<?xml version="1.0"?>
<!--
Tree-based 20x20 gentle adaboost frontal face detector.
Created by Rainer Lienhart.
////////////////////////////////////////////////////////////////////////////////////////
IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
By downloading, copying, installing or using the software you agree to this license.
If you do not agree to this license, do not download, install,
copy or use the software.
Intel License Agreement
For Open Source Computer Vision Library
Copyright (C) 2000, Intel Corporation, all rights reserved.
Third party copyrights are property of their respective owners.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
* Redistribution's of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.
* Redistribution's in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* The name of Intel Corporation may not be used to endorse or promote products
derived from this software without specific prior written permission.
This software is provided by the copyright holders and contributors "as is" and
any express or implied warranties, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose are disclaimed.
In no event shall the Intel Corporation or contributors be liable for any direct,
indirect, incidental, special, exemplary, or consequential damages
(including, but not limited to, procurement of substitute goods or services;
loss of use, data, or profits; or business interruption) however caused
and on any theory of liability, whether in contract, strict liability,
or tort (including negligence or otherwise) arising in any way out of
the use of this software, even if advised of the possibility of such damage.
-->
<opencv_storage>
<cascade type_id="opencv-cascade-classifier"><stageType>BOOST</stageType>
<featureType>HAAR</featureType>
<height>20</height>
<width>20</width>
<stageParams>
<maxWeakCount>109</maxWeakCount></stageParams>
<featureParams>
<maxCatCount>0</maxCatCount></featureParams>
<stageNum>20</stageNum>
<stages>
<_>
<maxWeakCount>3</maxWeakCount>
<stageThreshold>3.5069230198860168e-01</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 1 0 4.3272329494357109e-03 -1 -2 1 1.3076160103082657e-02</internalNodes>
<leafValues>
3.8381900638341904e-02 8.9652568101882935e-01
2.6293140649795532e-01</leafValues></_>
<_>
<internalNodes>
0 1 2 5.2434601821005344e-04 -1 -2 3 4.4573000632226467e-03</internalNodes>
<leafValues>
1.0216630250215530e-01 1.2384019792079926e-01
6.9103831052780151e-01</leafValues></_>
<_>
<internalNodes>
1 0 4 -9.2708261217921972e-04 -1 -2 5 3.3989109215326607e-04</internalNodes>
<leafValues>
1.9536970555782318e-01 2.1014410257339478e-01
8.2586747407913208e-01</leafValues></_></weakClassifiers></_>
<_>
<maxWeakCount>9</maxWeakCount>
<stageThreshold>3.4721779823303223e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
0 1 6 2.3025739938020706e-03 -1 -2 7 4.4174338690936565e-03</internalNodes>
<leafValues>
1.0183759778738022e-01 8.2190579175949097e-01
1.9565549492835999e-01</leafValues></_>
<_>
<internalNodes>
0 1 8 2.2203210741281509e-02 -1 -2 9 -1.7283110355492681e-04</internalNodes>
<leafValues>
2.2054070234298706e-01 7.3263257741928101e-02
5.9314841032028198e-01</leafValues></_>
<_>
<internalNodes>
0 1 10 4.3567270040512085e-03 -1 -2 11
-2.6032889727503061e-03</internalNodes>
<leafValues>
1.8441149592399597e-01 4.0322139859199524e-01
8.0665212869644165e-01</leafValues></_>
<_>
<internalNodes>
0 1 12 1.7309630056843162e-03 -1 -2 13
-7.8146401792764664e-03</internalNodes>
<leafValues>
2.5483280420303345e-01 6.0570698976516724e-01
2.7790638804435730e-01</leafValues></_>
<_>
<internalNodes>
0 1 14 -8.7343417108058929e-03 -1 -2 15
9.4522320432588458e-04</internalNodes>
<leafValues>
2.8899800777435303e-01 7.6165872812271118e-01
3.4956431388854980e-01</leafValues></_>
<_>
<internalNodes>
1 0 16 4.9414858222007751e-02 -1 -2 17
4.4891750440001488e-03</internalNodes>
<leafValues>
8.1516528129577637e-01 2.8087830543518066e-01
6.0277748107910156e-01</leafValues></_>
<_>
<internalNodes>
1 0 18 6.0313619673252106e-02 -1 -2 19
-1.0762850288301706e-03</internalNodes>
<leafValues>
7.6075017452239990e-01 4.4440358877182007e-01
1.4373120665550232e-01</leafValues></_>
<_>
<internalNodes>
1 0 20 -9.5083238556981087e-03 -1 -2 21
7.6601309701800346e-03</internalNodes>
<leafValues>
5.3181701898574829e-01 5.4110521078109741e-01
2.1806870400905609e-01</leafValues></_>
<_>
<internalNodes>
1 0 22 7.6467678882181644e-03 -1 -2 23
-8.4662932204082608e-04</internalNodes>
<leafValues>
1.1589600145816803e-01 2.3406790196895599e-01
5.9903818368911743e-01</leafValues></_></weakClassifiers></_>
<_>
<maxWeakCount>14</maxWeakCount>
<stageThreshold>5.9844889640808105e+00</stageThreshold>
<weakClassifiers>
<_>
<internalNodes>
1 0 24 -4.8506218008697033e-03 -1 -2 25
-4.6141650527715683e-03</internalNodes>
<leafValues>
1.8054960668087006e-01 2.1778939664363861e-01
8.0182367563247681e-01</leafValues></_>
<_>
<internalNodes>
0 1 26 -2.4301309604197741e-03 -1 -2 27
4.1787960799410939e-04</internalNodes>
<leafValues>
1.1413549631834030e-01 1.2030939757823944e-01
6.1085307598114014e-01</leafValues></_>
<_>
<internalNodes>
0 1 28 1.0010929545387626e-03 -1 -2 29
1.0577100329101086e-03</internalNodes>
<leafValues>
2.0799599587917328e-01 3.3020541071891785e-01
7.5110942125320435e-01</leafValues></_>
<_>
<internalNodes>
1 0 30 1.2376549420878291e-03 -1 -2 31
3.5315038985572755e-04</internalNodes>
<leafValues>
2.7682220935821533e-01 1.6682930290699005e-01
5.8294767141342163e-01</leafValues></_>
<_>
<internalNodes>
0 1 32 -1.1953660286962986e-02 -1 -2 33
1.4182999730110168e-03</internalNodes>
<leafValues>
1.5087880194187164e-01 4.3912279605865479e-01
7.6465952396392822e-01</leafValues></_>
<_>
<internalNodes>
1 0 34 3.4642980899661779e-03 -1 -2 35
-1.4948950149118900e-02</internalNodes>
<leafValues>
2.6515561342239380e-01 2.2980530560016632e-01
5.4421657323837280e-01</leafValues></_>
<_>
<internalNodes>
1 0 36 -1.0506849503144622e-03 -1 -2 37
-4.0782918222248554e-03</internalNodes>
<leafValues>
3.6228439211845398e-01 2.6012599468231201e-01
7.233657
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
面部表情动作迁移+唇形同步Jupyter源码(需安装docker,附演示视频)+操作说明.zip 假设你已经熟悉 docker 并且已经正确安装 docker,执行以下步骤,开箱即用(浏览器输入:http://localhost:8899) # 1. pull image & run container ./start_dev.sh # 2. 进入 container 运行时环境 docker exec -it dev bash # 3. 启动 notebook ./start_jupyterlab.sh 在浏览器中打开 jupyterlab http://localhost:8899 【特别强调】 1、csdn上资源保证是完整最新,会不定期更新优化; 2、请用自己的账号在csdn官网下载,若通过第三方代下,博主不对您下载的资源作任何保证,且不提供任何形式的技术支持和答疑!!!
资源推荐
资源详情
资源评论




























收起资源包目录























共 20 条
- 1
资源评论

- MachineLP2023-11-23感谢资源主的分享,这个资源对我来说很有用,内容描述详尽,值得借鉴。

onnx
- 粉丝: 1w+
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 人力资源信息化管理x.docx
- 数据仓库和数据挖掘的OLAP技术[1].ppt
- 注塑机上下料机械手机构及自动控制系统PLC的设计.docx
- 项目管理亮点及经验总结.pdf
- 公司项目管理办法(可编辑修改word版).docx
- 基于网络计划技术的生产调度设计与实现.doc
- 最新毕业设计(基于单片机控制的智能电源的设计)整稿.doc
- 小学生网络使用情况调查问卷.doc
- 计算机控制技术实验.doc
- 医院信息化及电子政务实施建设的几个热点话题PPT课件.ppt
- 物联网十二五发展纲要.docx
- 基于JAVA的餐饮管理系统设计说明书.doc
- 高三生物复习基因工程练习题.doc
- (源码)基于STM32F1xx系列微控制器的USART DMA通信项目.zip
- 广东省干部培训网络学院2类关于干部教育目标和课程体系的思考考试答案100分.doc
- 吉林大学人工智能学院2023级程序设计导论课程(python)期末大作业
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
