import torch.nn as nn
import math
try:
from torch.hub import load_state_dict_from_url
except ImportError:
from torch.utils.model_zoo import load_url as load_state_dict_from_url
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn.functional as F
import matplotlib.pyplot as plt
import numpy as np
#通道注意力机制
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=32
):
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)
self.relu1 = nn.ReLU()
self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)
#self.sigmoid = nn.ReLU()
#self.sigmoid = nn.Tanh()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
out = avg_out + max_out
return self.sigmoid(out)
#空间注意力机制
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super(SpatialAttention, self).__init__()
assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
padding = 3 if kernel_size == 7 else 1
self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
#self.sigmoid = nn.ReLU()
#self.sigmoid = nn.Tanh()
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv1(x)
return self.sigmoid(x)
# 判断是否有GPU
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
num_epochs = 50 #50轮
batch_size = 50 #50步长
learning_rate = 0.01 #学习率0.01
# 3x3 卷积定义
def conv3x3(in_channels, out_channels, stride=1):
return nn.Conv2d(in_channels, out_channels, kernel_size=3,
stride=stride, padding=1, bias=False)
# Resnet 的残差块
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1, downsample=None):
super(ResidualBlock, self).__init__()
self.conv1 = conv3x3(in_channels, out_channels, stride)
self.bn1 = nn.BatchNorm2d(out_channels)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(out_channels, out_channels)
self.bn2 = nn.BatchNorm2d(out_channels)
self.downsample = downsample
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
# ResNet定义
class ResNet(nn.Module):
def __init__(self, block, layers, num_classes=100, inter_layer=False):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv = conv3x3(3,64)
self.bn = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
# 网络的第一层加入注意力机制
self.ca = ChannelAttention(self.in_channels)
self.sa = SpatialAttention()
self.layer1 = self.make_layer(block, 64, layers[0])
self.layer2 = self.make_layer(block, 128, layers[1], 2)
self.layer3 = self.make_layer(block, 256, layers[2], 2)
self.layer4 = self.make_layer(block, 512, layers[2], 2)#4
#网络的卷积层的最后一层加入注意力机制
self.ca1 = ChannelAttention(self.in_channels)
self.sa1 = SpatialAttention()
self.avg_pool = nn.AvgPool2d(4)
self.fc = nn.Linear(512, num_classes)
def make_layer(self, block, out_channels, blocks, stride=1):
downsample = None
if (stride != 1) or (self.in_channels != out_channels):
downsample = nn.Sequential(
conv3x3(self.in_channels, out_channels, stride=stride),
nn.BatchNorm2d(out_channels))
layers = []
layers.append(block(self.in_channels, out_channels, stride, downsample))
self.in_channels = out_channels
for i in range(1, blocks):
layers.append(block(out_channels, out_channels))
return nn.Sequential(*layers)
def forward(self, x):
out = self.conv(x)
out = self.bn(out)
out = self.relu(out)
out = self.ca(out) * out
out = self.sa(out) * out
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.ca1(out) * out
out = self.sa1(out) * out
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
def get_acc(outputs, label):
total = outputs.shape[0]
probs, pred_y = outputs.data.max(dim=1) # 得到概率
correct = (pred_y == label).sum().data
return torch.div(correct, total)
# 更新学习率
def update_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def train(model,device,train_loader,optimizer,epoch,criterion,curr_lr):
total_step = len(train_loader)
model.train()
train_loss=0
train_acc=0
acc1=0
for i, (images, labels) in enumerate(train_loader):
images = images.to(device)
labels = labels.to(device)
# Forward pass
outputs = model(images)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
train_loss += loss.item()
train_acc += get_acc(outputs,labels).item()
if (i+1) % 200 == 0:
print ("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}"
.format(epoch+1, num_epochs, i+1, total_step, loss.item()))
train_loss = train_loss / len(train_loader)
train_acc = train_acc * 100 / len(train_loader)
print("Train Acc {:.4f}%, Train Loss {:.4f}".format(train_acc/(epoch+1),train_loss/(epoch+1)))
# 延迟学习率
if (epoch+1) % 20 == 0:
curr_lr /= 3
update_lr(optimizer, curr_lr)
return train_loss,100-train_acc
def test(model,devive,test_loader,criterion):
# 测试网络模型
erro=[]
model.eval()
with torch.no_grad():
correct = 0
total = 0
test_loss=0
test_acc=0
for images, labels in test_loader:
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
loss = criterion(outputs,labels)
total += labels.size(0)
correct += (predicted == labels).sum().item()
test_loss += loss.item()
test_acc += get_acc(outputs,labels).item()
erro.append(100 *(1- correct / total))
test_loss = test_loss / len(test_loader)
test_acc = test_acc * 100 / len(test_loader)
print('Accuracy of the model on the test images: {} %, test_loss: {}'.format(100 * correct / total,test_loss))
print('test_acc of the model on the test images: {} %'.format(test_acc))
return test_loss,100-test_acc
def draw(train_data,test_data,x_data,x_lable,y_lable,title):
#设置图像属性
y1 = train_data
y2 = test_data
#绘制图像