# ResNet in TensorFlow
Implemenation of [Deep Residual Learning for Image
Recognition](http://arxiv.org/abs/1512.03385). Includes a tool to use He et
al's published trained Caffe weights in TensorFlow.
MIT license. Contributions welcome.
## Goals
* Be able to use the pre-trained model's that [Kaiming He has provided for
Caffe](https://github.com/KaimingHe/deep-residual-networks). The `convert.py`
will convert the weights for use with TensorFlow.
* Implemented in the style of
[Inception](https://github.com/tensorflow/models/tree/master/inception/inception)
not using any classes and making heavy use of variable scope. It should be
easily usable in other models.
* Foundation to experiment with changes to ResNet like [stochastic
depth](https://arxiv.org/abs/1603.09382), [shared weights at each
scale](https://arxiv.org/abs/1604.03640), and 1D convolutions for audio. (Not yet implemented.)
* ResNet is fully convolutional and the implementation should allow inputs to be any size.
* Be able to train out of the box on CIFAR-10, 100, and ImageNet. (Implementation incomplete)
## Pretrained Model
To convert the published Caffe pretrained model, run `convert.py`. However
Caffe is annoying to install so I'm providing a download of the output of
convert.py:
[tensorflow-resnet-pretrained-20160509.tar.gz.torrent](https://raw.githubusercontent.com/ry/tensorflow-resnet/master/data/tensorflow-resnet-pretrained-20160509.tar.gz.torrent) 464M
## Notes
* This code depends on [TensorFlow git commit
cf7ce8](https://github.com/tensorflow/tensorflow/commit/cf7ce8a7879b6a7ba90441724ea3f8353917a515)
or later because ResNet needs 1x1 convolutions with stride 2. TF 0.8 is not new
enough.
* The `convert.py` script checks that activations are similiar to the caffe version
but it's not exactly the same. This is probably due to differences between how
TF and Caffe handle padding. Also preprocessing is done with color-channel means
instead of pixel-wise means.


YG亲测源码屋
- 粉丝: 479
最新资源
- 灰库、灰仓设备安装作业指导书要点.doc
- 道路及桥梁景观照明工程建设管理招标文件.doc
- 公司管理制度(合同管理制度).doc
- 消费者对品牌横幅广告和产品横幅广告回忆力比较研究-6-78.doc
- 团队建设与管理.ppt
- 安防电子工程项目的管理与成本控制.doc
- 吉林省电力有限公司春秋检工作制度.doc
- 承台抱箍法施工模板设计方案.doc
- 基建处管理制度(009年).doc
- 混凝土工程施工安全技术交底.doc
- 《铭仕基本法》(2006年定稿版)-17页.doc
- 轻型门式钢架设计实例.ppt
- 福州市某配套工程施工项目招标文件.doc
- 河南省某框架结构住宅楼工程监理大纲.doc
- 质量管理体系记录清单.docx
- 建设工程索赔技巧及实际案例分析(多案例).ppt
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


