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will be utilized to produce informative actions (as detailed in
Section IV-C).

B. Generating hypotheses

In cases where only a partial shape of a hole can be
observed using a tactile sensor, multiple corresponding choices
for peg may exist. Thus it might be hard or impossible to
determine the object with a deterministic approach. To address
this uncertainty, we explicitly generate and maintain a set of
hypotheses representing potential candidate choices using a
particle filter.

Since the class of the target hole and its orientation and lo-
cation is unknown (Sec. I11), we generate a set of hypotheses S
where each hypothesis s is a quadruple: sk = (Ck; Xk; Yk; k),
where ¢y represents the possible object categories cx 2 C, and
Xk;Yk; k are the SE(2) relative planar displacements from the
center of the object. An example is shown in Fig.[I]and is also
explained in Fig. [2}

One can initialize the particle set by sampling from a
uniform distribution within a reasonable range (e.g., ck from
candidate categories, Xk from [ Xyax; Xmax], which is the
lower and upper limits of reasonable sizes of the peg, etc.).
However, it will be inefficient as the sampling space becomes
huge as the target object becomes larger, and/or the number of
candidate categories increases. As an alternative, we initialize
the particle set after obtaining the first tactile image of the
target hole IfL;, (which we denote as 1) by utilizing the
previously collected set of peg images 17 and pre-trained part
mating model fyp. Specifically, we compute the similarities,
w;, between the observed initial tactile image for the hole 1}
and each tactile image of the peg 1 from the set of peg images
1P as:

wi = Fp(1H17): 2

We sample a particle proportional to this likelihood. Therefore,
the probability of a particle given the initial hole image can
be written as:
st Hy Wi
pe=ijIif) =P ——— ®3)
i2F1;:5j1 Pjg '

where, i is the index of the set of previously collected peg
images as i 2 f1;:::;j1"jg (see Fig. . We then initialize the
set of hypotheses by independently sampling K particles with
the above distribution. It is noted that the above distribution
is a categorical distribution over all peg images.

C. Selecting informative action

In order to efficiently determine the category and pose of
the target hole, we aim to calculate an optimal action that can
maximize uncertainty reduction. While it is possible to com-
pute such an optimal action by maximizing information gain
against all possible peg images, it necessitates the integration
of all latent variables, making it computationally infeasible
within a reasonable time frame. As an alternative, we utilize
the existing hypothesis set S to enhance the sample efficiency.

We sample the most probable hypothesis from the current

set of particles s = arg maxwy and determine the optimal
S 2S
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Fig. 2: This picture defines particles and actions available to
the robot. A particle s is defined as a tuple consisting of the
class of the object and a pose in SE(2) w.r.t. a frame attached to
the center of the object. Each particle s; is associated with the
corresponding image Ig observed via the tactile sensor at that
location. An action a is equivalent to the transform in SE(2)
applied to a particle sj. The pose of a particle obtained by
applying an action a can be obtained by applying the transform
in SE(2) to the pose of the particle s, and we denote it as S;.a.
Thus, an action a will result in the observation of the contact
patch I; . at the new pose corresponding to the particle s;:a.
[Best viewed in color]

action by simulating it on a set of previously collected peg
images 17 (see Fig. . The action a = (dx;dy;d ) is
represented as a transform in SE(2) to the pose of the particles,
and we denote the particle sk with the updated pose by
applying the action a as Sk.a. With this updated pose and
the peg images 17, we can also obtain the peg image when
applied to the action a, which we denote I_fk_ .- If there is no
corresponding pose in the collected set of images, we assign
an empty image which is a tactile image without any contact
Inocontact- VWe Visually explain the definition of particles and
actions in Fig. 2

Given a current most-likely hypothesis, the next optimal
action can be selected by finding the most informative action.
To do that, we compute the distance between the tactile images
obtained by applying any possible action to the most probable
hypothesis and the remaining particles in set S. The action
that maximizes the sum of this distance over all the particles
is selected as the optimal action. Such an action is favored
only when the peg image of the sampled particle is close to
the hole image, while other images have a greater distance
when applying the same action to all the other particles. More
concretely, we define the likelihood of an action as

>
la = 1=Fep(1f ;12 ): 4

S«,a' "Si,a’”
s;2Snfs.g

The optimal action can be then selected by maximizing the
likelihood as:
a = arg maxly; (5)
a2A
where A is a set of actions with which the tactile sensor can
observe the peg after applying the action. This action set A






Fig. 3: Data Collection, Training, and Inference of the Part Mating Model: The left block depicts the data collection process
using the MAZE board that features various shapes, including hole and peg shapes in the upper and lower halves, respectively.
This board is placed on the robot platform and the robot arm equipped with a tactile sensor at the tip of the wrist makes contact
with the board to collect data denoted as 1" and 1P, which corresponds a set of images for pegs and holes, respectively. The
middle block illustrates the training procedure for the part mating model. It is trained in a self-supervised manner using a
contrastive loss that encourages the model to produce high scores only when images corresponding to true mating parts are
provided. The right block demonstrates the model’s generalization to different shapes after training. [Best viewed in color]

where I(sk 2 ¢) is an indicator function that returns 1 only
when the category of the particle ck belongs to the category c.
The algorithm terminates when the majority of particles belong
to a specific class, indicated by max;¢1::::neq Pe(Cj) > P,

.....

which is a user-specified parameter for termination.

V. EXPERIMENTS

In this section, we evaluate the performance of the Tactile-
Filter algorithm in two different test scenarios. The first
scenario, referred to as the small objects involves a collection
of small objects that can be fully captured by a single touch
of the tactile sensor, thereby making the estimation problem
relatively simpler to solve. The second scenario, referred to as
the large objects involves objects that are larger than the size
of the tactile sensor, requiring multiple touch measurements
to accurately estimate their shape. All the test objects used in
the pose estimation experiments are novel and are not used
for training the contrastive learning model.

A. Training the part mating model

Tactile sensor.We use a commercially available GelSight
Mini [2] tactile sensor, which provides 320 240 compressed
RGB images through the Robot Operating System (ROS) at a
rate of approximately 25 Hz, with a field of view of 18:6 14:3
millimeters.

Robot platform. The MELFA ASSISTA robot [1], a col-
laborative robot with 6 DoF, is used in this study. The tactile
sensor is mounted on the robot’s wrist during data collection
(see Fig. [3). It is noted that we do not use the force torque
sensor mounted at the wrist of the robot as shown in the Fig.[3

Data collection. In order to train a model that is capable of
generalizing to a diverse set of shapes, we designed a board for
data collection so that it features random polygonal shapes to
simulate pegs and holes of arbitrary shapes. The shapes were
generated through a process that involved creating a maze (we
name it MAZE board), adding random perturbations to the

position and size of the walls that make up the maze, and then
exporting the result for 3D printing. This board was designed
such that any arbitrary hole patch sampled from the upper
half has a corresponding mating peg patch in the lower half
(see Fig. 3). To collect data for training, we sampled several
different locations and orientations on the upper half MAZE
board from a high-resolution grid to collect the hole images,
and then collect the corresponding peg images from the lower
half. This resulted in a total of approximately 23;000 pairs of
images of pegs and holes which perfectly fit with each other.

Preprocessing.In this study, the tactile sensor used has
RGB LEDs with different colors on each of the three sur-
faces [2]. As a result, even when the same object is in contact,
the color may differ depending on the position of the image
captured. To mitigate the potential impact on generalization
performance, we obtained an image of a non-contact situa-
tion Inocontact during data collection, reducing the impact by
subtracting the image. Then, the average and variance of each
RGB channel were calculated for all images, and the images
were normalized before being input into the model.

Training. As described in Sec. [V-A] we use MoCo-v3 for
our part mating model fup and peg distance model fpp. We
train the models with the collected images using the MAZE
board for 500 epochs. To improve generalization capability, we
augment the data by using random cropping and horizontal or
vertical flips, which will be applied to the pairs of images
inputted to the model during training.

B. Small objects

We first evaluate the performance of the TactileFilter when
applied to objects that fit in the size of the sensor.

Baselines.To understand the challenges encountered when
identifying objects that might not be fully captured through
a single touch, we compare our method against two methods
that only use the initial image. The first baseline, referred to
as Pixel, computes the L1 distance between the peg and hole



Fig. 4. Alphabet boards for our experiments. The left board
contains small characters, each with a length of 12 mm and a
maximum width of 16 mm, to fit within the size of the sensor if
the robot makes contact with the center position. The sensor
size is shown in the middle image. The board on the right
has large characters with a length of 32 mm and a maximum
width of 40 mm, requiring multiple interactions with the tactile
sensor to obtain complete geometry for the object.

images and returns the index of the nearest neighbor image.
The second baseline, MoCaq, utilizes the pre-trained MoCo-v3
model to calculate the distance (negative of the MoCo-v3’s
output) based solely on the first tactile image and without
incorporating any subsequent interactions. The results of our
method are denoted as Ours (n), where n indicates the number
of interactions. It is important to note that the value of n
includes the initial contact, therefore, Ours (h = 1) represents
the results obtained without any additional interactions.

Settings. For this experiment, we have designed an eval-
uation board consisting of 12 alphabet characters (ranging
from “A” to “L”), each with a maximum width of 16 mm
and height of 12 mm, so the characters fit within a single
touch. Since we would like to evaluate the model in situ-
ations where the pose of the object is unknown, resulting
in only partial observation of the object and requiring mul-
tiple touches for accurate estimations, we collect data with
displacements in X;Y 2 f 8; 4;0;4;8g millimeter and

2 F 90; 60;::;90g degree from their center position.
This results in 12 5 5 7 = 2100 images. Figure 4
shows examples of the characters we used for the experiment.
The hyperparameter we used for our algorithm is the number
of particles K = 100, the maximum number of iterations
N ™ = 10, and the threshold to stop the iteration P°° = 0:95.

Metrics. The performance of the results is assessed through
two metrics. Firstly, we evaluate the accuracy in classifying the
objects. For the baseline calculation, we calculate the distance
between a hole image and all previously gathered peg images,
select the image with the minimum distance, and consider the
prediction to be accurate when the predicted image’s class
matches the class of the inputted hole image. Additionally,
the distance between the predicted pose and the ground truth
pose is quantitatively measured.

With regard to the evaluation of the proposed method,
we utilize the likelihood used for updating the particles to
weight the prediction. The object with the highest weighted

TABLE I: Quantitative evaluation of single touch experiments
with small objects on the alphabet board.

. Ours
‘ Pixel  MoCo n=3 n=5 n=10
Accuracy [%] 0:0 39:6 81:8 90:7 95:0
Error XY [mm] 0:7 0:2 0:1 0:1
Error  [deg] 5:4 0:9 0:3 0:1

TABLE II: Quantitative evaluation of multiple touch experi-
ments with large objects on the alphabet board.

- Ours
‘ Pixel MoCo n=3 n=>5 n =10
Accuracy [%] 11:9 41:9 58:7 72:3 85:0
Error XY [mm] 6:9 4:4 1:3 1:0 0:7
Error  [deg] 16:6 15:5 4:4 2:9 1:5

probability is then evaluated with the target object. We also
use weighted error between the particles and the ground truth
image to compute the quantitative error.

Results and Analysis.The results are presented in Table [I}
A comparison between the two baselines, Pixel and MoCq,
reveals that correspondences between parts cannot be obtained
simply by comparing pixel values. The contrastive framework
captures the features of mating parts, resulting in improved
performance. However, the results using only the first contact
are still not sufficiently accurate as the tactile sensor only
observes a partial view of the object. In contrast, our method
demonstrates a gradual improvement in performance as inter-
actions are added. Additionally, as we can see from Table [I}
our method is able to achieve good localization accuracy both
in position and orientation. In particular, we are able to achieve
a submillimeter average error in localization which might be
required for industrial insertion tasks.

C. Large objects

Settings. In the next set of experiments, we evaluate the
performance of the proposed method when applied to objects
that are larger than the size of the sensor. This scenario
requires the robot to interact multiple times with the object to
gain a comprehensive understanding of its shape. To this end,
we have designed an evaluation board consisting of twelve
alphabet characters (ranging from “A” to “L”), each with a
maximum width of 40 mm and height of 32 mm. We tested
the method on the location and orientation of the robot from
X;Y 2 F 20; 16;:::;20g mm and 2 f 90; 60;::;90g
with respect to the center position of each character. Figure [4]
presents examples of the characters utilized in the experimental
setup. As for the baselines, we compare the method against the
same baselines as the previous experiment on small objects.

Results and Analysis.Table Il shows the results on the
large objects. Similar to the results obtained in the setting
of small objects, our proposed model demonstrates improved
performance compared to the baselines. However, it is also
observed that a larger object size requires a greater number
of interactions in order to achieve comparable accuracy. In
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Fig. 5: Classification accuracy of the pro-
posed method with a different number of
classes evaluated on the Large objects.
The result shows our method can quickly
identify the correct class if the number of
classes (shown by N) is limited.

Figure 5| we show the classification accuracy with respect
to the number of interactions, and the results with randomly
sampled smaller sets of 4 and 8 characters to evaluate the
performance with a smaller number of possible candidates.
The bar plots demonstrate that the proposed method can
quickly identify the correct class if the number of classes is
small.

D. Ablation on action selection strategy

Settings. To assess the effectiveness of the proposed action
selection strategy, we compare the proposed method with a
random action selection method (which we call Randor). We
evaluate the two methods on the Small and Large objects
settings described earlier.

Results and Analysis. The results in Fig. 6 indicate
the proposed maximum likelihood action selection approach
demonstrates significant improvement in comparison to the
method with regard to classification accuracy.

E. Evaluation on industrial connectors

Settings. To further evaluate the performance of the trained
part mating model in an industrial setting, we collect tactile
images of connectors and sockets from a Raspberry-Pi board,
as depicted in Fig. [7]

Results and Analysis.The results of the evaluation of the
Pixel baseline and our part mating model for the classification
of connectors and sockets from the Raspberry-Pi board are pre-
sented in Table[TTT} The Pixel baseline demonstrates improved
performance in comparison to the small and large object
experiments, due to the reduced number of classes in this
setting and the unique size of each connector/socket, which
simplifies the classification through the use of only L1 pixel
distance. Although the part mating model outperforms the
Pixel baseline, it misclassifies the female HDMI connector as
the male USB-A connector. This is attributed to the significant
distribution shift between the training set and the test set,
where the pins on the surface of the male part are not present
in the training data. To address this issue, future work can

(@) Smallobjects
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(b) Large objects

Fig. 6: Classification accuracy for Smalland Large objects with different action
strategies. As could be seen from these bar plots, our proposed method demon-
strates significant improvement in comparison to the random action selection with
regard to classification accuracy.

Holes

Pegs

Audio  HDMI MicroUSB USB-A Ethernet

Fig. 7: Experimental setup for industrial connector identi-
fication on a Raspberry-Pi board. This image shows the
observations of the six pegs and holes using the GelSight Mini
sensor. Table [ITI] shows the classification results obtained by

our model. [Best viewed in color]

TABLE llI: Classification accuracy on the Raspberry Pi Board.

MoCo
83:3

Pixel

Accuracy [%] ‘ 50:0

focus on enhancing the generalization capabilities of the part
mating model.

F. Application to multi-object assembly

Settings.Once Tactile-Filter localizes the hole and identifies
the corresponding peg, the robot can successfully insert the peg
into the right hole. This is facilitated by the algorithm’s ability
to estimate the pose with high precision, as demonstrated by
the submillimeter average prediction error (refer to Table []
and Table I1). Consequently, we assess the proposed method
in a real multi-object assembly scenario during the final
experiment.
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