebClient.Builder instances are stateful:
Any change on the builder is reflected in all clients subsequently created with it. If you want to
create several clients with the same builder, you can also consider cloning the builder with
WebClient.Builder other = builder.clone();

To make an application-wide, additive customization to all WebClient.Builder instances, you can
declare WebClientCustomizer beans and change the WebClient.Builder locally at the point of
injection.

Finally, you can fall back to the original APl and use WebClient.create() . In that case, no auto-
configuration or WebClientCustomizeris applied.

4.17. Validation

The method validation feature supported by Bean Validation 1.1 is automatically enabled as long as

a JSR-303 implementation (such as Hibernate validator) is on the classpath. This lets bean methods

be annotated with javax.validation constraints on their parameters and/or on their return value.
Target classes with such annotated methods need to be annotated with the @Validated annotation at
the type level for their methods to be searched for inline constraint annotations.

For instance, the following service triggers the validation of the first argument, making sure its size
is between 8 and 10:

@Service
@Validated
public class MyBean {

public Archive findByCodeAndAuthor(@Size(min = 8, max = 10) String code,
Author author) {

T M m» [mp

—

4.18. Sending Email

The Spring Framework provides an abstraction for sending email by using the JavaMailSender
interface, and Spring Boot provides auto-configuration for it as well as a starter module.

! See the reference documentation for a detailed explanation of how you can use
. JavaMailSender.

168

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/integration.html#mail

If spring.mail.host and the relevant libraries (as defined by spring-boot-starter-mail) are
available, a default JavaMailSenderis created if none exists. The sender can be further customized
by configuration items from the spring.mail namespace. See MailProperties for more detalils.

In particular, certain default timeout values are infinite, and you may want to change that to avoid
having a thread blocked by an unresponsive mail server, as shown in the following example:

spring.mail.properties.mail.smtp.connectiontimeout=5000
spring.mail.properties.mail.smtp.timeout=3000
spring.mail.properties.mail.smtp.writetimeout=5000

It is also possible to configure a JavaMailSenderwith an existing Session from JNDI:
spring.mail.jndi-name=mail/Session
When a jndi-name is set, it takes precedence over all other Session-related settings.

4.19. Distributed Transactions with JTA

Spring Boot supports distributed JTA transactions across multiple XA resources by using an
Atomikos embedded transaction manager. Deprecated support for using a Bitronix embedded
transaction manager is also provided but it will be removed in a future release. JTA transactions are

also supported when deploying to a suitable Java EE Application Server.

When a JTA environment is detected, SpringOs JtaTransactionManager is used to manage
transactions. Auto-configured JMS, DataSource, and JPA beans are upgraded to support XA
transactions. You can use standard Spring idioms, such as @Transactional, to participate in a
distributed transaction. If you are within a JTA environment and still want to use local transactions,

you can set the spring.jta.enabled property to false to disable the JTA auto-configuration.

4.19.1. Using an Atomikos Transaction Manager

Atomikos is a popular open source transaction manager which can be embedded into your Spring
Boot application. You can use the spring-boot-starter-jta-atomikos starter to pull in the
appropriate Atomikos libraries. Spring Boot auto-configures Atomikos and ensures that appropriate
depends-onsettings are applied to your Spring beans for correct startup and shutdown ordering.

By default, Atomikos transaction logs are written to a transaction-logs directory in your
applicationOs home directory (the directory in which your application jar file resides). You can
customize the location of this directory by setting a spring.jta.log-dir property in your
application.properties file. Properties starting with spring.jta.atomikos.properties can also be
used to customize the Atomikos UserTransactionServicelmp. See the AtomikosProperties Javadoc for
complete detalils.

169

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/mail/MailProperties.java
https://www.atomikos.com/
https://github.com/bitronix/btm
https://www.atomikos.com/
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/jta/atomikos/AtomikosProperties.html
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/jta/atomikos/AtomikosProperties.html

To ensure that multiple transaction managers can safely coordinate the same
resource managers, each Atomikos instance must be configured with a unique ID.
By default, this ID is the IP address of the machine on which Atomikos is running.
To ensure unigueness in production, you should configure the
spring.jta.transaction-manager-id property with a different value for each
instance of your application.

4.19.2. Using a Bitronix Transaction Manager

As of Spring Boot 2.3, support for Bitronix has been deprecated and will be
removed in a future release.

You can use the spring-boot-starter-jta-bitronix starter to add the appropriate Bitronix
dependencies to your project. As with Atomikos, Spring Boot automatically configures Bitronix and
post-processes your beans to ensure that startup and shutdown ordering is correct.

By default, Bitronix transaction log files (partl.btm and part2.btm) are written to a transaction-logs
directory in your application home directory. You can customize the location of this directory by

setting the spring.jta.log-dir property. Properties starting with spring.jta.bitronix.properties are
also bound to the bitronix.tm.Configuration bean, allowing for complete customization. See the
Bitronix documentation for details.

To ensure that multiple transaction managers can safely coordinate the same
resource managers, each Bitronix instance must be configured with a unique ID.
By default, this ID is the IP address of the machine on which Bitronix is running.

To ensure uniqueness in production, you should configure the
spring.jta.transaction-manager-id property with a different value for each
instance of your application.

4.19.3. Using a Java EE Managed Transaction Manager

If you package your Spring Boot application asa waror ear file and deploy it to a Java EE application
server, you can use your application serverOs built-in transaction manager. Spring Boot tries to
auto-configure a transaction manager by looking at common JNDI locations
(java:comp/UserTransaction , java:comp/TransactionManager, and so on). If you use a transaction
service provided by your application server, you generally also want to ensure that all resources

are managed by the server and exposed over JNDI. Spring Boot tries to auto-configure JMS by
looking for a ConnectionFactory at the JNDI path (java:/JmsXA or java:/XAConnectionFactory), and
you can use the spring.datasource.jndi-name property to configure your DataSource

4.19.4. Mixing XA and Non-XA JMS Connections

When using JTA, the primary JMS ConnectionFactory bean is XA-aware and participates in
distributed transactions. In some situations, you might want to process certain JMS messages by
using a non-XA ConnectionFactory. For example, your JMS processing logic might take longer than
the XA timeout.

170

https://github.com/bitronix/btm/wiki/Transaction-manager-configuration

If you want to use a non-XA ConnectionFactory, you can inject the nonXaJmsConnectionFactonpbean
rather than the @PrimaryjmsConnectionFactory bean. For consistency, the jmsConnectionFactory bean
is also provided by using the bean alias xaJmsConnectionFactory

The following example shows how to inject ConnectionFactory instances:

/I Inject the primary (XA aware) ConnectionFactory
@Autowired
private ConnectionFactory defaultConnectionFactory;

/I Inject the XA aware ConnectionFactory (uses the alias and injects the same as
above)

@Autowired

@Qualifier("xaJmsConnectionFactory")

private ConnectionFactory xaConnectionFactory;

I Inject the non-XA aware ConnectionFactory
@Autowired
@Qualifier("nonXaJmsConnectionFactory")

private ConnectionFactory nonXaConnectionFactory;

4.19.5. Supporting an Alternative Embedded Transaction Manager

The XAConnectionFactoryWrapper and XADataSourceWrappelinterfaces can be used to support
alternative embedded transaction managers. The interfaces are responsible for wrapping
XAConnectionFactory and XADataSourcebeans and exposing them as regular ConnectionFactory and
DataSource beans, which transparently enroll in the distributed transaction. DataSource and JMS
auto-configuration use JTA variants, provided you have a JtaTransactionManager bean and
appropriate XA wrapper beans registered within your ApplicationContext .

The AtomikosXAConnectionFactoryWrapper and AtomikosXADataSourceWrapper provide good
examples of how to write XA wrappers.

4.20. Hazelcast

If Hazelcast is on the classpath and a suitable configuration is found, Spring Boot auto-configures a
Hazelcastinstance that you can inject in your application.

If you define a com.hazelcast.config.Config bean, Spring Boot uses that. If your configuration
defines an instance name, Spring Boot tries to locate an existing instance rather than creating a
new one.

You could also specify the Hazelcast configuration file to use through configuration, as shown in the
following example:

spring.hazelcast.config=classpath:config/my-hazelcast.xml

171

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jms/XAConnectionFactoryWrapper.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jdbc/XADataSourceWrapper.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/atomikos/AtomikosXAConnectionFactoryWrapper.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot/src/main/java/org/springframework/boot/jta/atomikos/AtomikosXADataSourceWrapper.java
https://hazelcast.com/

Otherwise, Spring Boot tries to find the Hazelcast configuration from the default locations:
hazelcast.xml in the working directory or at the root of the classpath, or a .yaml counterpart in the
same locations. We also check if the hazelcast.config system property is set. See the Hazelcast
documentation for more details.

If hazelcast-client is present on the classpath, Spring Boot first attempts to create a client by
checking the following configuration options:

¥ The presence of a com.hazelcast.client.config.ClientConfig bean.

¥ A configuration file defined by the spring.hazelcast.config property.

¥ The presence of the hazelcast.client.config system property.

¥ A hazelcast-client.xml in the working directory or at the root of the classpath.

¥ A hazelcast-client.yaml in the working directory or at the root of the classpath.

Spring Boot also has explicit caching support for Hazelcast . If caching is enabled,
. the Hazelcastinstance is automatically wrapped ina CacheManageamplementation.

4.21. Quartz Scheduler

Spring Boot offers several conveniences for working with the Quartz scheduler , including the
spring-boot-starter-quartz OsStarterO. If Quartz is available, a Scheduler is auto-configured (through
the SchedulerFactoryBeanabstraction).

Beans of the following types are automatically picked up and associated with the Scheduler:

¥ JobDetail : defines a particular Job. JobDetail instances can be built with the JobBuilder API.
¥ Calendar.
¥ Trigger : defines when a particular job is triggered.
By default, an in-memory JobStore is used. However, it is possible to configure a JDBC-based store if

a DataSourcebean is available in your application and if the spring.quartz.job-store-type property
is configured accordingly, as shown in the following example:

spring.quartz.job-store-type=jdbc

When the JDBC store is used, the schema can be initialized on startup, as shown in the following
example:

spring.quartz.jdbc.initialize-schema=always

By default, the database is detected and initialized by using the standard scripts

1) provided with the Quartz library. These scripts drop existing tables, deleting all
triggers on every restart. It is also possible to provide a custom script by setting the
spring.quartz.jdbc.schema property.

172

https://docs.hazelcast.org/docs/latest/manual/html-single/
https://docs.hazelcast.org/docs/latest/manual/html-single/
https://www.quartz-scheduler.org/

To have Quartz use a DataSourceother than the applicationOs main DataSource declare a DataSource
bean, annotating its @Beamethod with @QuartzDataSourceDoing so ensures that the Quartz-specific
DataSourceis used by both the SchedulerFactoryBeanand for schema initialization. Similarly, to have
Quartz use a TransactionManager other than the applicationOs main TransactionManager declare a
TransactionManagerbean, annotating its @Beamethod with @QuartzTransactionManager

By default, jobs created by configuration will not overwrite already registered jobs that have been
read from a persistent job store. To enable overwriting existing job definitions set the

spring.quartz.overwrite-existing-jobs property.
Quartz Scheduler configuration can be customized using spring.quartz ~ properties and
SchedulerFactoryBeanCustomizer beans, which allow programmatic SchedulerFactoryBean

customization. Advanced Quartz configuration properties can be customized using
spring.quartz.properties.*

In particular, an Executor bean is not associated with the scheduler as Quartz
offers a way to configure the scheduler via spring.quartz.properties . If you need
to customize the task executor, consider implementing
SchedulerFactoryBeanCustomizer.

Jobs can define setters to inject data map properties. Regular beans can also be injected in a similar
manner, as shown in the following example:

public class SampleJob extends QuartzJobBean {

E private MyService myService;

mp

private String name;

/I Inject "MyService" bean
public void setMyService(MyService myService) { ... }

m M

Il Inject the "name" job data property
public void setName(String name) { ... }

T TP

@Override
protected void executelnternal(JobExecutionContext context)
throws JobExecutionException {

™ > [Tp My me

—

4.22. Task Execution and Scheduling

In the absence of an Executor bean in the context, Spring Boot auto-configures a
ThreadPoolTaskExecutorwith sensible defaults that can be automatically associated to asynchronous
task execution (@EnableAsynand Spring MVC asynchronous request processing.

173

If you have defined a custom Executor in the context, regular task execution (i.e.
@EnableAsyncwill use it transparently but the Spring MVC support will not be
configured as it requires an AsyncTaskExecutor implementation (named
applicationTaskExecutor). Depending on your target arrangement, you could

' change your Executor into a ThreadPoolTaskExecutor or define both a
ThreadPoolTaskExecutorand an AsyncConfigurer wrapping your custom Executor.

The auto-configured TaskExecutorBuilder allows you to easily create instances that
reproduce what the auto-configuration does by default.

The thread pool uses 8 core threads that can grow and shrink according to the load. Those default
settings can be fine-tuned using the spring.task.execution = namespace as shown in the following
example:

spring.task.execution.pool.max-size=16
spring.task.execution.pool.queue-capacity=100
spring.task.execution.pool.keep-alive=10s

This changes the thread pool to use a bounded queue so that when the queue is full (100 tasks), the
thread pool increases to maximum 16 threads. Shrinking of the pool is more aggressive as threads
are reclaimed when they are idle for 10 seconds (rather than 60 seconds by default).

A ThreadPoolTaskSchedulercan also be auto-configured if need to be associated to scheduled task
execution (@EnableSchedulinyy The thread pool uses one thread by default and those settings can be
fine-tuned using the spring.task.scheduling namespace.

Both a TaskExecutorBuilder bean and a TaskSchedulerBuilder bean are made available in the context
if a custom executor or scheduler needs to be created.

4.23. Spring Integration

Spring Boot offers several conveniences for working with Spring Integration , including the spring-
boot-starter-integration OsStarterO. Spring Integration provides abstractions over messaging and
also other transports such as HTTP, TCP, and others. If Spring Integration is available on your
classpath, it is initialized through the @Enablelntegration annotation.

Spring Boot also configures some features that are triggered by the presence of additional Spring
Integration modules. If spring-integration-jmx is also on the classpath, message processing
statistics are published over JMX. If spring-integration-jdbc is available, the default database
schema can be created on startup, as shown in the following line:

spring.integration.jdbc.initialize-schema=always

If spring-integration-rsocket is available, developers can configure an RSocket server using
"spring.rsocket.server.*" properties and let it use IntegrationRSocketEndpoint or
RSocketOutboundGatewasomponents to handle incoming RSocket messages. This infrastructure can

174

https://spring.io/projects/spring-integration

handle Spring Integration RSocket channel adapters and @MessageMappingandlers (given
"spring.integration.rsocket.server.message-mapping-enabled" is configured).

Spring Boot can also auto-configure an ClientRSocketConnector using configuration properties:

Connecting to a RSocket server over TCP
spring.integration.rsocket.client.host=example.org
spring.integration.rsocket.client.port=9898

Connecting to a RSocket Server over WebSocket
spring.integration.rsocket.client.uri=ws://example.org

See the IntegrationAutoConfiguration and IntegrationProperties classes for more details.

By default, if a Micrometer meterRegistry bean is present, Spring Integration metrics will be
managed by Micrometer. If you wish to use legacy Spring Integration metrics, add a
DefaultMetricsFactory bean to the application context.

4.24. Spring Session

Spring Boot provides Spring Session auto-configuration for a wide range of data stores. When
building a Servlet web application, the following stores can be auto-configured:

¥ JDBC
¥ Redis
¥ Hazelcast

¥ MongoDB
The Servlet auto-configuration replaces the need to use @Enable*HttpSession
When building a reactive web application, the following stores can be auto-configured:

¥ Redis

¥ MongoDB
The reactive auto-configuration replaces the need to use @Enable*WebSession

If a single Spring Session module is present on the classpath, Spring Boot uses that store
implementation automatically. If you have more than one implementation, you must choose the
StoreType that you wish to use to store the sessions. For instance, to use JDBC as the back-end store,
you can configure your application as follows:

spring.session.store-type=jdbc

! You can disable Spring Session by setting the store-type to none

175

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationAutoConfiguration.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/integration/IntegrationProperties.java
https://spring.io/projects/spring-session
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/session/StoreType.java

Each store has specific additional settings. For instance, it is possible to customize the name of the
table for the JDBC store, as shown in the following example:

spring.session.jdbc.table-name=SESSIONS

For setting the timeout of the session you can use the spring.session.timeout property. If that
property is not set, the auto-configuration falls back to the value of server.servlet.session.timeout

You can take control over Spring SessionOs configuration using @Enable*HttpSession (Servlet) or
@Enable*WebSessidReactive). This will cause the auto-configuration to back off. Spring Session can
then be configured using the annotationOs attributes rather than the previously described
configuration properties.

4.25. Monitoring and Management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. Spring Boot exposes the most suitable MBeanServeas a bean with an ID of mbeanServer
Any of your beans that are annotated with Spring JMX annotations (@ManagedResoufce
@ManagedAttribute or @ManagedOperatipare exposed to it.

If your platform provides a standard MBeanServerSpring Boot will use that and default to the VM
MBeanServeif necessary. If all that fails, a new MBeanServewill be created.

See the ImxAutoConfiguration class for more details.

4.26. Testing

Spring Boot provides a number of utilities and annotations to help when testing your application.
Test support is provided by two modules: spring-boot-test contains core items, and spring-boot-
test-autoconfigure supports auto-configuration for tests.

Most developers use the spring-boot-starter-test OsStarterO, which imports both Spring Boot test
modules as well as JUnit Jupiter, AssertJ, Hamcrest, and a number of other useful libraries.

176

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/JmxAutoConfiguration.java

The starter also brings the vintage engine so that you can run both JUnit 4 and
JUnit 5 tests. If you have migrated your tests to JUnit 5, you should exclude JUnit 4
support, as shown in the following example:

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-test</artifactld>
<scope>test</scope>
<exclusions>
<exclusion>
<groupld>org.junit.vintage</groupld>
<artifactld>junit-vintage-engine</artifactld>
</exclusion>
</exclusions>
</dependency>

™ M T e me T e me mp

4.26.1. Test Scope Dependencies
The spring-boot-starter-test OsStarterO (in thetest scope) contains the following provided libraries:
¥ JUnit 5 (including the vintage engine for backward compatibility with JUnit 4): The de-facto
standard for unit testing Java applications.

¥ Spring Test & Spring Boot Test: Utilities and integration test support for Spring Boot
applications.

¥ AssertJ: A fluent assertion library.

¥ Hamcrest : A library of matcher objects (also known as constraints or predicates).
¥ Mockito : A Java mocking framework.

¥ JSONassert An assertion library for JISON.

¥ JsonPath: XPath for JSON.

We generally find these common libraries to be useful when writing tests. If these libraries do not
suit your needs, you can add additional test dependencies of your own.

4.26.2. Testing Spring Applications

One of the major advantages of dependency injection is that it should make your code easier to unit
test. You can instantiate objects by using the newoperator without even involving Spring. You can
also use mock objects instead of real dependencies.

Often, you need to move beyond unit testing and start integration testing (with a Spring
ApplicationContext). It is useful to be able to perform integration testing without requiring
deployment of your application or needing to connect to other infrastructure.

The Spring Framework includes a dedicated test module for such integration testing. You can
declare a dependency directly to org.springframework:spring-test or use the spring-boot-starter-
test OStarterO to pull it in transitively.

177

https://junit.org/junit5/
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#integration-testing
https://assertj.github.io/doc/
https://github.com/hamcrest/JavaHamcrest
https://site.mockito.org/
https://github.com/skyscreamer/JSONassert
https://github.com/jayway/JsonPath

If you have not used the spring-test module before, you should start by reading the relevant
section of the Spring Framework reference documentation.

4.26.3. Testing Spring Boot Applications

A Spring Boot application is a Spring ApplicationContext , so nothing very special has to be done to
test it beyond what you would normally do with a vanilla Spring context.

External properties, logging, and other features of Spring Boot are installed in the
context by default only if you use SpringApplication to create it.

Spring Boot provides a @SpringBootTestannotation, which can be used as an alternative to the
standard spring-test @ContextConfiguration annotation when you need Spring Boot features. The
annotation works by creating the ApplicationContext used in your tests through SpringApplication
In addition to @SpringBootTesta number of other annotations are also provided for testing more
specific slices of an application.

If you are using JUnit 4, donOt forget to also add @RunWith(SpringRunner.class) to
I your test, otherwise the annotations will be ignored. If you are using JUnit 5,
. thereOs no need to add the equivalent @ExtendWith(SpringExtension.class) as
@SpringBootTestand the other @ETestannotations are already annotated with it.

By default, @SpringBootTestwill not start a server. You can use the webEnvironmentattribute of
@SpringBootTestto further refine how your tests run:

¥ MOCRefault) : Loads a web ApplicationContext and provides a mock web environment.
Embedded servers are not started when using this annotation. If a web environment is not
available on your classpath, this mode transparently falls back to creating a regular non-web
ApplicationContext . It can be wused in conjunction with @AutoConfigureMockMvcor
@AutoConfigureWebTestClienfor mock-based testing of your web application.

¥ RANDOM_PORdads a WebServerApplicationContext and provides a real web environment.
Embedded servers are started and listen on a random port.

¥ DEFINED_POROoads a WebServerApplicationContext and provides a real web environment.
Embedded servers are started and listen on a defined port (from your application.properties)
or on the default port of 8080

¥ NONELoads an ApplicationContext by using SpringApplication but does not provide any web
environment (mock or otherwise).

If your test is @Transactional, it rolls back the transaction at the end of each test
method by default. However, as using this arrangement with either RANDOM_PORT
DEFINED_PORplicitly provides a real servlet environment, the HTTP client and

server run in separate threads and, thus, in separate transactions. Any transaction

initiated on the server does not roll back in this case.

178

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#testing
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#testing

@SpringBootTestwith webEnvironment = WebEnvironment.RANDOM_R@IR@lso start
| the management server on a separate random port if your application uses a
different port for the management server.

Detecting Web Application Type

If Spring MVC is available, a regular MVVC-based application context is configured. If you have only
Spring WebFlux, weOQll detect that and configure a WebFlux-based application context instead.

If both are present, Spring MVC takes precedence. If you want to test a reactive web application in
this scenario, you must set the spring.main.web-application-type property:

@SpringBootTest(properties = "spring.main.web-application-type=reactive")
class MyWebFluxTests { ... }

Detecting Test Configuration

If you are familiar with the Spring Test Framework, you may be used to using
@ContextConfiguration(classes=E) in order to specify which Spring @Configuration to load.
Alternatively, you might have often used nested @Configuration classes within your test.

When testing Spring Boot applications, this is often not required. Spring BootOs @*Testannotations
search for your primary configuration automatically whenever you do not explicitly define one.

The search algorithm works up from the package that contains the test until it finds a class
annotated with @ SpringBootApplication or @SpringBootConfiguration. As long as you structured your
code in a sensible way, your main configuration is usually found.

If you use a test annotation to test a more specific slice of your application , you
should avoid adding configuration settings that are specific to a particular area on
the main methodOs application class .

The underlying component scan configuration of @SpringBootApplication defines
exclude filters that are used to make sure slicing works as expected. If you are
using an explicit ~@ComponentScadirective on your @SpringBootApplication
-annotated class, be aware that those filters will be disabled. If you are using
slicing, you should define them again.

If you want to customize the primary configuration, you can use a nested @TestConfiguration class.
Unlike a nested @Configuration class, which would be used instead of your applicationOs primary
configuration, a nested @TestConfiguration class is used in addition to your applicationOs primary
configuration.

SpringOs test framework caches application contexts between tests. Therefore, as

| long as your tests share the same configuration (no matter how it is discovered),
the potentially time-consuming process of loading the context happens only once.

179

Excluding Test Configuration

If your application uses component scanning (for example, if you use @SpringBootApplication or

@ComponentSg¢agou may find top-level configuration classes that you created only for specific tests
accidentally get picked up everywhere.

As we have seen earlier , @TestConfiguration can be used on an inner class of a test to customize the
primary configuration. When placed on a top-level class, @TestConfiguration indicates that classes

in src/test/java should not be picked up by scanning. You can then import that class explicitly
where it is required, as shown in the following example:

@SpringBootTest
@Import(MyTestsConfiguration.class)
class MyTests {

E @Test

E void exampleTest() {
E

E }

}

If you directly use @ComponentScéhat is, not through @ SpringBootApplication) you
need to register the TypeExcludeFilter with it. See the Javadoc for details.

Using Application Arguments

If your application expects arguments , you can have @SpringBootTestinject them using the args
attribute.

@SpringBootTest(args = "--app.test=one")
class ApplicationArgumentsExampleTests {

E @Test

E void applicationArgumentsPopulated(@Autowired ApplicationArguments args) {
E assertThat(args.getOptionNames()).containsOnly("app.test");

E assertThat(args.getOptionValues("app.test")).containsOnly("one");

E }

}

Testing with a mock environment
By default, @SpringBootTestdoes not start the server. If you have web endpoints that you want to

test against this mock environment, you can additionally configure MockMvcas shown in the
following example:

180

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/context/TypeExcludeFilter.html
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#spring-mvc-test-framework

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired,;

import org.springframework.boot.test.autoconfigure.web.servlet. AutoConfigureMockMvc;
import org.springframewaork.boot.test.context.SpringBootTest;

import org.springframework.test.web.servlet. MockMvc;

import static org.springframework.test.web.servlet.request. MockMvcRequestBuilders.get;
import static

org.springframework.test.web.servlet.result. MockMvcResultMatchers.content;

import static

org.springframework.test.web.servlet.result. MockMvcResultMatchers.status;

@SpringBootTest
@AutoConfigureMockMvc
class MockMvcExampleTests {

@Test
void exampleTest(@Autowired MockMvc mvc) throws Exception {

m [Ty [T

mvc.perform(get("/")).andExpect(status().isOk()).andExpect(content().string("Hello
World"));
E }

If you want to focus only on the web layer and not start a complete
. ApplicationContext , consider using @WebMvcTesstead .

Alternatively, you can configure a WebTestClient as shown in the following example:

181

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#webtestclient-tests

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired,;

import
org.springframework.boot.test.autoconfigure.web.reactive.AutoConfigureWebTestClient;
import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.test.web.reactive.server.WebTestClient;

@SpringBootTest
@AutoConfigureWebTestClient
class MockWebTestClientExampleTests {

@Test
void exampleTest(@Autowired WebTestClient webClient) {

m [T [T

webClient.get().uri("/").exchange().expectStatus().isOk().expectBody(String.class).isE
qualTo("Hello World");
E }

Testing within a mocked environment is usually faster than running with a full
Servlet container. However, since mocking occurs at the Spring MVC layer, code
that relies on lower-level Servlet container behavior cannot be directly tested with
MockMvc.

For example, Spring BootOs error handling is based on the Oerror pageO support
provided by the Servlet container. This means that, whilst you can test your MVC
layer throws and handles exceptions as expected, you cannot directly test that a
specific custom error page is rendered. If you need to test these lower-level
concerns, you can start a fully running server as described in the next section.

Testing with a running server

If you need to start a full running server, we recommend that you use random ports. If you use
@SpringBootTest(webEnvironment=WebEnvironment. RANDOM _,R@RiVpailable port is picked at random
each time your test runs.

The @LocalServerPort annotation can be used to inject the actual port used into your test. For
convenience, tests that need to make REST calls to the started server can additionally @Autowirea
WebTestClient, which resolves relative links to the running server and comes with a dedicated API

for verifying responses, as shown in the following example:

182

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#webtestclient-tests

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired,;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframewaork.boot.test.context.SpringBootTest.WebEnvironment;
import org.springframework.test.web.reactive.server.WebTestClient;

@SpringBootTest(webEnvironment = WebEnvironment. RANDOM_PORT)
class RandomPortWebTestClientExampleTests {

@Test
void exampleTest(@Autowired WebTestClient webClient) {

T [T [T

webClient.get().uri("/").exchange().expectStatus().isOk().expectBody(String.class).isE
qualTo("Hello World");
E }

}

This setup requires spring-webflux on the classpath. If you canOt or wonOt add webflux, Spring Boot
also provides a TestRestTemplatefacility:

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.boot.test.context.SpringBootTest.WebEnvironment;
import org.springframework.boot.test.web.client. TestRestTemplate;

import static org.assertj.core.api.Assertions.assertThat;

@SpringBootTest(webEnvironment = WebEnvironment. RANDOM_PORT)
class RandomPortTestRestTemplateExampleTests {

E @Test

E void exampleTest(@Autowired TestRestTemplate restTemplate) {
E String body = restTemplate.getForObject("/", String.class);

E assertThat(body).isEqualTo("Hello World");

E }

}

Customizing WebTestClient

To customize the WebTestClient bean, configure a WebTestClientBuilderCustomizer bean. Any such
beans are called with the WebTestClient.Builder thatis used to create the WebTestClient.

183

Using JMX

As the test context framework caches context, JMX is disabled by default to prevent identical
components to register on the same domain. If such test needs access to an MBeanServerconsider
marking it dirty as well:

@ExtendWith(SpringExtension.class)
@SpringBootTest(properties = "spring.jmx.enabled=true")
@DirtiesContext

class SampleJmxTests {

@Autowired
private MBeanServer mBeanServer;

[T [T

@Test
void exampleTest() {
...

[T [T [T TP

—

Mocking and Spying Beans

When running tests, it is sometimes necessary to mock certain components within your application
context. For example, you may have a facade over some remote service that is unavailable during
development. Mocking can also be useful when you want to simulate failures that might be hard to
trigger in a real environment.

Spring Boot includes a @MockBeamnotation that can be used to define a Mockito mock for a bean
inside your ApplicationContext . You can use the annotation to add new beans or replace a single
existing bean definition. The annotation can be used directly on test classes, on fields within your
test, or on @Configuration classes and fields. When used on a field, the instance of the created mock
is also injected. Mock beans are automatically reset after each test method.

If your test uses one of Spring BootOs test annotations (such as ~ @SpringBootTes),
this feature is automatically enabled. To use this feature with a different
arrangement, a listener must be explicity added, as shown in the following
example:

@TestExecutionListeners(MockitoTestExecutionListener.class)

The following example replaces an existing RemoteServicebean with a mock implementation:

184

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.*;
import org.springframework.boot.test.context.*;

import org.springframework.boot.test.mock.mockito.*;

import static org.assertj.core.api.Assertions.*;
import static org.mockito.BDDMockito.*;

@SpringBootTest
class MyTests {

T [T

[T [T

= [T [T [Ty TP TP [T> [TH

Additionally, you can use ~@SpyBedan wrap any existing bean with a Mockito spy. See the Javadoc for

@MockBean
private RemoteService remoteService;

@Autowired
private Reverser reverser;

@Test
void exampleTest() {

}

/l RemoteService has been injected into the reverser bean
given(this.remoteService.someCall()).willReturn("mock");
String reverse = reverser.reverseSomeCall();
assertThat(reverse).isEqualTo("kcom");

@MockBearannot be used to mock the behavior of a bean thatOs exercised during
application context refresh. By the time the test is executed, the application
context refresh has completed and it is too late to configure the mocked behavior.
We recommend using a @Beamethod to create and configure the mock in this
situation.

full details.

CGLib proxies, such as those created for scoped beans, declare the proxied
methods as final . This stops Mockito from functioning correctly as it cannot mock
or spy on final methods in its default configuration. If you want to mock or spy on
such a bean, configure Mockito to use its inline mock maker by adding
org.mockito:mockito-inline to your applicationOs test dependencies. This allows
Mockito to mock and spy on final methods.

While SpringOs test framework caches application contexts between tests and

reuses a context for tests sharing the same configuration, the use of @MockBear

@SpyBeainfluences the cache key, which will most likely increase the number of
contexts.

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/org/springframework/boot/test/mock/mockito/SpyBean.html

If you are using @SpyBeato spy on a bean with @Cacheablenethods that refer to
I parameters by name, your application must be compiled with -parameters. This
. ensures that the parameter names are available to the caching infrastructure once

the bean has been spied upon.

When you are using @SpyBeao spy on a bean that is proxied by Spring, you may
need to remove SpringOs proxy in some situations, for example when setting
expectations using given or when Use
AopTestUtils.getTargetObject(yourProxiedSpy) to do so.

Auto-configured Tests

Spring BootOs auto-configuration system works well for applications but can sometimes be a little
too much for tests. It often helps to load only the parts of the configuration that are required to test

a OsliceO of your application. For example, you might want to test that Spring MVC controllers are
mapping URLSs correctly, and you do not want to involve database calls in those tests, or you might
want to test JPA entities, and you are not interested in the web layer when those tests run.

The spring-boot-test-autoconfigure module includes a number of annotations that can be used to
automatically configure such OslicesO. Each of them works in a similar way, providing a @ETest
annotation that loads the ApplicationContext and one or more @AutoConfigureE annotations that
can be used to customize auto-configuration settings.

Each slice restricts component scan to appropriate components and loads a very
restricted set of auto-configuration classes. If you need to exclude one of them,
most @ETest annotations provide an excludeAutoConfiguration attribute.
Alternatively, you can use ~ @ImportAutoConfiguration#exclude.

Including multiple OslicesO by using several ~@ETest annotations in one test is not
supported. If you need multiple OslicesO, pick one of the ~ @ETest annotations and
include the @AutoConfigureE annotations of the other OslicesO by hand.

It is also possible to use the @AutoConfigureE annotations with the standard
l @SpringBootTestannotation. You can use this combination if you are not interested
in OslicingO your application but you want some of the auto-configured test beans.

Auto-configured JSON Tests

To test that object JSON serialization and deserialization is working as expected, you can use the
@JsonTesiannotation. @JsonTesiauto-configures the available supported JSON mapper, which can
be one of the following libraries:

¥ Jackson ObjectMapper any @JsonCompondmeans and any Jackson Modules

¥ Gson

¥ Jsonb

186

A list of the auto-configurations that are enabled by @JsonTestan be found in the
. appendix .

If you need to configure elements of the auto-configuration, you can use the
@AutoConfigureJsonTestersannotation.

Spring Boot includes AssertJ-based helpers that work with the JSONAssert and JsonPath libraries to
check that JSON appears as expected. The JacksonTester, GsonTester JsonbTester, and
BasicJsonTester classes can be used for Jackson, Gson, Jsonb, and Strings respectively. Any helper
fields on the test class can be @Autowiredwhen using @JsonTestThe following example shows a test
class for Jackson:

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.*;
import org.springframework.boot.test.autoconfigure.json.*;
import org.springframework.boot.test.context.*;

import org.springframework.boot.test.json.*;

import static org.assertj.core.api.Assertions.*;

@JsonTest
class MyJsonTests {

E @Autowired

E private JacksonTester<VehicleDetails> json;

E @Test

E void testSerialize() throws Exception {

E VehicleDetails details = new VehicleDetails("Honda", "Civic");

E /I Assert against a ".json’ file in the same package as the test

E assertThat(this.json.write(details)).isEqualToJson("expected.json");

E /I Or use JSON path based assertions

E assertThat(this.json.write(details)).hasJsonPathStringValue("@.make");
E assertThat(this.json.write(details)).extractingJsonPathStringValue("@.make")
E isEqualTo("Honda");

E }

E @Test

E void testDeserialize() throws Exception {

E String content = "{\"make\":\"Ford\" \"model\":\"Focus\'}";

E assertThat(this.json.parse(content))

E .isEqualTo(new VehicleDetails("Ford", "Focus"));

E assertThat(this.json.parseObject(content).getMake()).isEqualTo("Ford");
E }

}

187

JSON helper classes can also be used directly in standard unit tests. To do so, call
| the initFields method of the helper in your @Beforemethod if you do not use
@JsonTest

If youOre using Spring BootOs AssertJ-based helpers to assert on a number value at a given JSON
path, you might not be able to use isEqualTo depending on the type. Instead, you can use AssertJOs
satisfies to assert that the value matches the given condition. For instance, the following example
asserts that the actual number is a float value close to 0.15 within an offset of 0.01.

assertThat(json.write(message))

E .extractingJsonPathNumberValue("@.test.numberValue")

E .satisfies((number) -> assertThat(number.floatValue()).isCloseTo(0.15f,
within(0.01f)));

Auto-configured Spring MVC Tests

To test whether Spring MVC controllers are working as expected, use the @WebMvcTeannotation.
@WebMvcTeaito-configures the Spring MVC infrastructure and limits scanned beans to @Controller,
@ControllerAdvice, @JsonComponentConverter, GenericConverter, Filter , Handlerinterceptor |,
WebMvcConfigurer and HandlerMethodArgumentResolver Regular @Component and
@cConfigurationProperties beans are not scanned when the @WebMvcTestnnotation is used.
@EnableConfigurationProperties can be used to include @ConfigurationProperties beans.

A list of the auto-configuration settings that are enabled by @WebMvcTesan be
found in the appendix

If you need to register extra components, such as the Jackson Module you can
. import additional configuration classes by using @Importon your test.

Often, @WebMvcTeist limited to a single controller and is used in combination with @MockBedn
provide mock implementations for required collaborators.

@WebMvcTealso auto-configures MockMvcMock MVC offers a powerful way to quickly test MVC
controllers without needing to start a full HTTP server.

You can also auto-configure MockMvin a non- @WebMvcTesuch as @SpringBootTest
. by annotating it with ~ @AutoConfigureMockMyvThe following example uses MockMv.c

188

import org.junit.jupiter.api.*;

import org.springframework.beans.factory.annotation.*;

import org.springframework.boot.test.autoconfigure.web.servlet.*;
import org.springframework.boot.test.mock.mockito.*;

import static org.assertj.core.api.Assertions.*;

import static org.mockito.BDDMockito.*;

import static org.springframework.test.web.servlet.request. MockMvcRequestBuilders.*;
import static org.springframework.test.web.servlet.result. MockMvcResultMatchers.*;

@WebMvcTest(UserVehicleController.class)
class MyControllerTests {

@Autowired
private MockMvc mvc;

m [T

@MockBean
private UserVehicleService userVehicleService;

T [T

@Test
void testExample() throws Exception {
given(this.userVehicleService.getVehicleDetails("sboot"))
willReturn(new VehicleDetails("Honda", "Civic"));
this.mvc.perform(get("/sboot/vehicle").accept(MediaType. TEXT_PLAIN))
.andExpect(status().isOk()).andExpect(content().string("Honda

[T [T [T [Ty [T [T

Civic");
E }

If you need to configure elements of the auto-configuration (for example, when
l servlet filters should be applied) you can use attributes in the
@AutoConfigureMockMannotation.

If you use HtmlUnit or Selenium, auto-configuration also provides an HtmlUnit WebClient bean
and/or a Selenium WebDriverbean. The following example uses HtmlUnit:

189

import com.gargoylesoftware.htmlunit.*;

import org.junit.jupiter.api.*;

import org.springframework.beans.factory.annotation.*;

import org.springframework.boot.test.autoconfigure.web.servlet.*;
import org.springframework.boot.test.mock.mockito.*;

import static org.assertj.core.api.Assertions.*;
import static org.mockito.BDDMockito.*;

@WebMvcTest(UserVehicleController.class)
class MyHtmlUnitTests {

@Autowired
private WebClient webClient;

m m

@MockBean
private UserVehicleService userVehicleService;

m M

@Test
void testExample() throws Exception {
given(this.userVehicleService.getVehicleDetails("sboot"))
willReturn(new VehicleDetails("Honda", "Civic"));
HtmlPage page = this.webClient.getPage("/sboot/vehicle.html");
assertThat(page.getBody().getTextContent()).isEqualTo("Honda Civic");

}

[T e T e Ty mp [mp

—

By default, Spring Boot puts WebDriverbeans in a special OscopeO to ensure that the
driver exits after each test and that a new instance is injected. If you do not want
this behavior, you can add @Scope("singleton™) to your WebDriver@Beadefinition.

The webDriver scope created by Spring Boot will replace any user defined scope of
the same name. If you define your own webDriver scope you may find it stops
working when you use @WebMvcTest

If you have Spring Security on the classpath, @WebMvcTestill also scan WebSecurityConfigurer
beans. Instead of disabling security completely for such tests, you can use Spring SecurityOs test
support. More details on how to use Spring SecurityOs MockMvsupport can be found in this Testing
With Spring Security how-to section.

Sometimes writing Spring MVC tests is not enough; Spring Boot can help you run
. full end-to-end tests with an actual server

Auto-configured Spring WebFlux Tests

To test that Spring WebFlux controllers are working as expected, you can use the @WebFluxTest
annotation. @WebFluxTesauto-configures the Spring WebFlux infrastructure and limits scanned

190

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web-reactive.html

beans to @Controller, @ControllerAdvice, @JsonCompone@onverter, GenericConverter, WebFilter , and
WebFluxConfigurer. Regular @Componeand @ConfigurationProperties beans are not scanned when
the @WebFluxTesannotation is used. @EnableConfigurationProperties can be used to include
@ConfigurationProperties beans.

I A list of the auto-configurations that are enabled by @WebFluxTestan be found in
. the appendix .
| If you need to register extra components, such as Jackson Module you can import
. additional configuration classes using @Importon your test.
Often, @WebFluxTess limited to a single controller and used in combination with the @MockBean

annotation to provide mock implementations for required collaborators.

@WebFluxTestalso auto-configures WebTestClient, which offers a powerful way to quickly test
WebFlux controllers without needing to start a full HTTP server.

You can also auto-configure WebTestClient in a non- @WebFluxTest(such as
l @SpringBootTest by annotating it with ~ @AutoConfigureWebTestClient The following
example shows a class that uses both @WebFluxTesind a WebTestClient:

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired,;

import org.springframework.boot.test.autoconfigure.web.reactive.WebFluxTest;
import org.springframework.http.MediaType;

import org.springframework.test.web.reactive.server.WebTestClient;

@WebFluxTest(UserVehicleController.class)
class MyControllerTests {

@Autowired
private WebTestClient webClient;

m >

@MockBean
private UserVehicleService userVehicleService;

T TP

@Test
void testExample() throws Exception {
given(this.userVehicleService.getVehicleDetails("sboot"))
willReturn(new VehicleDetails("Honda", "Civic"));
this.webClient.get().uri("/sboot/vehicle").accept(MediaType. TEXT_PLAIN)
.exchange()
.expectStatus().isOk()
.expectBody(String.class).isEqualTo("Honda Civic");

[T [T > T Ty e T My me

—

191

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#webtestclient

I This setup is only supported by WebFlux applications as using WebTestClient in a
. mocked web application only works with WebFlux at the moment.

@WebFluxTestannot detect routes registered via the functional web framework.
For testing RouterFunction beans in the context, consider importing your
RouterFunction yourself via @Importor using @SpringBootTest

@WebFluxTestannot detect custom security configuration registered via a @Beanf
type SecurityWebFilterChain . To include that in your test, you will need to import
the configuration that registers the bean via @Importor use @SpringBootTest

Sometimes writing Spring WebFlux tests is not enough; Spring Boot can help you
run full end-to-end tests with an actual server

Auto-configured Data JPA Tests

You can use the @DataJpaTestannotation to test JPA applications. By default, it scans for @Entity
classes and configures Spring Data JPA repositories. If an embedded database is available on the
classpath, it configures one as well. Regular @Componeahd @ConfigurationProperties beans are not
scanned when the @DataJpaTesannotation is used. @EnableConfigurationProperties can be used to
include @ConfigurationProperties beans.

A list of the auto-configuration settings that are enabled by @DataJpaTestan be
found in the appendix

By default, data JPA tests are transactional and roll back at the end of each test. See the relevant
section in the Spring Framework Reference Documentation for more details. If that is not what you
want, you can disable transaction management for a test or for the whole class as follows:

import org.junit.jupiter.api.Test;

import org.springframework.boot.test.autoconfigure.orm.jpa.DataJpaTest;
import org.springframework.transaction.annotation.Propagation;

import org.springframework.transaction.annotation. Transactional,

@DataJpaTest
@Transactional(propagation = Propagation.NOT_SUPPORTED)
class ExampleNonTransactionalTests {

Data JPA tests may also inject a TestEntityManager bean, which provides an alternative to the
standard JPA EntityManager that is specifically designed for tests. If you want to use
TestEntityManager outside of @DataJpaTest instances, you can also use the
@AutoConfigureTestEntityManagerannotation. A JdbcTemplateis also available if you need that. The
following example shows the =~ @DataJpaTesannotation in use:

192

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-test-autoconfigure/src/main/java/org/springframework/boot/test/autoconfigure/orm/jpa/TestEntityManager.java

import org.junit.jupiter.api.Test;
import org.springframework.boot.test.autoconfigure.orm.jpa.*;

import static org.assertj.core.api.Assertions.*;

@DataJpaTest
class ExampleRepositoryTests {

@Autowired
private TestEntityManager entityManager;

m™ M

@Autowired
private UserRepository repository;

T [T

@Test

void testExample() throws Exception {
this.entityManager.persist(new User("sboot", "1234"));
User user = this.repository.findByUsername("sboot");
assertThat(user.getUsername()).isEqualTo("sboot");
assertThat(user.getVin()).isEqualTo("1234");

[T T [T [T TP TP [T

—

In-memory embedded databases generally work well for tests, since they are fast and do not
require any installation. If, however, you prefer to run tests against a real database you can use the
@AutoConfigureTestDatabas@annotation, as shown in the following example:

@DataJpaTest
@AutoConfigureTestDatabase(replace=Replace.NONE)
class ExampleRepositoryTests {

E /..

Auto-configured JDBC Tests

@JdbcTesis similar to @DataJpaTesbut is for tests that only require a DataSourceand do not use
Spring Data JDBC. By default, it configures an in-memory embedded database and a JdbcTemplate
Regular @Componerand @ConfigurationProperties beans are not scanned when the @JdbcTest
annotation is used. @EnableConfigurationProperties can be used to include @ConfigurationProperties
beans.

A list of the auto-configurations that are enabled by @JdbcTestan be found in the
. appendix .

By default, JDBC tests are transactional and roll back at the end of each test. See the relevant section

193

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions

in the Spring Framework Reference Documentation for more details. If that is not what you want,
you can disable transaction management for a test or for the whole class, as follows:

import org.junit.jupiter.api.Test;

import org.springframework.boot.test.autoconfigure.jdbc.JdbcTest;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation. Transactional,

@JdbcTest
@Transactional(propagation = Propagation.NOT_SUPPORTED)
class ExampleNonTransactionalTests {

If you prefer your test to run against a real database, you can use the @AutoConfigureTestDatabase
annotation in the same way as for DataJpaTest (See "Auto-configured Data JPA Tests ".)

Auto-configured Data JDBC Tests

@DataJdbcTesis similar to @JdbcTestbut is for tests that use Spring Data JDBC repositories. By
default, it configures an in-memory embedded database, a JdbcTemplate and Spring Data JDBC
repositories. Regular @Componerind @ConfigurationProperties beans are not scanned when the
@DataJdbcTest annotation is used. @EnableConfigurationProperties can be used to include
@ConfigurationProperties beans.

A list of the auto-configurations that are enabled by @DataJdbcTestan be found in
. the appendix .

By default, Data JDBC tests are transactional and roll back at the end of each test. See the relevant
section in the Spring Framework Reference Documentation for more details. If that is not what you

want, you can disable transaction management for a test or for the whole test class as shown in the
JDBC example.

If you prefer your test to run against a real database, you can use the @AutoConfigureTestDatabase
annotation in the same way as for DataJpaTest (See "Auto-configured Data JPA Tests ".)

Auto-configured jOOQ Tests

You can use @JooqgTesin a similar fashion as @JdbcTesbut for jOOQ-related tests. As jOOQ relies
heavily on a Java-based schema that corresponds with the database schema, the existing DataSource
is used. If you want to replace it with an in-memory database, you can use
@AutoConfigureTestDatabaseto override those settings. (For more about using JOOQ with Spring
Boot, see "Using jJOOQ", earlier in this chapter.) Regular ~@Componeand @ ConfigurationProperties
beans are not scanned when the @JooqTesannotation is used. @EnableConfigurationProperties can
be used to include @ConfigurationProperties beans.

A list of the auto-configurations that are enabled by @JooqTestan be found in the
. appendix .

194

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions

@JooqTestonfigures a DSLContext The following example shows the ~ @JooqTesannotation in use:

import org.jooq.DSLContext;
import org.junit.jupiter.api.Test;
import org.springframework.boot.test.autoconfigure.jooq.JooqTest;

@JoogTest
class ExampleJooqTests {

E @Autowired
E private DSLContext dslContext;

}

JOOQ tests are transactional and roll back at the end of each test by default. If that is not what you
want, you can disable transaction management for a test or for the whole test class as shown in the
JDBC example.

Auto-configured Data MongoDB Tests

You can use @DataMongoTesb test MongoDB applications. By default, it configures an in-memory
embedded MongoDB (if available), configures a MongoTemplatescans for @Documertlasses, and
configures Spring Data MongoDB repositories. Regular @Componerind @ConfigurationProperties
beans are not scanned when the @DataMongoTeahnotation is used. @EnableConfigurationProperties
can be used to include @ConfigurationProperties beans. (For more about using MongoDB with
Spring Boot, see " MongoDB ", earlier in this chapter.)

A list of the auto-configuration settings that are enabled by @DataMongoTesan be
. found in the appendix

The following class shows the @DataMongoTeahnotation in use:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.data.mongo.DataMongoTest;
import org.springframework.data.mongodb.core.MongoTemplate;

@DataMongoTest
class ExampleDataMongoTests {

E @Autowired

E private MongoTemplate mongoTemplate;
E /

}

In-memory embedded MongoDB generally works well for tests, since it is fast and does not require
any developer installation. If, however, you prefer to run tests against a real MongoDB server, you
should exclude the embedded MongoDB auto-configuration, as shown in the following example:

195

import
org.springframework.boot.autoconfigure.mongo.embedded.EmbeddedMongoAutoConfiguration;
import org.springframework.boot.test.autoconfigure.data.mongo.DataMongoTest;

@DataMongoTest(excludeAutoConfiguration = EmbeddedMongoAutoConfiguration.class)
class ExampleDataMongoNonEmbeddedTests {

Auto-configured Data Neo4j Tests

You can use @DataNeo4jTesto test Neodj applications. By default, it uses an in-memory embedded
Neo4j (if the embedded driver is available), scans for @NodeEntityclasses, and configures Spring
Data Neo4j repositories. Regular @Componeand @ConfigurationProperties beans are not scanned
when the @DataNeo4jTesannotation is used. @EnableConfigurationProperties can be used to include
@ConfigurationProperties beans. (For more about using Neo4J with Spring Boot, see " Neo4j", earlier
in this chapter.)

I A list of the auto-configuration settings that are enabled by @DataNeo4jTestan be
. found in the appendix

The following example shows a typical setup for using Neo4J tests in Spring Boot:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.data.neo4j.DataNeo4jTest;

@DataNeo4jTest
class ExampleDataNeo4jTests {

E @Autowired

E private YourRepository repository;
E /I

}

By default, Data Neo4j tests are transactional and roll back at the end of each test. See the relevant
section in the Spring Framework Reference Documentation for more details. If that is not what you
want, you can disable transaction management for a test or for the whole class, as follows:

196

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/testing.html#testcontext-tx-enabling-transactions

import org.springframework.boot.test.autoconfigure.data.neo4j.DataNeo4jTest;
import org.springframework.transaction.annotation.Propagation;
import org.springframework.transaction.annotation. Transactional,

@DataNeo4jTest
@Transactional(propagation = Propagation.NOT_SUPPORTED)
class ExampleNonTransactionalTests {

Auto-configured Data Redis Tests

You can use @DataRedisTesto test Redis applications. By default, it scans for ~ @RedisHasblasses and
configures Spring Data Redis repositories. Regular ~ @Componeand @ConfigurationProperties beans
are not scanned when the @DataRedisTesannotation is used. @EnableConfigurationProperties can be
used to include @ConfigurationProperties beans. (For more about using Redis with Spring Boot, see
"Redis", earlier in this chapter.)

| A list of the auto-configuration settings that are enabled by @DataRedisTestan be
. found in the appendix

The following example shows the @DataRedisTesannotation in use:

import org.springframework.beans.factory.annotation.Autowired,;
import org.springframework.boot.test.autoconfigure.data.redis.DataRedisTest;

@DataRedisTest
class ExampleDataRedisTests {

E @Autowired
E private YourRepository repository;

E
}

Auto-configured Data LDAP Tests

You can use @DataLdapTesto test LDAP applications. By default, it configures an in-memory
embedded LDAP (if available), configures an LdapTemplate scans for @Entryclasses, and configures
Spring Data LDAP repositories. Regular ~@Componerind @ ConfigurationProperties beans are not
scanned when the @DataLdapTesannotation is used. @EnableConfigurationProperties can be used to
include @ConfigurationProperties beans. (For more about using LDAP with Spring Boot, see " LDAP",
earlier in this chapter.)

A list of the auto-configuration settings that are enabled by @DatalLdapTestan be
found in the appendix

197

The following example shows the @DatalLdapTesnnotation in use:

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.autoconfigure.data.ldap.DatalLdapTest;
import org.springframework.ldap.core.LdapTemplate;

@DatalLdapTest
class ExampleDataLdapTests {

E @Autowired

E private LdapTemplate IdapTemplate;
E /I

}

In-memory embedded LDAP generally works well for tests, since it is fast and does not require any
developer installation. If, however, you prefer to run tests against a real LDAP server, you should
exclude the embedded LDAP auto-configuration, as shown in the following example:

import
org.springframework.boot.autoconfigure.ldap.embedded.EmbeddedLdapAutoConfiguration;
import org.springframework.boot.test.autoconfigure.data.ldap.DataLdapTest;

@DatalLdapTest(excludeAutoConfiguration = EmbeddedLdapAutoConfiguration.class)
class ExampleDataLdapNonEmbeddedTests {

Auto-configured REST Clients

You can use the @RestClientTest annotation to test REST clients. By default, it auto-configures
Jackson, GSON, and Jsonb support, configures a RestTemplateBuilder, and adds support for
MockRestServiceServer Regular @Componer@nd @ ConfigurationProperties beans are not scanned
when the @RestClientTest annotation is used. @EnableConfigurationProperties can be used to
include @ConfigurationProperties beans.

I A list of the auto-configuration settings that are enabled by @RestClientTest can be
. found in the appendix
The specific beans that you want to test should be specified by using the value or components

attribute of @RestClientTest, as shown in the following example:

198

@RestClientTest(RemoteVehicleDetailsService.class)
class ExampleRestClientTest {

@Autowired
private RemoteVehicleDetailsService service;

m M

@Autowired
private MockRestServiceServer server;

T T

@Test
void getVehicleDetailsWhenResultlsSuccessShouldReturnDetails()
throws Exception {
this.server.expect(requestTo("/greet/details"))
.andRespond(withSuccess("hello", MediaType. TEXT_PLAIN));
String greeting = this.service.callRestService();
assertThat(greeting).isequalTo("hello");

}

T M T e me mp e mp

—

Auto-configured Spring REST Docs Tests

You can use the @AutoConfigureRestDocannotation to use Spring REST Docs in your tests with Mock
MVC, REST Assured, or WebTestClient. It removes the need for the JUnit extension in Spring REST
Docs.

@AutoConfigureRestDocan be used to override the default output directory (target/generated-
snippets if you are using Maven or build/generated-snippets if you are using Gradle). It can also be
used to configure the host, scheme, and port that appears in any documented URIs.

Auto-configured Spring REST Docs Tests with Mock MVC

@AutoConfigureRestDocgustomizes the MockMvbean to use Spring REST Docs when testing Servlet-
based web applications. You can inject it by using @Autowiredand use it in your tests as you
normally would when using Mock MVC and Spring REST Docs, as shown in the following example:

199

https://spring.io/projects/spring-restdocs

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired,;

import org.springframework.boot.test.autoconfigure.web.servlet. WebMvcTest;
import org.springframework.http.MediaType;

import org.springframework.test.web.servlet. MockMvc;

import static org.springframework.restdocs.mockmvc.MockMvcRestDocumentation.document;
import static org.springframework.test.web.servlet.request. MockMvcRequestBuilders.get;
import static org.springframework.test.web.servlet.result. MockMvcResultMatchers.*;

@WebMvcTest(UserController.class)
@AutoConfigureRestDocs
class UserDocumentationTests {

E @Autowired

E private MockMvc mvc;

E @Test

E void listUsers() throws Exception {

E this.mvc.perform(get("/users").accept(MediaType. TEXT_PLAIN))
E .andExpect(status().isOk())

E .andDo(document("list-users"));

E }

}

If you require more control over Spring REST Docs configuration than offered by the attributes of
@AutoConfigureRestDogsyou can use a RestDocsMockMvcConfigurationCustomizerbean, as shown in
the following example:

@TestConfiguration
static class CustomizationConfiguration
E implements RestDocsMockMvcConfigurationCustomizer {

E @Override

E public void customize(MockMvcRestDocumentationConfigurer configurer) {
E configurer.snippets().withTemplateFormat(TemplateFormats.markdown());
E }

}

If you want to make use of Spring REST Docs support for a parameterized output directory, you can
create a RestDocumentationResultHandler bean. The auto-configuration calls alwaysDowith this result
handler, thereby causing each MockMvccall to automatically generate the default snippets. The
following example shows a RestDocumentationResultHandler being defined:

200

@TestConfiguration(proxyBeanMethods = false)
static class ResultHandlerConfiguration {

E @Bean

E public RestDocumentationResultHandler restDocumentation() {

E return MockMvcRestDocumentation.document("{method-name}");
E }

}

Auto-configured Spring REST Docs Tests with WebTestClient

@AutoConfigureRestDocsan also be used with WebTestClient when testing reactive web applications.
You can inject it by using @Autowiredand use it in your tests as you normally would when using
@WebFluxTesind Spring REST Docs, as shown in the following example:

import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.autoconfigure.restdocs.AutoConfigureRestDocs;
import org.springframework.boot.test.autoconfigure.web.reactive.WebFluxTest;
import org.springframework.test.web.reactive.server.WebTestClient;

import static
org.springframework.restdocs.webtestclient. WebTestClientRestDocumentation.document;

@WebFluxTest
@AutoConfigureRestDocs
class UsersDocumentationTests {

@Autowired
private WebTestClient webTestClient;

m M

@Test
void listUsers() {

5 ™ [T [T

this.webTestClient.get().uri("/").exchange().expectStatus().isOk().expectBody()
.consumeWith(document("list-users"));

D

m
—

If you require more control over Spring REST Docs configuration than offered by the attributes of

@AutoConfigureRestDogs you can use a RestDocsWebTestClientConfigurationCustomizer bean, as
shown in the following example:

201

@TestConfiguration(proxyBeanMethods = false)
public static class CustomizationConfiguration implements
RestDocsWebTestClientConfigurationCustomizer {

E @Override

E public void customize(WebTestClientRestDocumentationConfigurer configurer) {
E configurer.snippets().withEncoding("UTF-8");

E }

}

Auto-configured Spring REST Docs Tests with REST Assured

@AutoConfigureRestDocsakes a RequestSpecification bean, preconfigured to use Spring REST Docs,
available to your tests. You can inject it by using @Autowiredand use it in your tests as you normally
would when using REST Assured and Spring REST Docs, as shown in the following example:

import io.restassured.specification.RequestSpecification;
import org.junit.jupiter.api.Test;

import org.springframework.beans.factory.annotation.Autowired,;

import org.springframework.boot.test.autoconfigure.restdocs.AutoConfigureRestDocs;
import org.springframework.boot.test.context.SpringBootTest;

import org.springframewaork.boot.test.context.SpringBootTest.WebEnvironment;
import org.springframework.boot.web.server.LocalServerPort;

import static io.restassured.RestAssured.given;

import static org.hamcrest.Matchers.is;

import static
org.springframework.restdocs.restassured3.RestAssuredRestDocumentation.document;

@SpringBootTest(webEnvironment = WebEnvironment. RANDOM_PORT)
@AutoConfigureRestDocs
class UserDocumentationTests {

E @Test

E void listUsers(@Autowired RequestSpecification documentationSpec, @LocalServerPort
int port) {

E given(documentationSpec).filter(document("list-
users")).when().port(port).get("/").then().assertThat()

= .StatusCode(is(200)):

m

E }

If you require more control over Spring REST Docs configuration than offered by the attributes of
@AutoConfigureRestDogsa RestDocsRestAssuredConfigurationCustomizer bean can be used, as shown
in the following example:

202

@TestConfiguration(proxyBeanMethods = false)
public static class CustomizationConfiguration implements
RestDocsRestAssuredConfigurationCustomizer {

E @Override

E public void customize(RestAssuredRestDocumentationConfigurer configurer) {
E configurer.snippets().withTemplateFormat(TemplateFormats.markdown());
E }

}

Auto-configured Spring Web Services Tests

You can use @WebServiceClientTestto test applications that use call web services using the Spring
Web Services project. By default, it configures a mock WebServiceServerbean and automatically
customizes your WebServiceTemplateBuilder. (For more about using Web Services with Spring Boot,
see "Web Services", earlier in this chapter.)

A list of the auto-configuration settings that are enabled by @WebServiceClientTest
can be found in the appendix

The following example shows the =~ @WebServiceClientTestannotation in use:

@WebServiceClientTest(ExampleWebServiceClient.class)
class WebServiceClientintegrationTests {

@Autowired
private MockWebServiceServer server;

m [m»

@Autowired
private ExampleWebServiceClient client;

m M

@Test
void mockServerCall() {
this.server.expect(payload(new StringSource("<request/>"))).andRespond(
withPayload(new
StringSource("<response><status>200</status></response>")));
E assertThat(this.client.test()).extracting(Response::getStatus).isEqualTo(200);
E }

T [T [T [T

Additional Auto-configuration and Slicing

Each slice provides one or more @AutoConfigureE annotations that namely defines the auto-
configurations that should be included as part of a slice. Additional auto-configurations can be
added on a test-by-test basis by creating a custom @AutoConfigureE annotation or by adding
@ImportAutoConfiguration to the test as shown in the following example:

203

@JdbcTest
@ImportAutoConfiguration(IntegrationAutoConfiguration.class)
class ExampleJdbcTests {

Make sure to not use the regular ~@Importannotation to import auto-configurations
as they are handled in a specific way by Spring Boot.

Alternatively, additional auto-configurations can be added for any use of a slice annotation by
registering them in META-INF/spring.factories as shown in the following example:

org.springframework.boot.test.autoconfigure.jdbc.JdbcTest=com.example.IntegrationAutoC
onfiguration

A slice or @AutoConfigureE annotation can be customized this way as long as it is
. meta-annotated with ~ @ImportAutoConfiguration.

User Configuration and Slicing

If you structure your code in a sensible way, your @SpringBootApplication class is used by default as
the configuration of your tests.

It then becomes important not to litter the applicationOs main class with configuration settings that
are specific to a particular area of its functionality.

Assume that you are using Spring Batch and you rely on the auto-configuration for it. You could
define your @SpringBootApplication as follows:

@SpringBootApplication
@EnableBatchProcessing
public class SampleApplication { ... }

Because this class is the source configuration for the test, any slice test actually tries to start Spring
Batch, which is definitely not what you want to do. A recommended approach is to move that area-
specific configuration to a separate ~ @Configuration class at the same level as your application, as
shown in the following example:

@Configuration(proxyBeanMethods = false)
@EnableBatchProcessing
public class BatchConfiguration { ... }

204

Depending on the complexity of your application, you may either have a single
@Configuration class for your customizations or one class per domain area. The
latter approach lets you enable it in one of your tests, if necessary, with the @Import
annotation.

Test slices exclude @Configuration classes from scanning. For example, for a @WebMvcTeghe
following configuration will not include the given WebMvcConfigurebean in the application context
loaded by the test slice:

@Configuration

public class WebConfiguration {

E @Bean

E public WebMvcConfigurer testConfigurer() {

E return new WebMvcConfigurer() {

E

E %

E }

}
The configuration below will, however, cause the custom WebMvcConfigureto be loaded by the test
slice.

@Component

public class TestWebMvcConfigurer implements WebMvcConfigurer {

E

}

Another source of confusion is classpath scanning. Assume that, while you structured your code in
a sensible way, you need to scan an additional package. Your application may resemble the
following code:

@SpringBootApplication
@ComponentScan({ "com.example.app", "org.acme.another" })
public class SampleApplication { ... }

Doing so effectively overrides the default component scan directive with the side effect of scanning

those two packages regardless of the slice that you chose. For instance, a @DataJpaTesseems to
suddenly scan components and user configurations of your application. Again, moving the custom
directive to a separate class is a good way to fix this issue.

If this is not an option for you, you can create a @SpringBootConfiguration
I somewhere in the hierarchy of your test so that it is used instead. Alternatively,
. you can specify a source for your test, which disables the behavior of finding a
default one.

205

Using Spock to Test Spring Boot Applications

If you wish to use Spock to test a Spring Boot application, you should add a dependency on SpockOs
spock-spring module to your applicationOs build. spock-spring integrates SpringOs test framework
into Spock. It is recommended that you use Spock 1.2 or later to benefit from a number of
improvements to SpockOs Spring Framework and Spring Boot integration. See the documentation
for SpockOs Spring module for further details.

4.26.4. Test Utilities

A few test utility classes that are generally useful when testing your application are packaged as
part of spring-boot .

ConfigFileApplicationContextlnitializer

ConfigFileApplicationContextlnitializer is an ApplicationContextlnitializer that you can apply to
your tests to load Spring Boot application.properties files. You can use it when you do not need the
full set of features provided by ~ @SpringBootTestas shown in the following example:

@ContextConfiguration(classes = Config.class,
E initializers = ConfigFileApplicationContextlnitializer.class)

Using ConfigFileApplicationContextlnitializer alone does not provide support for
@Value("${E}") injection. Its only job is to ensure that application.properties files
are loaded into SpringOs Environment For @Valuesupport, you need to either
additionally ~ configure a PropertySourcesPlaceholderConfigurer or use
@SpringBootTestwhich auto-configures one for you.

TestPropertyValues

TestPropertyValues lets you quickly add properties to a ConfigurableEnvironment or
ConfigurableApplicationContext . You can call it with key=value strings, as follows:

TestPropertyValues.of("org=Spring", "name=Boot").applyTo(env);

OutputCapture

OutputCapture is a JUnit Extension that you can use to capture System.out and System.err output. To
use add @ExtendWith(OutputCaptureExtension.class) and inject CapturedOutput as an argument to
your test class constructor or test method as follows:

206

http://spockframework.org/spock/docs/1.2/modules.html#_spring_module
http://spockframework.org/spock/docs/1.2/modules.html#_spring_module

@ExtendWith(OutputCaptureExtension.class)
class OutputCaptureTests {

E @Test

E void testName(CapturedOutput output) {
E System.out.printin("Hello World!");

E assertThat(output).contains("World");
E }

}

TestRestTemplate

TestRestTemplate is a convenience alternative to SpringOs RestTemplate that is useful in integration
tests. You can get a vanilla template or one that sends Basic HTTP authentication (with a username
and password). In either case, the template behaves in a test-friendly way by not throwing
exceptions on server-side errors.

Spring Framework 5.0 provides a new WebTestClient that works for WebFlux
integration tests and both WebFlux and MVC end-to-end testing . It provides a
fluent API for assertions, unlike TestRestTemplate

It is recommended, but not mandatory, to use the Apache HTTP Client (version 4.3.2 or better). If
you have that on your classpath, the TestRestTemplate responds by configuring the client
appropriately. If you do use ApacheOs HTTP client, some additional test-friendly features are
enabled:

¥ Redirects are not followed (so you can assert the response location).

¥ Cookies are ignored (so the template is stateless).

TestRestTemplate can be instantiated directly in your integration tests, as shown in the following
example:

public class MyTest {

E private TestRestTemplate template = new TestRestTemplate();

E @Test

E public void testRequest() throws Exception {

E HttpHeaders headers = this.template.getForEntity(

E "https://myhost.example.com/example”, String.class).getHeaders();
E assertThat(headers.getLocation()).hasHost("other.example.com");

E }

}

Alternatively, if you use the @SpringBootTest annotation with WebEnvironment. RANDOM_PORT

207

WebEnvironment.DEFINED_PQORTU can inject a fully configured TestRestTemplate and start using it. If
necessary, additional customizations can be applied through the RestTemplateBuilder bean. Any
URLSs that do not specify a host and port automatically connect to the embedded server, as shown in

the following example:

@SpringBootTest(webEnvironment = WebEnvironment. RANDOM_PORT)
class SampleWebClientTests {

E @Autowired

E private TestRestTemplate template;

E @Test

E void testRequest() {

E HttpHeaders headers = this.template.getForEntity("/example",

String.class).getHeaders();
= assertThat(headers.getLocation()).hasHost("other.example.com");

}

m m

@TestConfiguration(proxyBeanMethods = false)
static class Config {

m™ [m»

@Bean
RestTemplateBuilder restTemplateBuilder() {
return new RestTemplateBuilder().setConnectTimeout(Duration.ofSeconds(1))
.setReadTimeout(Duration.ofSeconds(1));

[T T [T [T [T

T
—

4.27. WebSockets

Spring Boot provides WebSockets auto-configuration for embedded Tomcat, Jetty, and Undertow. If
you deploy a war file to a standalone container, Spring Boot assumes that the container is
responsible for the configuration of its WebSocket support.

Spring Framework provides rich WebSocket support for MVC web applications that can be easily
accessed through the spring-boot-starter-websocket — module.

WebSocket support is also available for reactive web applications and requires to include the
WebSocket API alongside spring-boot-starter-webflux

<dependency>

E <groupld>javax.websocket</groupld>

E <artifactld>javax.websocket-api</artifactld>
</dependency>

208

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web.html#websocket
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/web-reactive.html#webflux-websocket

4.28. Web Services

Spring Boot provides Web Services auto-configuration so that all you must do is define your
Endpoints.

The Spring Web Services features can be easily accessed with the spring-boot-starter-webservices
module.

SimpleWsdI11Definition and SimpleXsdSchembaeans can be automatically created for your WSDLs
and XSDs respectively. To do so, configure their location, as shown in the following example:

spring.webservices.wsdl-locations=classpath:/wsdl

4.28.1. Calling Web Services with WebServiceTemplate

If you need to call remote Web services from your application, you can use the WebServiceTemplate
class. Since WebServiceTemplateinstances often need to be customized before being used, Spring
Boot does not provide any single auto-configured WebServiceTemplatebean. It does, however, auto-

configure a WebServiceTemplateBuilder, which can be used to create WebServiceTemplateinstances
when needed.

The following code shows a typical example:

@Service
public class MyService {

E private final WebServiceTemplate webServiceTemplate;
public MyService(WebServiceTemplateBuilder webServiceTemplateBuilder) {

this.webServiceTemplate = webServiceTemplateBuilder.build();

}

T m> mp

E public DetailsResp someWsCall(DetailsReq detailsReq) {

E return (DetailsResp)
this.webServiceTemplate.marshalSendAndReceive(detailsReq, new
SoapActionCallback(ACTION));

E }

By default, WebServiceTemplateBuilder detects a suitable HTTP-based WebServiceMessageSendeising
the available HTTP client libraries on the classpath. You can also customize read and connection
timeouts as follows:

209

https://docs.spring.io/spring-ws/docs/3.0.10.RELEASE/reference/
https://docs.spring.io/spring-ws/docs/3.0.10.RELEASE/reference/#client-web-service-template

@Bean

public WebServiceTemplate webServiceTemplate(WebServiceTemplateBuilder builder) {
E return builder.messageSenders(new HttpWebServiceMessageSenderBuilder()

E .setConnectTimeout(5000).setReadTimeout(2000).build()).build();

}

4.29. Creating Your Own Auto-configuration

If you work in a company that develops shared libraries, or if you work on an open-source or
commercial library, you might want to develop your own auto-configuration. Auto-configuration
classes can be bundled in external jars and still be picked-up by Spring Boot.

Auto-configuration can be associated to a OstarterO that provides the auto-configuration code as
well as the typical libraries that you would use with it. We first cover what you need to know to

build your own auto-configuration and then we move on to the typical steps required to create a
custom starter .

| A demo project is available to showcase how you can create a starter step-by-step.

4.29.1. Understanding Auto-configured Beans

Under the hood, auto-configuration is implemented with standard @cConfiguration classes.
Additional @Conditional annotations are used to constrain when the auto-configuration should

apply. Usually, auto-configuration classes use @ConditionalOnClassand @ConditionalOnMissingBean
annotations. This ensures that auto-configuration applies only when relevant classes are found and

when you have not declared your own @Configuration.

You can browse the source code of spring-boot-autoconfigure to see the @Configuration classes that
Spring provides (see the META-INF/spring.factories file).

4.29.2. Locating Auto-configuration Candidates

Spring Boot checks for the presence of a META-INF/spring.factories file within your published jar.
The file should list your configuration classes under the EnableAutoConfiguration key, as shown in
the following example:

org.springframework.boot.autoconfigure.EnableAutoConfiguration=\
com.mycorp.libx.autoconfigure.LibXAutoConfiguration,\
com.mycorp.libx.autoconfigure.LibXWebAutoConfiguration

Auto-configurations must be loaded that way only . Make sure that they are defined
in a specific package space and that they are never the target of component
scanning. Furthermore, auto-configuration classes should not enable component
scanning to find additional components. Specific @Impors should be used instead.

You can use the @AutoConfigureAfter or @AutoConfigureBefore annotations if your configuration

210

https://github.com/snicoll-demos/spring-boot-master-auto-configuration
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/resources/META-INF/spring.factories
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureAfter.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/AutoConfigureBefore.java

needs to be applied in a specific order. For example, if you provide web-specific configuration, your
class may need to be applied after WebMvcAutoConfiguration

If you want to order certain auto-configurations that should not have any direct knowledge of each
other, you can also use @AutoConfigureOrder That annotation has the same semantic as the regular
@Ordeannotation but provides a dedicated order for auto-configuration classes.

As with standard @Configuration classes, the order in which auto-configuration classes are applied
only affects the order in which their beans are defined. The order in which those beans are
subsequently created is unaffected and is determined by each beanOs dependencies and any
@Depends@elationships.

4.29.3. Condition Annotations

You almost always want to include one or more @Conditional annotations on your auto-
configuration class. The @ConditionalOnMissingBearannotation is one common example that is used
to allow developers to override auto-configuration if they are not happy with your defaults.

Spring Boot includes a number of ~ @Conditional annotations that you can reuse in your own code by
annotating @Configuration classes or individual @Beamethods. These annotations include:

¥ Class Conditions

¥ Bean Conditions

¥ Property Conditions

¥ Resource Conditions

¥ Web Application Conditions

¥ SpEL Expression Conditions

Class Conditions

The @ConditionalOnClassand @ConditionalOnMissingClass annotations let @ Configuration classes be
included based on the presence or absence of specific classes. Due to the fact that annotation
metadata is parsed by using ASM, you can use the value attribute to refer to the real class, even
though that class might not actually appear on the running application classpath. You can also use

the namaeattribute if you prefer to specify the class name by using a String value.

This mechanism does not apply the same way to =~ @Beamethods where typically the return type is
the target of the condition: before the condition on the method applies, the JVM will have loaded
the class and potentially processed method references which will fail if the class is not present.

To handle this scenario, a separate ~ @Configuration class can be used to isolate the condition, as
shown in the following example:

211

https://asm.ow2.io/

@Configuration(proxyBeanMethods = false)
/I Some conditions
public class MyAutoConfiguration {

E // Auto-configured beans

E @Configuration(proxyBeanMethods = false)

E @ConditionalOnClass(EmbeddedAcmeService.class)

E static class EmbeddedConfiguration {

E @Bean

E @ConditionalOnMissingBean

E public EmbeddedAcmeService embeddedAcmeService() { ... }
E)

}

If you use @ConditionalOnClassor @ConditionalOnMissingClassas a part of a meta-
| annotation to compose your own composed annotations, you must use nameas
referring to the class in such a case is not handled.

Bean Conditions

The @ConditionalOnBeamnd @ConditionalOnMissingBearannotations let a bean be included based on
the presence or absence of specific beans. You can use the value attribute to specify beans by type
or nameto specify beans by name. The search attribute lets you limit the ApplicationContext
hierarchy that should be considered when searching for beans.

When placed on a @Beamethod, the target type defaults to the return type of the method, as shown
in the following example:

@Configuration(proxyBeanMethods = false)
public class MyAutoConfiguration {

E @Bean

E @ConditionalOnMissingBean

E public MyService myService() { ... }
}

In the preceding example, the myService bean is going to be created if no bean of type MyServiceis
already contained in the ApplicationContext .

212

You need to be very careful about the order in which bean definitions are added,
as these conditions are evaluated based on what has been processed so far. For

| this reason, we recommend using only @ConditionalOnBean and
@ConditionalOnMissingBeanannotations on auto-configuration classes (since these
are guaranteed to load after any user-defined bean definitions have been added).

@ConditionalOnBearand @ConditionalOnMissingBeando not prevent @ Configuration
classes from being created. The only difference between using these conditions at

the class level and marking each contained @Beamethod with the annotation is
that the former prevents registration of the @Configuration class as a bean if the
condition does not match.

When declaring a @Beamethod, provide as much type information as possible in

the methodOs return type. For example, if your beanOs concrete class implements
| an interface the bean methodOs return type should be the concrete class and not
the interface. Providing as much type information as possible in @Beamethods is
particularly important when using bean conditions as their evaluation can only
rely upon to type information thatOs available in the method signature.

Property Conditions

The @ConditionalOnProperty annotation lets configuration be included based on a Spring
Environment property. Use the prefix and nameattributes to specify the property that should be
checked. By default, any property that exists and is not equal to false is matched. You can also
create more advanced checks by using the havingValue and matchlfMissing attributes.

Resource Conditions

The @ConditionalOnResourcennotation lets configuration be included only when a specific resource
is present. Resources can be specified by using the usual Spring conventions, as shown in the
following example: file:/home/user/test.dat

Web Application Conditions

The @ConditionalOnWebApplication and @ConditionalOnNotWebApplication annotations let
configuration be included depending on whether the application is a Oweb applicationO. A servlet-
based web application is any application that uses a Spring WebApplicationContext, defines a session
scope, or has a ConfigurableWebEnvironment A reactive web application is any application that uses a
ReactiveWebApplicationContext , or has a ConfigurableReactiveWebEnvironment

The @ConditionalOnWarDeploymernnotation lets configuration be included depending on whether
the application is a traditional WAR application that is deployed to a container. This condition will
not match for applications that are run with an embedded server.

SpEL Expression Conditions

The @ConditionalOnExpression annotation lets configuration be included based on the result of a
SpEL expression .

213

https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/core.html#expressions

4.29.4. Testing your Auto-configuration

An auto-configuration can be affected by many factors: user configuration (@Beanlefinition and
Environment customization), condition evaluation (presence of a particular library), and others.
Concretely, each test should create a well defined ApplicationContext that represents a combination
of those customizations. ApplicationContextRunner provides a great way to achieve that.

ApplicationContextRunner is usually defined as a field of the test class to gather the base, common
configuration. The following example makes sure that UserServiceAutoConfiguration is always
invoked:

private final ApplicationContextRunner contextRunner = new ApplicationContextRunner()
E .withConfiguration(AutoConfigurations.of(UserServiceAutoConfiguration.class));

If multiple auto-configurations have to be defined, there is no need to order their
declarations as they are invoked in the exact same order as when running the
application.

Each test can use the runner to represent a particular use case. For instance, the sample below
invokes a user configuration (UserConfiguration) and checks that the auto-configuration backs off
properly. Invoking run provides a callback context that can be used with AssertJ.

@Test
void defaultServiceBacksOff() {
E this.contextRunner.withUserConfiguration(UserConfiguration.class).run((context) ->

assertThat(context).hasSingleBean(UserService.class);

m m

assertThat(context).getBean("myUserService").isSameAs(context.getBean(UserService.clas
s));

E

}

@Configuration(proxyBeanMethods = false)
static class UserConfiguration {

E @Bean

E UserService myUserService() {

E return new UserService("mine");
E }

}

It is also possible to easily customize the Environment, as shown in the following example:

214

@Test

void serviceNameCanBeConfigured() {

this.contextRunner.withPropertyValues("user.name=test123").run((context) -> {
assertThat(context).hasSingleBean(UserService.class);
assertThat(context.getBean(UserService.class).getName()).isEqualTo("test123");

h;

> [T> [T> [T» Tp

The runner can also be used to display the ConditionEvaluationReport . The report can be printed at
INFO or DEBUG level. The following example shows how to use the
ConditionEvaluationReportLoggingListener to print the report in auto-configuration tests.

@Test
public void autoConfigTest {
E ConditionEvaluationReportLoggingListener initializer = new
ConditionEvaluationReportLoggingListener(
LogLevel.INFO);
ApplicationContextRunner contextRunner = new ApplicationContextRunner()
.withInitializer(initializer).run((context) -> {
/I Do something...

D

> [Td TP TP [TD [T

Simulating a Web Context

If you need to test an auto-configuration that only operates in a Servlet or Reactive web application
context, use the WebApplicationContextRunneror ReactiveWebApplicationContextRunner respectively.

Overriding the Classpath

It is also possible to test what happens when a particular class and/or package is not present at
runtime. Spring Boot ships with a FilteredClassLoader that can easily be used by the runner. In the

following example, we assert that if ~ UserService is not present, the auto-configuration is properly
disabled:

@Test

void servicelslgnoredlIfLibrarylsNotPresent() {

E this.contextRunner.withClassLoader(new FilteredClassLoader(UserService.class))
E .run((context) -> assertThat(context).doesNotHaveBean("userService"));

}

4.29.5. Creating Your Own Starter

A typical Spring Boot starter contains code to auto-configure and customize the infrastructure of a
given technology, letOs call that "acme". To make it easily extensible, a number of configuration keys
in a dedicated namespace can be exposed to the environment. Finally, a single "starter" dependency

215

is provided to help users get started as easily as possible.
Concretely, a custom starter can contain the following:

¥ The autoconfigure module that contains the auto-configuration code for "acme".

¥ The starter module that provides a dependency to the autoconfigure module as well as "acme
and any additional dependencies that are typically useful. In a nutshell, adding the starter
should provide everything needed to start using that library.

This separation in two modules is in no way necessary. If "acme" has several flavours, options or
optional features, then it is better to separate the auto-configuration as you can clearly express the
fact some features are optional. Besides, you have the ability to craft a starter that provides an
opinion about those optional dependencies. At the same time, others can rely only on the
autoconfigure module and craft their own starter with different opinions.

If the auto-configuration is relatively straightforward and does not have optional feature, merging
the two modules in the starter is definitely an option.

Naming

You should make sure to provide a proper namespace for your starter. Do not start your module
names with spring-boot , even if you use a different Maven groupld. We may offer official support
for the thing you auto-configure in the future.

As a rule of thumb, you should name a combined module after the starter. For example, assume

that you are creating a starter for "acme" and that you name the auto-configure module acme-
spring-boot and the starter acme-spring-boot-starter . If you only have one module that combines
the two, name it acme-spring-boot-starter

Configuration keys

If your starter provides configuration keys, use a unique namespace for them. In particular, do not

include your keys in the namespaces that Spring Boot uses (such as server , managemenspring , and
so on). If you use the same namespace, we may modify these namespaces in the future in ways that
break your modules. As a rule of thumb, prefix all your keys with a namespace that you own (e.g.

acme.

Make sure that configuration keys are documented by adding field javadoc for each property, as
shown in the following example:

216

@ConfigurationProperties("acme")
public class AcmeProperties {

E [x*
E * Whether to check the location of acme resources.
E ¥
E private boolean checkLocation = true;
E [x*
E * Timeout for establishing a connection to the acme server.
E ¥
E private Duration loginTimeout = Duration.ofSeconds(3);
E // getters & setters
}
You should only use plain text with @ConfigurationProperties field Javadoc, since
. they are not processed before being added to the JSON.

Here are some rules we follow internally to make sure descriptions are consistent:

¥ Do not start the description by "The" or "A".
¥ For boolean types, start the description with "Whether" or "Enable".
¥ For collection-based types, start the description with "Comma-separated list"

¥ Use java.time.Duration rather than long and describe the default unit if it differs from
milliseconds, e.g. "If a duration suffix is not specified, seconds will be used".

¥ Do not provide the default value in the description unless it has to be determined at runtime.

Make sure to trigger meta-data generation so that IDE assistance is available for your keys as well.
You may want to review the generated metadata (META-INF/spring-configuration-metadata.json) to
make sure your keys are properly documented. Using your own starter in a compatible IDE is also a

good idea to validate that quality of the metadata.

The OautoconfigureO Module

The autoconfigure module contains everything that is necessary to get started with the library. It
may also contain configuration key definitions (such as @ConfigurationProperties) and any callback
interface that can be used to further customize how the components are initialized.

You should mark the dependencies to the library as optional so that you can
include the autoconfigure module in your projects more easily. If you do it that
way, the library is not provided and, by default, Spring Boot backs off.

Spring Boot uses an annotation processor to collect the conditions on auto-configurations in a
metadata file (META-INF/spring-autoconfigure-metadata.properties). If that file is present, it is used

217

to eagerly filter auto-configurations that do not match, which will improve startup time. It is
recommended to add the following dependency in a module that contains auto-configurations:

<dependency>

E <groupld>org.springframework.boot</groupld>

E <artifactld>spring-boot-autoconfigure-processor</artifactld>
E <optional>true</optional>

</dependency>

If you have defined auto-configurations directly in your application, make sure to configure the
spring-boot-maven-plugin to prevent the repackagegoal from adding the dependency into the fat jar:

<project>
<build>
<plugins>
<plugin>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-maven-plugin</artifactld>
<configuration>
<excludes>
<exclude>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-autoconfigure-
rocessor</artifactld>
</exclude>
</excludes>
</configuration>
</plugin>
</plugins>
</build>
</project>

> e T e e mp< [T [T [T Ty [T [T T [T [T T

With Gradle 4.5 and earlier, the dependency should be declared in the compileOnly configuration, as
shown in the following example:

dependencies {
E compileOnly "org.springframework.boot:spring-boot-autoconfigure-processor"

}

With Gradle 4.6 and later, the dependency should be declared in the annotationProcessor
configuration, as shown in the following example:

dependencies {
E annotationProcessor "org.springframework.boot:spring-boot-autoconfigure-processor"

}

218

Starter Module

The starter is really an empty jar. Its only purpose is to provide the necessary dependencies to work
with the library. You can think of it as an opinionated view of what is required to get started.

Do not make assumptions about the project in which your starter is added. If the library you are
auto-configuring typically requires other starters, mention them as well. Providing a proper set of
default dependencies may be hard if the number of optional dependencies is high, as you should
avoid including dependencies that are unnecessary for a typical usage of the library. In other
words, you should not include optional dependencies.

Either way, your starter must reference the core Spring Boot starter (spring-boot-
starter) directly or indirectly (i.e. no need to add it if your starter relies on another
starter). If a project is created with only your custom starter, Spring BootOs core
features will be honoured by the presence of the core starter.

4.30. Kotlin support

Kotlin is a statically-typed language targeting the JVM (and other platforms) which allows writing
concise and elegant code while providing interoperability — with existing libraries written in Java.

Spring Boot provides Kotlin support by leveraging the support in other Spring projects such as
Spring Framework, Spring Data, and Reactor. See the Spring Framework Kotlin support
documentation for more information.

The easiest way to start with Spring Boot and Kotlin is to follow this comprehensive tutorial . You
can create new Kotlin projects via start.spring.io . Feel free to join the #spring channel of Kotlin
Slack or ask a question with the spring and kotlin tags on Stack Overflow if you need support.

4.30.1. Requirements

Spring Boot supports Kotlin 1.3.x. To use Kotlin, org.jetbrains.kotlin:kotlin-stdlib and
org.jetbrains.kotlin:kotlin-reflect must be present on the classpath. The kotlin-stdlib variants
kotlin-stdlib-jdk7 and kotlin-stdlib-jdk8 can also be used.

Since Kotlin classes are final by default , you are likely to want to configure kotlin-spring plugin in
order to automatically open Spring-annotated classes so that they can be proxied.

JacksonOs Kotlin module is required for serializing / deserializing JSON data in Kotlin. It is
automatically registered when found on the classpath. A warning message is logged if Jackson and
Kotlin are present but the Jackson Kotlin module is not.

These dependencies and plugins are provided by default if one bootstraps a Kotlin
project on start.spring.io .

4.30.2. Null-safety

One of KotlinOs key features is null-safety . It deals with null values at compile time rather than
deferring the problem to runtime and encountering a NullPointerException . This helps to eliminate

219

https://kotlinlang.org
https://kotlinlang.org/docs/reference/java-interop.html
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/languages.html#kotlin
https://docs.spring.io/spring/docs/5.2.12.RELEASE/spring-framework-reference/languages.html#kotlin
https://spring.io/guides/tutorials/spring-boot-kotlin/
https://start.spring.io/#!language=kotlin
https://slack.kotlinlang.org/
https://slack.kotlinlang.org/
https://stackoverflow.com/questions/tagged/spring+kotlin
https://discuss.kotlinlang.org/t/classes-final-by-default/166
https://kotlinlang.org/docs/reference/compiler-plugins.html#spring-support
https://github.com/FasterXML/jackson-module-kotlin
https://start.spring.io/#!language=kotlin
https://kotlinlang.org/docs/reference/null-safety.html

a common source of bugs without paying the cost of wrappers like Optional . Kotlin also allows using
functional constructs with nullable values as described in this comprehensive guide to null-safety
in Kotlin .

Although Java does not allow one to express null-safety in its type system, Spring Framework,
Spring Data, and Reactor now provide null-safety of their API via tooling-friendly annotations. By
default, types from Java APIs used in Kotlin are recognized as platform types for which null-checks
are relaxed. KotlinOs support for JSR 305 annotations combined with nullability annotations provide
null-safety for the related Spring APl in Kotlin.

The JSR 305 checks can be configured by adding the -Xjsr305 compiler flag with the following
options: -Xjsr305={strict|warn|ignore} . The default behavior is the same as -Xjsr305=warn. The
strict value is required to have null-safety taken in account in Kotlin types inferred from Spring

API but should be used with the knowledge that Spring API nullability declaration could evolve

even between minor releases and more checks may be added in the future).

Generic type arguments, varargs and array elements nullability are not yet
supported. See SPR-15942 for up-to-date information. Also be aware that Spring
BootOs own API isnot yet annotated .

4.30.3. Kotlin API

runApplication

Spring Boot provides an idiomatic way to run an application with
runApplication<MyApplication>(*args) as shown in the following example:

import org.springframework.boot.autoconfigure.SpringBootApplication
import org.springframework.boot.runApplication

@SpringBootApplication
class MyApplication

fun main(args: Array<String>) {
E runApplication<MyApplication>(*args)
}

This is a drop-in replacement for SpringApplication.run(MyApplication::class.java, *args) . It also
allows customization of the application as shown in the following example:

runApplication<MyApplication>(*args) {
E setBannerMode(OFF)
}

Extensions

Kotlin extensions provide the ability to extend existing classes with additional functionality. The

220

https://www.baeldung.com/kotlin-null-safety
https://www.baeldung.com/kotlin-null-safety
https://kotlinlang.org/docs/reference/java-interop.html#null-safety-and-platform-types
https://kotlinlang.org/docs/reference/java-interop.html#jsr-305-support
https://jira.spring.io/browse/SPR-15942
https://github.com/spring-projects/spring-boot/issues/10712
https://kotlinlang.org/docs/reference/extensions.html

Spring Boot Kotlin APl makes use of these extensions to add new Kotlin specific conveniences to
existing APIs.

TestRestTemplate extensions, similar to those provided by Spring Framework for RestOperations in
Spring Framework, are provided. Among other things, the extensions make it possible to take
advantage of Kotlin reified type parameters.

4.30.4. Dependency management

In order to avoid mixing different versions of Kotlin dependencies on the classpath, Spring Boot
imports the Kotlin BOM.

With Maven, the Kotlin version can be customized via the kotlin.version property and plugin
management is provided for kotlin-maven-plugin . With Gradle, the Spring Boot plugin
automatically aligns the kotlin.version with the version of the Kotlin plugin.

Spring Boot also manages the version of Coroutines dependencies by importing the Kotlin
Coroutines BOM. The version can be customized via the kotlin-coroutines.version property.

org.jetbrains.kotlinx:kotlinx-coroutines-reactor dependency is provided by
default if one bootstraps a Kotlin project with at least one reactive dependency on
start.spring.io .

4.30.5. @ConfigurationProperties

@ConfigurationProperties when used in combination with @ConstructorBinding supports classes with
immutable val properties as shown in the following example:

@ConstructorBinding
@-ConfigurationProperties("example.kotlin®)
data class KotlinExampleProperties(

val name: String,

val description: String,

val myService: MyService) {

T > [mp

data class MyService(
val apiToken: String,
val uri: URI

=~ I [T mp [mp

To generate your own metadata using the annotation processor, kapt should be
| configured with the spring-boot-configuration-processor dependency. Note that
some features (such as detecting the default value or deprecated items) are not
working due to limitations in the model kapt provides.

221

https://start.spring.io/#!language=kotlin
https://kotlinlang.org/docs/reference/kapt.html
https://kotlinlang.org/docs/reference/kapt.html
https://kotlinlang.org/docs/reference/kapt.html

4.30.6. Testing

While it is possible to use JUnit 4 to test Kotlin code, JUnit 5 is provided by default and is
recommended. JUnit 5 enables a test class to be instantiated once and reused for all of the classOs
tests. This makes it possible to use @BeforeAll and @AfterAll annotations on non-static methods,
which is a good fit for Kotlin.

JUnit 5 is the default and the vintage engine is provided for backward compatibility with JUnit 4. If
you donOt use it, exclude org.junit.vintage:junit-vintage-engine . You also need to switch test
instance lifecycle to "per-class"

To mock Kotlin classes, MockK is recommended. If you need the Mockkequivalent of the Mockito
specific @MockBeasnd @SpyBeaannotations , you can use SpringMockK which provides similar
@MockkBeamd @ SpykBeaannotations.

4.30.7. Resources

Further reading

¥ Kotlin language reference

¥ Kotlin Slack (with a dedicated #spring channel)

¥ Stackoverflow with spring and kotlin tags

¥ Try Kotlin in your browser

¥ Kotlin blog

¥ Awesome Kotlin

¥ Tutorial: building web applications with Spring Boot and Kotlin

¥ Developing Spring Boot applications with Kotlin

¥ A Geospatial Messenger with Kotlin, Spring Boot and PostgreSQL
¥ Introducing Kotlin support in Spring Framework 5.0

¥ Spring Framework 5 Kotlin APIs, the functional way

Examples

¥ spring-boot-kotlin-demo : regular Spring Boot + Spring Data JPA project
¥ mixit : Spring Boot 2 + WebFlux + Reactive Spring Data MongoDB

¥ spring-kotlin-fullstack : WebFlux Kotlin fullstack example with Kotlin2js for frontend instead of
JavaScript or TypeScript

¥ spring-petclinic-kotlin - : Kotlin version of the Spring PetClinic Sample Application
¥ spring-kotlin-deepdive : a step by step migration for Boot 1.0 + Java to Boot 2.0 + Kotlin

¥ spring-boot-coroutines-demo : Coroutines sample project

222

https://junit.org/junit5/docs/current/user-guide/#writing-tests-test-instance-lifecycle-changing-default
https://junit.org/junit5/docs/current/user-guide/#writing-tests-test-instance-lifecycle-changing-default
https://mockk.io/
https://github.com/Ninja-Squad/springmockk
https://kotlinlang.org/docs/reference/
https://kotlinlang.slack.com/
https://stackoverflow.com/questions/tagged/spring+kotlin
https://stackoverflow.com/questions/tagged/spring+kotlin
https://stackoverflow.com/questions/tagged/spring+kotlin
https://stackoverflow.com/questions/tagged/spring+kotlin
https://stackoverflow.com/questions/tagged/spring+kotlin
https://try.kotlinlang.org/
https://blog.jetbrains.com/kotlin/
https://kotlin.link/
https://spring.io/guides/tutorials/spring-boot-kotlin/
https://spring.io/blog/2016/02/15/developing-spring-boot-applications-with-kotlin
https://spring.io/blog/2016/03/20/a-geospatial-messenger-with-kotlin-spring-boot-and-postgresql
https://spring.io/blog/2017/01/04/introducing-kotlin-support-in-spring-framework-5-0
https://spring.io/blog/2017/08/01/spring-framework-5-kotlin-apis-the-functional-way
https://github.com/sdeleuze/spring-boot-kotlin-demo
https://github.com/mixitconf/mixit
https://github.com/sdeleuze/spring-kotlin-fullstack
https://github.com/spring-petclinic/spring-petclinic-kotlin
https://github.com/sdeleuze/spring-kotlin-deepdive
https://github.com/sdeleuze/spring-boot-coroutines-demo

4.31. Building Container Images

Spring Boot applications can be containerized either by packaging them into Docker images , or by

using Buildpacks to create docker compatible container images that you can run anywhere

4.31.1. Building Docker images

A typical Spring Boot fat jar can be converted into a Docker image by adding just a few lines to a
Dockerfile that can be used to build the image. However, there are various downsides to copying
and running the fat jar as is in the docker image. ThereOs always a certain amount of overhead
when running a fat jar without unpacking it, and in a containerized environment this can be
noticeable. The other issue is that putting your applicationOs code and all its dependencies in one
layer in the Docker image is sub-optimal. Since you probably recompile your code more often than
you upgrade the version of Spring Boot you use, itOs often better to separate things a bit more. If you
put jar files in the layer before your application classes, Docker often only needs to change the very
bottom layer and can pick others up from its cache.

Layering Docker Images

To make it easier to create optimized Docker images that can be built with a dockerfile, Spring Boot
supports adding a layer index file to the jar. It provides a list of layers and the parts of the jar that
should be contained within them. The list of layers in the index is ordered based on the order in
which the layers should be added to the Docker/OCI image. Out-of-the-box, the following layers are
supported:

¥ dependencies(for regular released dependencies)
¥ spring-boot-loader (for everything under org/springframework/boot/loader)
¥ snapshot-dependencies (for snapshot dependencies)

¥ application (for application classes and resources)

The following shows an example of a layers.idx file:

- "dependencies":

E - BOOT-INF/lib/library1.jar

E - BOOT-INF/lib/library2.jar

- "spring-boot-loader":

E - org/springframework/boot/loader/JarLauncher.class
E - org/springframework/boot/loader/jar/JarEntry.class
- "snapshot-dependencies":

E - BOOT-INF/lib/library3-SNAPSHOT .jar

- "application":

E - META-INF/MANIFEST.MF

E - BOOT-INF/classes/a/b/C.class

This layering is designed to separate code based on how likely it is to change between application
builds. Library code is less likely to change between builds, so it is placed in its own layers to allow
tooling to re-use the layers from cache. Application code is more likely to change between builds so

223

it is isolated in a separate layer.

For Maven, refer to the packaging layered jars section for more details on adding a layer index to
the jar. For Gradle, refer to the packaging layered jars section of the Gradle plugin documentation.

Writing the Dockerfile

When you create a jar containing the layers index file, the spring-boot-jarmode-layertools jar will
be added as a dependency to your jar. With this jar on the classpath, you can launch your
application in a special mode which allows the bootstrap code to run something entirely different

from your application, for example, something that extracts the layers.

The layertools mode can not be used with a fully executable Spring Boot archive
$ that includes a launch script. Disable launch script configuration when building a
jar file that is intended to be used with layertools .

HereOs how you can launch your jar with a layertools jar mode:
$ java -Djarmode=layertools -jar my-app.jar
This will provide the following output:

Usage:
E java -Djarmode=layertools -jar my-app.jar

Available commands:

E list List layers from the jar that can be extracted

E extract Extracts layers from the jar for image creation
E help Help about any command

The extract command can be used to easily split the application into layers to be added to the
dockerfile. HereOs an example of a Dockerfile using ~ jarmode.

FROM adoptopenjdk:11-jre-hotspot as builder

WORKDIR application

ARG JAR_FILE=target/*.jar

COPY ${JAR_FILE} application.jar

RUN java -Djarmode=layertools -jar application.jar extract

FROM adoptopenjdk:11-jre-hotspot

WORKDIR application

COPY --from=builder application/dependencies/ ./

COPY --from=builder application/spring-boot-loader/ ./

COPY --from=builder application/snapshot-dependencies/ ./

COPY --from=builder application/application/ ./

ENTRYPOINT ["java", "org.springframework.boot.loader.JarLauncher"]

224

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/maven-plugin/reference/html/#repackage-layers
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/gradle-plugin/reference/html/#packaging-layered-jars

Assuming the above Dockerfile is in the current directory, your docker image can be built with
docker build ., or optionally specifying the path to your application jar, as shown in the following
example:

docker build --build-arg JAR_FILE=path/to/myapp.jar .

This is a multi-stage dockerfile. The builder stage extracts the directories that are needed later. Each
of the COP¥ommands relates to the layers extracted by the jarmode.

Of course, a Dockerfile can be written without using the jarmode. You can use some combination of
unzip and mvto move things to the right layer but jarmode simplifies that.

4.31.2. Buildpacks

Dockerfiles are just one way to build docker images. Another way to build docker images is directly

from your Maven or Gradle plugin, using buildpacks. If youOve ever used an application platform

such as Cloud Foundry or Heroku then youOve probably used a buildpack. Buildpacks are the part of

the platform that takes your application and converts it into something that the platform can
actually run. For example, Cloud FoundryOs Java buildpack will notice that youOre pushing a Jar file
and automatically add a relevant JRE.

With Cloud Native Buildpacks, you can create Docker compatible images that you can run
anywhere. Spring Boot includes buildpack support directly for both Maven and Gradle. This means
you can just type a single command and quickly get a sensible image into your locally running
Docker daemon.

Refer to the individual plugin documentation on how to use buildpacks with Maven and Gradle.

4.32. What to Read Next

If you want to learn more about any of the classes discussed in this section, you can check out the
Spring Boot API documentation or you can browse the source code directly . If you have specific
guestions, take a look at the how-to section.

If you are comfortable with Spring BootOs core features, you can continue on and read about
production-ready features

225

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/maven-plugin/reference/html/#build-image
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/gradle-plugin/reference/html/#build-image
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/api/
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE

Chapter 5. Spring Boot Actuator: Production-
ready Features

Spring Boot includes a number of additional features to help you monitor and manage your
application when you push it to production. You can choose to manage and monitor your
application by using HTTP endpoints or with IMX. Auditing, health, and metrics gathering can also
be automatically applied to your application.

5.1. Enabling Production-ready Features

The spring-boot-actuator ~ module provides all of Spring BootOs production-ready features. The
recommended way to enable the features is to add a dependency on the spring-boot-starter-
actuator OStarterO.

Definition of Actuator

An actuator is a manufacturing term that refers to a mechanical device for moving or
controlling something. Actuators can generate a large amount of motion from a small change.

To add the actuator to a Maven based project, add the following OStarterO dependency:

<dependencies>

<dependency>
<groupld>org.springframework.boot</groupld>
<artifactld>spring-boot-starter-actuator</artifactld>

</dependency>

</dependencies>

[T [T [T [T

For Gradle, use the following declaration:

dependencies {
E implementation 'org.springframework.boot:spring-boot-starter-actuator

}

5.2. Endpoints

Actuator endpoints let you monitor and interact with your application. Spring Boot includes a
number of built-in endpoints and lets you add your own. For example, the health endpoint provides
basic application health information.

Each individual endpoint can be enabled or disabled and exposed (made remotely accessible) over
HTTP or JMX. An endpoint is considered to be available when it is both enabled and exposed. The
built-in endpoints will only be auto-configured when they are available. Most applications choose

226

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator

exposure via HTTP, where the ID of the endpoint along with a prefix of

URL. For example, by default, the health endpoint is mapped to /actuator/health

The following technology-agnostic endpoints are available:

ID

auditevents

beans
caches

conditions

configprops

env

flyway

health

httptrace

info

integrationgraph

loggers

liquibase

metrics
mappings
scheduledtasks

sessions

shutdown

threaddump

Description

Exposes audit events information for the current application.
Requires an AuditEventRepository bean.

Displays a complete list of all the Spring beans in your application.
Exposes available caches.

Shows the conditions that were evaluated on configuration and auto-
configuration classes and the reasons why they did or did not match.

Displays a collated list of all @ConfigurationProperties .
Exposes properties from SpringOs ConfigurableEnvironment .

Shows any Flyway database migrations that have been applied.
Requires one or more Flyway beans.

Shows application health information.

Displays HTTP trace information (by default, the last 100 HTTP

/actuator is mapped to a

request-response exchanges). Requires an HttpTraceRepository bean.

Displays arbitrary application info.

Shows the Spring Integration graph. Requires a dependency on
spring-integration-core

Shows and modifies the configuration of loggers in the application.

Shows any Liquibase database migrations that have been applied.
Requires one or more Liquibase beans.

Shows OmetricsO information for the current application.
Displays a collated list of all @RequestMappimaths.
Displays the scheduled tasks in your application.

Allows retrieval and deletion of user sessions from a Spring Session-
backed session store. Requires a Servlet-based web application using
Spring Session.

Lets the application be gracefully shutdown. Disabled by default.

Performs a thread dump.

If your application is a web application (Spring MVC, Spring WebFlux, or Jersey), you can use the

following additional endpoints:

ID
heapdump

Description

Returns an hprof heap dump file.

227

ID Description

jolokia Exposes JMX beans over HTTP (when Jolokia is on the classpath, not
available for WebFlux). Requires a dependency on jolokia-core

logfile Returns the contents of the logfile (if logging.file.name or
logging.file.path properties have been set). Supports the use of the
HTTP Rangeheader to retrieve part of the log fileOs content.

prometheus Exposes metrics in a format that can be scraped by a Prometheus
server. Requires a dependency on micrometer-registry-prometheus

To learn more about the ActuatorOs endpoints and their request and response formats, please refer
to the separate API documentation (HTML or PDF).

5.2.1. Enabling Endpoints

By default, all endpoints except for shutdown are enabled. To configure the enablement of an
endpoint, use its management.endpoint.<id>.enabled property. The following example enables the
shutdownendpoint:

management.endpoint.shutdown.enabled=true

If you prefer endpoint enablement to be optiin rather than opt-out, set the
management.endpoints.enabled-by-default property to false and use individual endpoint enabled
properties to opt back in. The following example enables the info endpoint and disables all other
endpoints:

management.endpoints.enabled-by-default=false
management.endpoint.info.enabled=true

Disabled endpoints are removed entirely from the application context. If you want
| to change only the technologies over which an endpoint is exposed, use the include
and exclude properties instead.

5.2.2. Exposing Endpoints

Since Endpoints may contain sensitive information, careful consideration should be given about
when to expose them. The following table shows the default exposure for the built-in endpoints:

ID JMX Web
auditevents Yes No
beans Yes No
caches Yes No
conditions Yes No

228

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/actuator-api/html/
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/actuator-api/pdf/spring-boot-actuator-web-api.pdf

ID JMX Web

configprops Yes No
env Yes No
flyway Yes No
health Yes Yes
heapdump N/A No
httptrace Yes No
info Yes Yes
integrationgraph Yes No
jolokia N/A No
logfile N/A No
loggers Yes No
liquibase Yes No
metrics Yes No
mappings Yes No
prometheus N/A No
scheduledtasks Yes No
sessions Yes No
shutdown Yes No
threaddump Yes No
To change which endpoints are exposed, use the following technology-specific include and exclude
properties:

Property Default

management.endpoints.jmx.exposure.exclude
management.endpoints.jmx.exposure.include *
management.endpoints.web.exposure.exclude

management.endpoints.web.exposure.include info, health

The include property lists the IDs of the endpoints that are exposed. The exclude property lists the
IDs of the endpoints that should not be exposed. The exclude property takes precedence over the
include property. Both include and exclude properties can be configured with a list of endpoint IDs.

For example, to stop exposing all endpoints over JMX and only expose the health and info
endpoints, use the following property:

management.endpoints.jmx.exposure.include=health,info

229

* can be used to select all endpoints. For example, to expose everything over HTTP except the env
and beansendpoints, use the following properties:

management.endpoints.web.exposure.include=*
management.endpoints.web.exposure.exclude=env,beans

* has a special meaning in YAML, so be sure to add quotes if you want to include
(or exclude) all endpoints, as shown in the following example:

management:
endpoints:
web:
exposure:
include; "*"

m [T [T [T

If your application is exposed publicly, we strongly recommend that you also
secure your endpoints

If you want to implement your own strategy for when endpoints are exposed, you
can register an EndpointFilter bean.

5.2.3. Securing HTTP Endpoints

You should take care to secure HTTP endpoints in the same way that you would any other sensitive
URL. If Spring Security is present, endpoints are secured by default using Spring SecurityOs content-
negotiation strategy. If you wish to configure custom security for HTTP endpoints, for example, only
allow users with a certain role to access them, Spring Boot provides some convenient
RequestMatcherobjects that can be used in combination with Spring Security.

A typical Spring Security configuration might look something like the following example:

@Configuration(proxyBeanMethods = false)
public class ActuatorSecurity extends WebSecurityConfigurerAdapter {

@Override
protected void configure(HttpSecurity http) throws Exception {

= [T TP [TP

ttp.requestMatcher(EndpointRequest.toAnyEndpoint()).authorizeRequests((requests) ->
requests.anyRequest().hasRole("ENDPOINT_ADMIN"));
http.httpBasic();

}

T [T [T

—

The preceding example uses EndpointRequest.toAnyEndpoint() to match a request to any endpoint

230

and then ensures that all have the ENDPOINT_ADNdM. Several other matcher methods are also
available on EndpointRequest See the APl documentation (HTML or PDF) for details.

If you deploy applications behind a firewall, you may prefer that all your actuator endpoints can be
accessed without requiring authentication. You can do so by changing the
management.endpoints.web.exposure.include property, as follows:

application.properties

management.endpoints.web.exposure.include=*

Additionally, if Spring Security is present, you would need to add custom security configuration that
allows unauthenticated access to the endpoints as shown in the following example:

@Configuration(proxyBeanMethods = false)
public class ActuatorSecurity extends WebSecurityConfigurerAdapter {

@Override
protected void configure(HttpSecurity http) throws Exception {

= [TV TP [TP

ttp.requestMatcher(EndpointRequest.toAnyEndpoint()).authorizeRequests((requests) ->
requests.anyRequest().permitAll());

m [m»

—

5.2.4. Configuring Endpoints

Endpoints automatically cache responses to read operations that do not take any parameters. To

configure the amount of time for which an endpoint will cache a response, use its cache.time-to-
live property. The following example sets the time-to-live of the beans endpointOs cache to 10
seconds:

application.properties

management.endpoint.beans.cache.time-to-live=10s

The prefix management.endpoint.<nameis used to uniquely identify the endpoint
. that is being configured.

5.2.5. Hypermedia for Actuator Web Endpoints

A Odiscovery pageO is added with links to all the endpoints. The Odiscovery pageO is available on
/actuator by default.

When a custom management context path is configured, the Odiscovery pageO automatically moves
from /actuator to the root of the management context. For example, if the management context

231

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/actuator-api/html
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/actuator-api/pdf/spring-boot-actuator-web-api.pdf

path is /managementthen the discovery page is available from /managementWhen the management
context path is setto /, the discovery page is disabled to prevent the possibility of a clash with other
mappings.

5.2.6. CORS Support

Cross-origin resource sharing (CORS) is aW3C specification that lets you specify in a flexible way
what kind of cross-domain requests are authorized. If you use Spring MVC or Spring WebFlux,
ActuatorOs web endpoints can be configured to support such scenarios.

CORS support is disabled by default and is only enabled once the
management.endpoints.web.cors.allowed-origins property has been set. The following configuration
permits GETand POSTalls from the example.comdomain:

management.endpoints.web.cors.allowed-origins=https://example.com
management.endpoints.web.cors.allowed-methods=GET,POST

| SeeCorsEndpointProperties for a complete list of options.

5.2.7. Implementing Custom Endpoints

If you add a @Bearnannotated with @Endpoint any methods annotated with @ReadOperatign
@WriteOperation or @DeleteOperationare automatically exposed over JMX and, in a web application,

over HTTP as well. Endpoints can be exposed over HTTP using Jersey, Spring MVC, or Spring
WebFlux. If both Jersey and Spring MVC are available, Spring MVC will be used.

The following example exposes a read operation that returns a custom object:
@ReadOperation

public CustomData getCustomData() {
E return new CustomData("test", 5);

}
You can also write technology-specific endpoints by using @JmxEndpoinbr @WebEndpoinfThese
endpoints are restricted to their respective technologies. For example, @WebEndpoiig exposed only

over HTTP and not over JMX.

You can write technology-specific extensions by using @EndpointWebExtension and
@EndpointJmxExtension These annotations let you provide technology-specific operations to
augment an existing endpoint.

Finally, if you need access to web-framework-specific functionality, you can implement Servlet or
Spring @Controller and @RestController endpoints at the cost of them not being available over JMX
or when using a different web framework.

232

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://www.w3.org/TR/cors/
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator-autoconfigure/src/main/java/org/springframework/boot/actuate/autoconfigure/endpoint/web/CorsEndpointProperties.java

Receiving Input

Operations on an endpoint receive input via their parameters. When exposed via the web, the
values for these parameters are taken from the URLOs query parameters and from the JSON request
body. When exposed via JMX, the parameters are mapped to the parameters of the MBeanOs
operations. Parameters are required by default. They can be made optional by annotating them
with @org.springframework.lang.Nullable

Each root property in the JSON request body can be mapped to a parameter of the endpoint.
Consider the following JSON request body:

"name": "test",
"counter": 42

- m) I-I-I)r-“ﬁ

This can be used to invoke a write operation that takes String name and int counter parameters, as
shown in the following example:

@WriteOperation
public void updateCustomData(String name, int counter) {
E //injects "test" and 42

}

Because endpoints are technology agnostic, only simple types can be specified in
| the method signature. In particular declaring a single parameter with a CustomData
type defining a nameand counter properties is not supported.

To allow the input to be mapped to the operation methodOs parameters, Java code
implementing an endpoint should be compiled with -parameters, and Kotlin code
implementing an endpoint should be compiled with -java-parameters . This will
happen automatically if you are using Spring BootOs Gradle plugin or if you are
using Maven and spring-boot-starter-parent

Input type conversion

The parameters passed to endpoint operation methods are, if necessary, automatically converted to

the required type. Before calling an operation method, the input received via JMX or an HTTP
request is converted to the required types using an instance of ApplicationConversionService as well
as any Converter or GenericConverter beans qualified with ~ @EndpointConverter

Custom Web Endpoints

Operations on an @Endpoint@WebEndpoinbr @EndpointWebExtensioare automatically exposed over
HTTP using Jersey, Spring MVC, or Spring WebFlux. If both Jersey and Spring MVC are available,
Spring MVC will be used.

233

Web Endpoint Request Predicates

A request predicate is automatically generated for each operation on a web-exposed endpoint.

Path

The path of the predicate is determined by the ID of the endpoint and the base path of web-exposed
endpoints. The default base path is /actuator . For example, an endpoint with the 1D sessions will
use /actuator/sessions as its path in the predicate.

The path can be further customized by annotating one or more parameters of the operation method

with @Selector. Such a parameter is added to the path predicate as a path variable. The variableOs
value is passed into the operation method when the endpoint operation is invoked. If you want to
capture all remaining path elements, you can add @Selector(Match=ALL_REMAININ®) the last
parameter and make it a type that is conversion compatible with a String]]

HTTP method

The HTTP method of the predicate is determined by the operation type, as shown in the following
table:

Operation HTTP method

@ReadOperation GET

@WriteOperation POST

@DeleteOperation DELETE
Consumes

For a @WriteOperation(HTTP POS)Tthat uses the request body, the consumes clause of the predicate
is application/vnd.spring-boot.actuator.v2+json, application/json . For all other operations the
consumes clause is empty.

Produces

The produces clause of the predicate can be determined by the produces attribute of the
@DeleteOperation @ReadOperatigrand @WriteOperationannotations. The attribute is optional. If it is
not used, the produces clause is determined automatically.

If the operation method returns void or Void the produces clause is empty. If the operation method
returns a org.springframework.core.io.Resource , the produces clause is application/octet-stream
For all other operations the produces clause is application/vnd.spring-boot.actuator.v2+json,
application/json

Web Endpoint Response Status

The default response status for an endpoint operation depends on the operation type (read, write,
or delete) and what, if anything, the operation returns.

A @ReadOperatioreturns a value, the response status will be 200 (OK). If it does not return a value,
the response status will be 404 (Not Found).

234

If a @WriteOperationor @DeleteOperationreturns a value, the response status will be 200 (OK). If it
does not return a value the response status will be 204 (No Content).

If an operation is invoked without a required parameter, or with a parameter that cannot be
converted to the required type, the operation method will not be called and the response status will
be 400 (Bad Request).

Web Endpoint Range Requests

An HTTP range request can be used to request part of an HTTP resource. When using Spring MVC
or Spring Web Flux, operations that return a org.springframework.core.io.Resource automatically
support range requests.

[Range requests are not supported when using Jersey.

Web Endpoint Security

An operation on a web endpoint or a web-specific endpoint extension can receive the current
java.security.Principal or org.springframework.boot.actuate.endpoint.SecurityContext as a
method parameter. The former is typically used in conjunction with @Nullable to provide different
behavior for authenticated and unauthenticated users. The latter is typically used to perform
authorization checks using its isUserInRole(String) method.

Servlet endpoints

A Servlet can be exposed as an endpoint by implementing a class annotated with @ServletEndpoint
that also implements Supplier<EndpointServlet> . Servlet endpoints provide deeper integration with

the Servlet container but at the expense of portability. They are intended to be used to expose an
existing Servlet as an endpoint. For new endpoints, the @Endpointand @WebEndpoirannotations
should be preferred whenever possible.

Controller endpoints

@ControllerEndpoint and @RestControllerEndpoint can be used to implement an endpoint that is only
exposed by Spring MVC or Spring WebFlux. Methods are mapped using the standard annotations

for Spring MVC and Spring WebFlux such as ~ @RequestMappingnd @GetMappingvith the endpointOs

ID being used as a prefix for the path. Controller endpoints provide deeper integration with
SpringOs web frameworks but at the expense of portability. The @Endpointand @WebEndpoint
annotations should be preferred whenever possible.

5.2.8. Health Information

You can use health information to check the status of your running application. It is often used by
monitoring software to alert someone when a production system goes down. The information
exposed by the health endpoint depends on the management.endpoint.health.show-details and
management.endpoint.health.show-components properties which can be configured with one of the
following values:

235

Name Description
never Details are never shown.

when-authorized Details are only shown to authorized users. Authorized roles can be
configured using management.endpoint.health.roles .

always Details are shown to all users.

The default value is never. A user is considered to be authorized when they are in one or more of
the endpointOs roles. If the endpoint has no configured roles (the default) all authenticated users are
considered to be authorized. The roles can be configured using the
management.endpoint.health.roles property.

If you have secured your application and wish to use always, your security
configuration must permit access to the health endpoint for both authenticated
and unauthenticated users.

Health information is collected from the content of a HealthContributorRegistry (by default all
HealthContributor instances defined in your ApplicationContext). Spring Boot includes a number of
auto-configured HealthContributors and you can also write your own.

A HealthContributor can either be a Healthindicator or a CompositeHealthContributor . A
Healthindicator provides actual health information, including a Status. A
CompositeHealthContributor provides a composite of other HealthContributors . Taken together,
contributors form a tree structure to represent the overall system health.

By default, the final system health is derived by a StatusAggregator which sorts the statuses from
each Healthindicator based on an ordered list of statuses. The first status in the sorted list is used as
the overall health status. If no Healthindicator returns a status that is known to the
StatusAggregator , an UNKNO&tatus is used.

' The HealthContributorRegistry can be used to register and unregister health
. indicators at runtime.

Auto-configured Healthindicators

The following Healthindicators are auto-configured by Spring Boot when appropriate. You can also
enable/disable selected indicators by configuring management.health.key.enabled, with the key listed
in the table below.

Key Name Description

cassandra CassandraHealthindicator Checks that a Cassandra database is up.

couchbase CouchbaseHealthindicator Checks that a Couchbase cluster is up.

datasource DataSourceHealthindicator Checks that a connection to DataSourcecan be
obtained.

diskspace DiskSpaceHealthindicator Checks for low disk space.

236

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthContributorRegistry.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/cassandra/CassandraHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/couchbase/CouchbaseHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/jdbc/DataSourceHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/system/DiskSpaceHealthIndicator.java

Key

elasticsearch

hazelcast
influxdb
jms

Idap

mail
mongo
neo4j
ping
rabbit
redis

solr

Additional

Key

livenessstate

readinessstate

Name

ElasticsearchRestHealthIndicat
or

HazelcastHealthIndicator
InfluxDbHealthIndicator
JmsHealthindicator
LdapHealthindicator
MailHealthIndicator
MongoHealthindicator
Neo4jHealthindicator
PingHealthIndicator
RabbitHealthindicator
RedisHealthindicator

SolrHealthindicator

You can disable them all by setting the

property.

Name

LivenessStateHealthIndicator

ReadinessStateHealthIndicato

r

Writing Custom HealthIndicators

Description

Checks that an Elasticsearch cluster is up.

Checks that a Hazelcast server is up.
Checks that an InfluxDB server is up.
Checks that a JMS broker is up.
Checks that an LDAP server is up.
Checks that a mail server is up.
Checks that a Mongo database is up.
Checks that a Neo4j database is up.
Always responds with UP

Checks that a Rabbit server is up.
Checks that a Redis server is up.

Checks that a Solr server is up.

management.health.defaults.enabled

Healthindicators are available but not enabled by default:

Description

Exposes the "Liveness" application
availability state.

Exposes the "Readiness" application
availability state.

To provide custom health information, you can register Spring beans that implement the

HealthIndicator

interface. You need to provide an implementation of the

health()

return a Health response. The Health response should include a status and can optionally include

additional

details to be displayed. The following code shows a sample

implementation:

method and

Healthindicator

237

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/elasticsearch/ElasticsearchRestHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/elasticsearch/ElasticsearchRestHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/hazelcast/HazelcastHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/influx/InfluxDbHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/jms/JmsHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/ldap/LdapHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/mail/MailHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/mongo/MongoHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/neo4j/Neo4jHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/PingHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/amqp/RabbitHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/redis/RedisHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/solr/SolrHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/availability/LivenessStateHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/availability/ReadinessStateHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/availability/ReadinessStateHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthIndicator.java

import org.springframework.boot.actuate.health.Health;
import org.springframework.boot.actuate.health.Healthindicator;
import org.springframewaork.stereotype.Component;

@Component
public class MyHealthindicator implements Healthindicator {

@Override
public Health health() {
int errorCode = check(); // perform some specific health check
if (errorCode !'=0) {
return Health.down().withDetail("Error Code", errorCode).build();
}
return Health.up().build();

}

[T [T [T [T T» e My [mp

—

The identifier for a given Healthindicator is the name of the bean without the
Healthindicator suffix, if it exists. In the preceding example, the health
information is available in an entry named my

In addition to Spring BootOs predefined ~ Status types, it is also possible for Health to return a custom
Status that represents a new system state. In such cases, a custom implementation of the
StatusAggregator interface also needs to be provided, or the default implementation has to be
configured by using the management.endpoint.health.status.order configuration property.

For example, assume a new Status with code FATALSs being used in one of your Healthindicator
implementations. To configure the severity order, add the following property to your application
properties:

management.endpoint.health.status.order=fatal,down,out-of-service,unknown,up

The HTTP status code in the response reflects the overall health status. By default, OUT_OF_SERVICE
and DOWiNap to 503. Any unmapped health statuses, including UR map to 200. You might also want

to register custom status mappings if you access the health endpoint over HTTP. Configuring a

custom mapping disables the defaults mappings for DOWahd OUT_OF_SERVI{EEou want to retain

the default mappings they must be configured explicitly alongside any custom mappings. For

example, the following property maps FATALto 503 (service unavailable) and retains the default
mappings for DOWahd OUT_OF_SERVICE

management.endpoint.health.status. http-mapping.down=503
management.endpoint.health.status.http-mapping.fatal=503
management.endpoint.health.status.http-mapping.out-of-service=503

238

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/Status.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/StatusAggregator.java

| If you need more control, you can define your own HttpCodeStatusMappetbean.

The following table shows the default status mappings for the built-in statuses:

Status Mapping

DOWN SERVICE_UNAVAILABLE (503)
OUT_OF_SERVICE SERVICE_UNAVAILABLE (503)

UP No mapping by default, so http status is 200
UNKNOWN No mapping by default, so http status is 200

Reactive Health Indicators

For reactive applications, such as those using Spring WebFlux, ReactiveHealthContributor provides
a non-blocking contract for getting application health. Similar to a traditional HealthContributor

health information is collected from the content of a ReactiveHealthContributorRegistry (by default
all HealthContributor and ReactiveHealthContributor instances defined in your ApplicationContext).

Regular HealthContributors that do not check against a reactive API are executed on the elastic
scheduler.

In a reactive application, The ReactiveHealthContributorRegistry should be used to
register and unregister health indicators at runtime. If you need to register a
regular HealthContributor , you should wrap it using
ReactiveHealthContributor#adapt .

To provide custom health information from a reactive API, you can register Spring beans that

implement the ReactiveHealthindicator interface. The following code shows a sample
ReactiveHealthindicator implementation:

@Component
public class MyReactiveHealthindicator implements ReactiveHealthindicator {

@Override
public Mono<Health> health() {

return doHealthCheck() //perform some specific health check that returns a
Mono<Health>

[T [T T

E .onErrorResume(ex -> Mono.just(new Health.Builder().down(ex).build()));
E }
}
To handle the error automatically, consider extending from
. AbstractReactiveHealthindicator

239

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/ReactiveHealthContributorRegistry.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/HealthContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/ReactiveHealthContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/health/ReactiveHealthIndicator.java

Auto-configured ReactiveHealthindicators

The following ReactiveHealthindicators are auto-configured by Spring Boot when appropriate:

Name Description

CassandraReactiveHChecks that a Cassandra database is up.
ealthindicator

CouchbaseReactiveHChecks that a Couchbase cluster is up.
ealthindicator

ElasticsearchReact Checks that an Elasticsearch cluster is up.
iveHealthIndicator

MongoReactiveHealt Checks that a Mongo database is up.
hindicator

RedisReactiveHealt Checks that a Redis server is up.
hindicator

If necessary, reactive indicators replace the regular ones. Also, any Healthindicator
. that is not handled explicitly is wrapped automatically.

Health Groups

ItOs sometimes useful to organize health indicators into groups that can be used for different
purposes.

To create a health indicator group you can use the management.endpoint.health.group.<name>
property and specify a list of health indicator IDs to include or exclude. For example, to create a
group that includes only database indicators you can define the following:

management.endpoint.health.group.custom.include=db

You can then check the result by hitting localhost:8080/actuator/health/custom

By default groups will inherit the same StatusAggregator and HttpCodeStatusMappersettings as the
system health, however, these can also be defined on a per-group basis. ItOs also possible to override
the show-details and roles properties if required:

management.endpoint.health.group.custom.show-details=when-authorized
management.endpoint.health.group.custom.roles=admin
management.endpoint.health.group.custom.status.order=fatal,up
management.endpoint.health.group.custom.status.http-mapping.fatal=500
management.endpoint.health.group.custom.status.http-mapping.out-of-service=500

You can wuse @Qualifier("groupname") if you need to register custom
. StatusAggregator or HttpCodeStatusMappebeans for use with the group.

240

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/cassandra/CassandraReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/cassandra/CassandraReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/couchbase/CouchbaseReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/couchbase/CouchbaseReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/elasticsearch/ElasticsearchReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/elasticsearch/ElasticsearchReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/mongo/MongoReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/mongo/MongoReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/redis/RedisReactiveHealthIndicator.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/redis/RedisReactiveHealthIndicator.java
http://localhost:8080/actuator/health/custom

5.2.9. Kubernetes Probes

Applications deployed on Kubernetes can provide information about their internal state with
Container Probes . Depending on your Kubernetes configuration , the kubelet will call those probes
and react to the result.

Spring Boot manages your Application Availability State out-of-the-box. If deployed in a Kubernetes
environment, actuator will gather the "Liveness" and "Readiness" information from the
ApplicationAvailability interface and use that information in dedicated Health Indicators
LivenessStateHealthindicator ~and ReadinessStateHealthindicator . These indicators will be shown
on the global health endpoint (“/actuator/health”). They will also be exposed as separate HTTP
Probes using Health Groups : "/actuator/health/liveness" and "/actuator/health/readiness"

You can then configure your Kubernetes infrastructure with the following endpoint information:

livenessProbe:

E httpGet:

E path: /actuator/health/liveness
E port: <actuator-port>

E failureThreshold: ...

E periodSeconds: ...

readinessProbe:

E httpGet:

E path: /actuator/health/readiness
E port: <actuator-port>

E failureThreshold: ...

E periodSeconds: ...

<actuator-port> should be set to the port that the actuator endpoints are available
on. It could be the main web server port, or a separate management port if the
"management.server.port" property has been set.

These health groups are only enabled automatically if the application is running in a Kubernetes
environment . You can enable them in any environment using the
management.endpoint.health.probes.enabled configuration property.

If an application takes longer to start than the configured liveness period,
Kubernetes mention the "startupProbe" as a possible solution. The "startupProbe"
is not necessarily needed here as the ‘"readinessProbe" fails until all startup tasks
are done, see how Probes behave during the application lifecycle

If your Actuator endpoints are deployed on a separate management context, be
aware that endpoints are then not using the same web infrastructure (port,

connection pools, framework components) as the main application. In this case, a
probe check could be successful even if the main application does not work
properly (for example, it cannot accept new connections).

241

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-probes
https://kubernetes.io/docs/tasks/configure-pod-container/configure-liveness-readiness-startup-probes/

Checking external state with Kubernetes Probes

Actuator configures the "liveness" and "readiness" probes as Health Groups; this means that all the
Health Groups features are available for them. You can, for example, configure additional Health
Indicators:

management.endpoint.health.group.readiness.include=readinessState,customCheck

By default, Spring Boot does not add other Health Indicators to these groups.

The OlivenessO Probe should not depend on health checks for external systems. If the Liveness State
of an application is broken, Kubernetes will try to solve that problem by restarting the application
instance. This means that if an external system fails (e.g. a database, a Web API, an external cache),
Kubernetes might restart all application instances and create cascading failures.

As for the OreadinessO Probe, the choice of checking external systems must be made carefully by the
application developers, i.e. Spring Boot does not include any additional health checks in the
readiness probe. If the Readiness State of an application instance is unready, Kubernetes will not
route traffic to that instance. Some external systems might not be shared by application instances,

in which case they could quite naturally be included in a readiness probe. Other external systems
might not be essential to the application (the application could have circuit breakers and fallbacks),

in which case they definitely should not be included. Unfortunately, an external system that is
shared by all application instances is common, and you have to make a judgement call: include it in
the readiness probe and expect that the application is taken out of service when the external
service is down, or leave it out and deal with failures higher up the stack, e.g. using a circuit
breaker in the caller.

If all instances of an application are unready, a Kubernetes Service with
type=ClusterIP or NodePortwill not accept any incoming connections. There is no
HTTP error response (503 etc.) since there is no connection. A Service with
type=LoadBalancer might or might not accept connections, depending on the
provider. A Service that has an explicit Ingress will also respond in a way that
depends on the implementation - the ingress service itself will have to decide how

to handle the "connection refused" from downstream. HTTP 503 is quite likely in
the case of both load balancer and ingress.

Also, if an application is using Kubernetes autoscaling it may react differently to applications being
taken out of the load-balancer, depending on its autoscaler configuration.

Application lifecycle and Probes states

An important aspect of the Kubernetes Probes support is its consistency with the application
lifecycle. Spring Boot publishes Application Events during startup and shutdown

When a Spring Boot application starts:

242

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

Application startup Liveness Readiness Notes

phase State State

Starting BROKEN REFUSING_TRAdubernetes checks the "liveness" Probe and
FIC restarts the application if it takes too long.

Started CORRECT REFUSING_TRAfe application context is refreshed. The
FIC application performs startup tasks and does

not receive traffic yet.

Ready CORRECT ACCEPTING_TFartup tasks are finished. The application is

FFIC

receiving traffic.

When a Spring Boot application shuts down:

Application Liveness Readiness Notes

shutdown phase State State

Running live ready Shutdown has been requested.

Graceful shutdown live unready If enabled, graceful shutdown processes in-

flight requests .

Shutdown complete broken unready The application context is closed and the
application cannot serve traffic.

Check out the Kubernetes container lifecycle section for more information about
. Kubernetes deployment.

5.2.10. Application Information

Application information exposes various information collected from all InfoContributor beans
defined in your ApplicationContext . Spring Boot includes a number of auto-configured
InfoContributor beans, and you can write your own.

Auto-configured InfoContributors

The following InfoContributor beans are auto-configured by Spring Boot, when appropriate:

Name Description

EnvironmentinfoCon Exposes any key from the Environmentunder the info key.
tributor

GitinfoContributor Exposes git information if a git.properties file is available.

BuildinfoContribut Exposes build information ifa ~ META-INF/build-info.properties file is available.
or

It is possible to disable them all by setting the management.info.defaults.enabled
. property.

243

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/EnvironmentInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/EnvironmentInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/GitInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/BuildInfoContributor.java
https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/BuildInfoContributor.java

Custom Application Information

You can customize the data exposed by the info endpoint by setting info.* Spring properties. All
Environment properties under the info key are automatically exposed. For example, you could add
the following settings to your application.properties file:

info.app.encoding=UTF-8
info.app.java.source=1.8
info.app.java.target=1.8

Rather than hardcoding those values, you could also expand info properties at
build time .

Assuming you use Maven, you could rewrite the preceding example as follows:

info.app.encoding=@project.build.sourceEncoding@
info.app.java.source=@java.version@
info.app.java.target=@java.version@

Git Commit Information

Another useful feature of the info endpoint is its ability to publish information about the state of
your git source code repository when the project was built. If a GitProperties bean is available, the
git.branch , git.commit.id , and git.commit.time properties are exposed.

A GitProperties bean is auto-configured if a git.properties file is available at the
root of the classpath. See " Generate git information " for more details.

If you want to display the full git information (that is, the full content of git.properties), use the
management.info.git.mode property, as follows:

management.info.git. mode=full

Build Information

If a BuildProperties bean is available, the info endpoint can also publish information about your
build. This happens ifa META-INF/build-info.properties file is available in the classpath.

| The Maven and Gradle plugins can both generate that file. See * Generate build
. information " for more detalils.

Writing Custom InfoContributors

To provide custom application information, you can register Spring beans that implement the
InfoContributor interface.

244

https://github.com/spring-projects/spring-boot/tree/v2.3.7.RELEASE/spring-boot-project/spring-boot-actuator/src/main/java/org/springframework/boot/actuate/info/InfoContributor.java

The following example contributes an exampleentry with a single value:

import java.util.Collections;

import org.springframework.boot.actuate.info.Info;
import org.springframewaork.boot.actuate.info.InfoContributor;
import org.springframework.stereotype.Component;

@Component
public class ExamplelnfoContributor implements InfoContributor {

E @Override

E public void contribute(Info.Builder builder) {

E builder.withDetail("example",

E Collections.singletonMap("key", "value"));
E }

}

If you reach the info endpoint, you should see a response that contains the following additional
entry:

"example": {
"key" : "value"

}

~ [T m m-—

5.3. Monitoring and Management over HTTP

If you are developing a web application, Spring Boot Actuator auto-configures all enabled
endpoints to be exposed over HTTP. The default convention is to use the id of the endpoint with a
prefix of /actuator as the URL path. For example, health is exposed as /actuator/health

Actuator is supported natively with Spring MVC, Spring WebFlux, and Jersey. If
both Jersey and Spring MVC are available, Spring MVC will be used.

Jackson is a required dependency in order to get the correct JSON responses as
documented in the API documentation (HTML or PDF).

5.3.1. Customizing the Management Endpoint Paths

Sometimes, it is useful to customize the prefix for the management endpoints. For example, your
application might already use /actuator for another purpose. You can use the

management.endpoints.web.base-pathproperty to change the prefix for your management endpoint,
as shown in the following example:

245

https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/actuator-api/html
https://docs.spring.io/spring-boot/docs/2.3.7.RELEASE/actuator-api/pdf/spring-boot-actuator-web-api.pdf

management.endpoints.web.base-path=/manage

The preceding application.properties example changes the endpoint from /actuator/{id} to
/manage/{id} (for example, /manage/info).

Unless the management port has been configured to expose endpoints by using a

different HTTP port , management.endpoints.web.base-path is relative to
| server.servlet.context-path . If management.server.port is configured,
management.endpoints.web.base-path is relative to

management.server.servlet.context—path

If you want to map endpoints to a different path, you can use the management.endpoints.web.path-
mappingproperty.

The following example remaps /actuator/health to /healthcheck :

application.properties

management.endpoints.web.base-path=/
management.endpoints.web.path-mapping.health=healthcheck

5.3.2. Customizing the Management Server Port

Exposing management endpoints by using the default HTTP port is a sensible choice for cloud-
based deployments. If, however, your application runs inside your own data center, you may prefer
to expose endpoints by using a different HTTP port.

You can set the management.server.port property to change the HTTP port, as shown in the following
example:

management.server.port=8081

On Cloud Foundry, applications only receive requests on port 8080 for both HTTP
and TCP routing, by default. If you want to use a custom management port on
Cloud Foundry, you will need to explicitly set up the applicationOs routes to
forward traffic to the custom port.

5.3.3. Configuring Management-specific SSL

When configured to use a custom port, the management server can also be configured with its own

SSL by using the various management.server.ssl.* properties. For example, doing so lets a
management server be available over HTTP while the main application uses HTTPS, as shown in
the following property settings:

246

server.port=8443
server.ssl.enabled=true
server.ssl.key-store=classpath:store.jks
server.ssl.key-password=secret
management.server.port=8080
management.server.ssl.enabled=false

Alternatively, both the main server and the management server can use SSL but with different key
stores, as follows:

server.port=8443

server.ssl.enabled=true
server.ssl.key-store=classpath:main.jks
server.ssl.key-password=secret
management.server.port=8080
management.server.ssl.enabled=true
management.server.ssl.key-store=classpath:management.jks
management.server.ssl.key-password=secret

5.3.4. Customizing the Management Server Address

You can customize the address that the management endpoints are available on by setting the
management.server.addressproperty. Doing so can be useful if you want to listen only on an internal
or ops-facing network or to listen only for connections from localhost .

You can listen on a different address only when the port differs from the main
server port.

The following example application.properties does not allow remote management connections:

management.server.port=8081
management.server.address=127.0.0.1

5.3.5. Disabling HTTP Endpoints

If you do not want to expose endpoints over HTTP, you can set the management port to -1, as shown

in the following example:

management.server.port=-1

This can be achieved using the management.endpoints.web.exposure.exclude property as well, as

shown in the following example:

247

management.endpoints.web.exposure.exclude=*

5.4. Monitoring and Management over JMX

Java Management Extensions (JMX) provide a standard mechanism to monitor and manage
applications. By default, this feature is not enabled and can be turned on by setting the
configuration property spring.jmx.enabled to true . Spring Boot exposes management endpoints as
JMX MBeans under the org.springframework.boot domain by default.

5.4.1. Customizing MBean Names

The name of the MBean is usually generated from the id of the endpoint. For example, the health
endpoint is exposed as org.springframework.boot:type=Endpoint,name=Health .

If your application contains more than one Spring ApplicationContext , you may find that names
clash. To solve this problem, you can setthe spring.jmx.unique-names property to true so that MBean
names are always unique.

You can also customize the JMX domain under which endpoints are exposed. The following settings

show an example of doing so in application.properties

spring.jmx.unique-names=true
management.endpoints.jmx.domain=com.example.myapp

5.4.2. Disabling JMX Endpoints
If you do not want to expose endpoints over JMX, you <can set the

management.endpoints.jmx.exposure.exclude property to *, as shown in the following example:

management.endpoints.jmx.exposure.exclude=*

5.4.3. Using Jolokia for JMX over HTTP

Jolokia is a JMX-HTTP bridge that provides an alternative method of accessing JMX beans. To use
Jolokia, include a dependency to org.jolokia:jolokia-core . For example, with Maven, you would
add the following dependency:

<dependency>

E <groupld>org.jolokia</groupld>
E <artifactld>jolokia-core</artifactld>
</dependency>

The Jolokia endpoint can then be exposed by adding jolokia or * to the
management.endpoints.web.exposure.include property. You can then access it by using

248

/actuator/jolokia ~ on your management HTTP server.

The Jolokia endpoint exposes JolokiaOs servlet as an actuator endpoint. As a result,
it is specific to servlet environments such as Spring MVC and Jersey. The endpoint
will not be available in a WebFlux application.

Customizing Jolokia

Jolokia has a number of settings that you would traditionally configure by setting servlet
parameters. With Spring Boot, you can use your application.properties file. To do so, prefix the
parameter with management.endpoint.jolokia.config. , as shown in the following example:

management.endpoint.jolokia.config.debug=true

Disabling Jolokia

If you wuse Jolokia but do not want Spring Boot to configure it, set the
management.endpoint.jolokia.enabled property to false , as follows:

management.endpoint.jolokia.enabled=false

2.5. Loggers

Spring Boot Actuator includes the ability to view and configure the log levels of your application at
runtime. You can view either the entire list or an individual loggerOs configuration, which is made
up of both the explicitly configured logging level as well as the effective logging level given to it by
the logging framework. These levels can be one of:

¥ TRACE

¥ DEBUG

¥ INFO

¥ WARN

¥ ERROR

¥ FATAL

¥ OFF

¥ null

null indicates that there is no explicit configuration.

5.5.1. Configure a Logger

To configure a given logger, POST partial entity to the resourceOs URI, as shown in the following
example:

249

{
E "configuredLevel": "DEBUG"

}

To OresetO the specific level of the logger (and use the default configuration
instead), you can pass a value of null as the configuredLevel .

5.6. Metrics

Spring Boot Actuator provides dependency management and auto-configuration for Micrometer , an
application metrics facade that supports numerous monitoring systems , including:

¥ AppOptics

¥ Atlas

¥ Datadog

¥ Dynatrace

¥ Elastic

¥ Ganglia

¥ Graphite

¥ Humio

¥ Influx

¥ JMX

¥ KairosDB

¥ New Relic

¥ Prometheus

¥ SignalFx

¥ Simple (in-memory)

¥ Stackdriver

¥ StatsD

¥ Wavefront

To learn more about MicrometerOs capabilities, please refer to its reference
. documentation , in particular the concepts section .

5.6.1. Getting started

Spring Boot auto-configures a composite MeterRegistry and adds a registry to the composite for
each of the supported implementations that it finds on the classpath. Having a dependency on
micrometer-registry-{system} in your runtime classpath is enough for Spring Boot to configure the

250

https://micrometer.io
https://micrometer.io/docs
https://micrometer.io/docs
https://micrometer.io/docs
https://micrometer.io/docs/concepts

registry.
Most registries share common features. For instance, you can disable a particular registry even if
the Micrometer registry implementation is on the classpath. For example, to disable Datadog:

management.metrics.export.datadog.enabled=false

Spring Boot will also add any auto-configured registries to the global static composite registry on
the Metrics class unless you explicitly tell it not to:

management.metrics.use-global-registry=false

You can register any number of MeterRegistryCustomizer beans to further configure the registry,
such as applying common tags, before any meters are registered with the registry:

@Bean
MeterRegistryCustomizer<MeterRegistry> metricsCommonTags() {

E return registry -> registry.config().commonTags("region", "us-east-1");

}

You can apply customizations to particular registry implementations by being more specific about
the generic type:

@Bean
MeterRegistryCustomizer<GraphiteMeterRegistry> graphiteMetricsNamingConvention() {
E return registry -> registry.config().namingConvention(MY_CUSTOM_CONVENTION);

}

Spring Boot also configures built-in instrumentation that you can control via configuration or
dedicated annotation markers.

5.6.2. Supported monitoring systems

AppOptics

By default, the AppOptics registry pushes metrics to api.appoptics.com/vl/measurements periodically.
To export metrics to SaaS AppOptics , your API token must be provided:

management.metrics.export.appoptics.api-token=YOUR_TOKEN
Atlas

By default, metrics are exported to Atlas running on your local machine. The location of the Atlas
server to use can be provided using:

251

https://api.appoptics.com/v1/measurements
https://micrometer.io/docs/registry/appOptics
https://micrometer.io/docs/registry/atlas
https://github.com/Netflix/atlas
https://github.com/Netflix/atlas

management.metrics.export.atlas.uri=https://atlas.example.com:7101/api/v1/publish

Datadog

Datadog registry pushes metrics to datadoghg periodically. To export metrics to Datadog, your API
key must be provided:

management.metrics.export.datadog.api-key=YOUR_KEY

You can also change the interval at which metrics are sent to Datadog:

management.metrics.export.datadog.step=30s

Dynatrace

Dynatrace registry pushes metrics to the configured URI periodically. To export metrics to
Dynatrace , your API token, device ID, and URI must be provided:

management.metrics.export.dynatrace.api-token=YOUR_TOKEN
management.metrics.export.dynatrace.device-id=YOUR_DEVICE_ID
management.metrics.export.dynatrace.uri=YOUR_URI

You can also change the interval at which metrics are sent to Dynatrace:

management.metrics.export.dynatrace.step=30s

Elastic

By default, metrics are exported to Elastic running on your local machine. The location of the
Elastic server to use can be provided using the following property:

management.metrics.export.elastic.host=https://elastic.example.com:8086

Ganglia

By default, metrics are exported to ~ Ganglia running on your local machine. The Ganglia server host
and port to use can be provided using:

management.metrics.export.ganglia.host=ganglia.example.com
management.metrics.export.ganglia.port=9649

252

https://www.datadoghq.com
https://micrometer.io/docs/registry/datadog
https://micrometer.io/docs/registry/dynatrace
https://micrometer.io/docs/registry/elastic
https://micrometer.io/docs/registry/ganglia
http://ganglia.sourceforge.net

Graphite

By default, metrics are exported to Graphite running on your local machine. The Graphite server
host and port to use can be provided using:

management.metrics.export.graphite.host=graphite.example.com
management.metrics.export.graphite.port=9004

Micrometer provides a default HierarchicalNameMapperthat governs how a dimensional meter id is
mapped to flat hierarchical names

To take control over this behaviour, define your GraphiteMeterRegistry and supply
| your own HierarchicalNameMapper An auto-configured GraphiteConfig and Clock
beans are provided unless you define your own:

@Bean
public GraphiteMeterRegistry graphiteMeterRegistry(GraphiteConfig config, Clock clock)

{
E return new GraphiteMeterRegistry(config, clock, MY_HIERARCHICAL_MAPPER);

}

Humio

By default, the Humio registry pushes metrics to cloud.humio.com periodically. To export metrics to
SaaSHumio , your API token must be provided:

management.metrics.export.humio.api-token=YOUR_TOKEN

You should also configure one or more tags to identify the data source to which metrics will be
pushed:

management.metrics.export.humio.tags.alpha=a
management.metrics.export.humio.tags.bravo=b

Influx

By default, metrics are exported to Influx running on your local machine. The location of the Influx
server to use can be provided using:

management.metrics.export.influx.uri=https://influx.example.com:8086

JMX

Micrometer provides a hierarchical mapping to JMX, primarily as a cheap and portable way to view

253

https://micrometer.io/docs/registry/graphite
https://graphiteapp.org
https://micrometer.io/docs/registry/graphite#_hierarchical_name_mapping
https://cloud.humio.com
https://micrometer.io/docs/registry/humio
https://micrometer.io/docs/registry/influx
https://www.influxdata.com
https://www.influxdata.com
https://micrometer.io/docs/registry/jmx

metrics locally. By default, metrics are exported to the metrics JMX domain. The domain to use can
be provided using:

management.metrics.export.jmx.domain=com.example.app.metrics

Micrometer provides a default ~ HierarchicalNameMapperthat governs how a dimensional meter id is
mapped to flat hierarchical names

To take control over this behaviour, define your JmxMeterRegistry and supply your
I own HierarchicalNameMapper An auto-configured JmxConfig and Clock beans are
provided unless you define your own:

@Bean
public JImxMeterRegistry jmxMeterRegistry(JmxConfig config, Clock clock) {
E return new JmxMeterRegistry(config, clock, MY_HIERARCHICAL_MAPPER);

}

KairosDB

By default, metrics are exported to KairosDB running on your local machine. The location of the
KairosDB server to use can be provided using:

management.metrics.export.kairos.uri=https://kairosdb.example.com:8080/api/v1l/datapoin
ts

New Relic

New Relic registry pushes metrics to New Relic periodically. To export metrics to ~ New Relic, your
API key and account id must be provided:

management.metrics.export.newrelic.api-key=YOUR_KEY
management.metrics.export.newrelic.account-id=YOUR_ACCOUNT _ID

You can also change the interval at which metrics are sent to New Relic:

management.metrics.export.newrelic.step=30s

By default, metrics are published via REST calls but it is also possible to use the Java Agent API if
you have it on the classpath:

management.metrics.export.newrelic.client-provider-type=insights-agent

Finally, you can take full control by defining your own NewRelicClientProvider bean.

254

https://micrometer.io/docs/registry/jmx#_hierarchical_name_mapping
https://micrometer.io/docs/registry/kairos
https://kairosdb.github.io/
https://micrometer.io/docs/registry/new-relic
https://newrelic.com

Prometheus

Prometheus expects to scrape or poll individual app instances for metrics. Spring Boot provides an
actuator endpoint available at /actuator/prometheus to present a Prometheus scrape with the
appropriate format.

The endpoint is not available by default and must be exposed, see exposing
. endpoints for more details.

Here is an example scrape_config to add to prometheus.ymtl

scrape_configs:

E - job_name: 'spring’

E metrics_path: '/actuator/prometheus’
E static_configs:
E -targets: [HOST:PORT]
For ephemeral or batch jobs which may not exist long enough to be scraped, Prometheus

Pushgateway support can be used to expose their metrics to Prometheus. To enable Prometheus
Pushgateway support, add the following dependency to your project:

<dependency>

E <groupld>io.prometheus</groupld>

E <artifactld>simpleclient_pushgateway</artifactld>
</dependency>

When the Prometheus Pushgateway dependency is present on the classpath and the
management.metrics.export.prometheus.pushgateway.enabled property is set to true, a
PrometheusPushGatewayManadagan is auto-configured. This manages the pushing of metrics to a
Prometheus Pushgateway.

The PrometheusPushGatewayManager can be tuned using properties under
management.metrics.export.prometheus.pushgateway. For advanced configuration, you can also
provide your own PrometheusPushGatewayManadean.

SignalFx

SignalFx registry pushes metrics to SignalFx periodically. To export metrics to SignalFx, your access
token must be provided:

management.metrics.export.signalfx.access-token=YOUR_ACCESS_TOKEN

You can also change the interval at which metrics are sent to SignalFx:

management.metrics.export.signalfx.step=30s

255

https://micrometer.io/docs/registry/prometheus
https://prometheus.io
https://github.com/prometheus/pushgateway
https://github.com/prometheus/pushgateway
https://micrometer.io/docs/registry/signalFx
https://www.signalfx.com

Simple

Micrometer ships with a simple, in-memory backend that is automatically used as a fallback if no
other registry is configured. This allows you to see what metrics are collected in the metrics
endpoint .

The in-memory backend disables itself as soon as youQOre using any of the other available backend.
You can also disable it explicitly:

management.metrics.export.simple.enabled=false

Stackdriver

Stackdriver registry pushes metrics to Stackdriver periodically. To export metrics to SaaS
Stackdriver , your Google Cloud project id must be provided:

management.metrics.export.stackdriver.project-id=my-project

You can also change the interval at which metrics are sent to Stackdriver:

management.metrics.export.stackdriver.step=30s

StatsD

The StatsD registry pushes metrics over UDP to a StatsD agent eagerly. By default, metrics are
exported to a StatsD agent running on your local machine. The StatsD agent host and port to use
can be provided using:

management.metrics.export.statsd.host=statsd.example.com
management.metrics.export.statsd.port=9125

You can also change the StatsD line protocol to use (default to Datadog):

management.metrics.export.statsd.flavor=etsy

Wavefront

Wavefront registry pushes metrics to Wavefront periodically. If you are exporting metrics to
Wavefront directly, your APl token must be provided:

management.metrics.export.wavefront.api-token=YOUR_API_TOKEN

Alternatively, you may use a Wavefront sidecar or an internal proxy set up in your environment
that forwards metrics data to the Wavefront API host:

256

https://cloud.google.com/stackdriver/
https://micrometer.io/docs/registry/stackdriver
https://micrometer.io/docs/registry/statsD
https://micrometer.io/docs/registry/wavefront
https://www.wavefront.com/

management.metrics.export.wavefront.uri=proxy://localhost:2878

If publishing metrics to a Wavefront proxy (as described in the documentation),
. the host must be in the proxy://HOST:PORTormat.

You can also change the interval at which metrics are sent to Wavefront:

management.metrics.export.wavefront.step=30s

5.6.3. Supported Metrics
Spring Boot registers the following core metrics when applicable:

¥ JVM metrics, report utilization of:
Various memory and buffer pools
Statistics related to garbage collection
Threads utilization
Number of classes loaded/unloaded
¥ CPU metrics
¥ File descriptor metrics
¥ Kafka consumer and producer metrics
¥ Log4j2 metrics: record the number of events logged to Log4j2 at each level
¥ Logback metrics: record the number of events logged to Logback at each level

¥ Uptime metrics: report a gauge for uptime and a fixed gauge representing the applicationOs
absolute start time

¥ Tomcat metrics (server.tomcat.mbeanregistry.enabled must be set to true for all Tomcat metrics
to be registered)

¥ Spring Integration metrics

Spring MVC Metrics

Auto-configuration enables the instrumentation of requests handled by Spring MVC. When
management.metrics.web.server.request.autotime.enabled is true , this instrumentation occurs for all
requests. Alternatively, when set to false , you can enable instrumentation by adding @Timedo a
request-handling method:

257

https://docs.wavefront.com/proxies_installing.html
https://docs.spring.io/spring-integration/docs/5.3.4.RELEASE/reference/html/system-management.html#micrometer-integration

