%% LSTM network
%% import data
clc
clear
close all
%读取double格式数据
[num1,ax,ay] = xlsread('traindate.xlsx',1);
[num2,ax2,ay2] = xlsread('flag.xlsx',1);
n = length(num2);
num3 = zeros(n,2);
for ii = 1:n
num3(ii,num2(ii)+1)=1;
end
n = randperm(length(num1));
m=135;
input_train =num1(n(1:m),1:9);%训练数据输出数据
output_train = num3(n(1:m),1:2);%训练数据输入数据
input_test = num1((m+1:end),1:9);%测试数据输出数据
output_test = num2((m+1:end),1);%测试数据输入数据
[inputn,inputps]=mapminmax(input_train',-1,1);%训练数据的输入数据的归一化
[outputn,outputps]=mapminmax(output_train',-1,1);%训练数据的输出数据的归一化de
inputn_test=mapminmax('apply',input_test',inputps);
%% Define Network Architecture
% Define the network architecture.
numFeatures = 9;%输入层维度
numResponses = 2;%输出维度
% 200 hidden units
numHiddenUnits = 70;%第一层维度
% a fully connected layer of size 50 & a dropout layer with dropout probability 0.5
layers = [ ...
sequenceInputLayer(numFeatures)%输入层
lstmLayer(numHiddenUnits,'OutputMode','sequence')%第一层
fullyConnectedLayer(100)%链接层
dropoutLayer(0.3)%遗忘层
fullyConnectedLayer(numResponses)%链接层
regressionLayer];%回归层
% Specify the training options.
% Train for 60 epochs with mini-batches of size 20 using the solver 'adam'
maxEpochs = 60;%最大迭代次数
miniBatchSize =2;%最小批量
% the learning rate == 0.01
% set the gradient threshold to 1
% set 'Shuffle' to 'never'
options = trainingOptions('adam', ... %解算器
'MaxEpochs',maxEpochs, ... %最大迭代次数
'MiniBatchSize',miniBatchSize, ... %最小批次
'InitialLearnRate',0.01, ... %初始学习率
'GradientThreshold',0.03, ... %梯度阈值
'Shuffle','every-epoch', ... %打乱顺序
'Plots','training-progress',... %画图
'Verbose',1); %不输出训练过程
%% Train the Network
net = trainNetwork(inputn,outputn,layers,options);%开始训练
% save maydata.mat
%% Test the Network
y_pred = predict(net,inputn_test,'MiniBatchSize',miniBatchSize)';%测试仿真输出
[mx,y_pred]=max(mapminmax('reverse',y_pred',outputps));
% y_pred0 = predict(net,inputn,'MiniBatchSize',1)';%训练拟合值
% y_pred0=(mapminmax('reverse',y_pred0',outputps))';
y_pred=(double(y_pred))'-1;
figure%打开一个图像窗口
plot(y_pred(:,1),'k-o')%黑色实线,点的形状为*
hold on%继续画图
plot(output_test(:,1),'r--*')%红色实线,点的形状为o
hold off%停止画图
title('测试图')%标题
ylabel('类别')%Y轴名称
legend('测试输出类别','实际类别')%标签
set(gca,'YTick',0:1)
error1 = y_pred-output_test;%误差
figure
plot(error1(:,1),'k-*')
title('测试误差图')
[MSE,RMSE,MBE,MAE ] =MSE_RMSE_MBE_MAE(output_test(:,1),y_pred(:,1));
result_table = table;
result_table.simd = y_pred(:,1);
result_table.trued = output_test(:,1);
writetable(result_table,'./结果.csv')
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
基于MATLAB编程,用长短期神经网络LSTM进行多分类预测,有些数据类别之间有潜在的关联性和递增性质,用LSTM比一般神经网络更适合,代码完整,包含数据,有注释,方便扩展应用 1,如有疑问,不会运行,可以私信, 2,需要创新,或者修改可以扫描二维码联系博主, 3,本科及本科以上可以下载应用或者扩展, 4,内容不完全匹配要求或需求,可以联系博主扩展。
资源推荐
资源详情
资源评论


格式:pdf 资源大小:1.2MB 页数:13





























收起资源包目录









共 8 条
- 1
资源评论



神经网络机器学习智能算法画图绘图

- 粉丝: 2965
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 大数据思维下视频网站自制节目的创新.docx
- 电气工程及其自动化维护技术发展研究.docx
- 实现二叉树的各种遍历算法实验研究报告.doc
- 计算机网页设计毕业论文马恒桐.doc
- 计算机等级考试模拟题资料.doc
- 行政事业单位财务信息化管理模式之探索.docx
- PLC的智能交通灯控制系统设计方案.doc
- 与哲学教授徐英瑾聊聊人工智能按进化论思想-阿尔法狗才够不上智能.docx
- 全国软件工程自学考试题.doc
- 房产档案信息化管理探讨.docx
- 电网调度自动化系统典型设计.doc
- 【大学设计】全自动洗衣机PLC编程控制系统.doc
- 广电业进行网络建设的双向网络技术方案分析.docx
- 金雅公司网络管理规定.doc
- 论电子商务交易安全的民法规制.docx
- 以校园网为基础的教育信息化工程.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
