使用pytorch创建神经网络并解决线性拟合和分类问题

本文介绍了如何使用PyTorch创建神经网络来解决线性拟合和分类问题。首先展示了如何通过定义一个简单的神经网络模型进行线性拟合,并利用SGD优化器和MSELoss函数进行训练。接着,讨论了如何调整网络结构和使用CrossEntropyLoss解决分类问题。通过示例数据,动态展示了学习过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#线性拟合
import torch
import torch.nn.functional as F
import matplotlib.pyplot as plt

torch.manual_seed(1) # reproducible

制作数据

x = torch.unsqueeze(torch.linspace(-1, 1, 100), dim=1) # x data (tensor), shape=(100, 1)
y = x.pow(2) + 0.2*torch.rand(x.size()) # noisy y data (tensor), shape=(100, 1)

定义普通的神经网络

class Net(torch.nn.Module):
def init(self, n_feature, n_hidden, n_output):
super(Net, self).init()
self.hidden = torch.nn.Linear(n_feature, n_hidden) # hidden layer
self.predict = torch.nn.Linear(n_hidden, n_output) # output layer
# (hidden): Linear(in_features=1, out_features=10, bias=True)
#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

东方佑

你的鼓励是我最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值