# Tensorflow Object Detection API
Creating accurate machine learning models capable of localizing and identifying
multiple objects in a single image remains a core challenge in computer vision.
The TensorFlow Object Detection API is an open source framework built on top of
TensorFlow that makes it easy to construct, train and deploy object detection
models. At Google we’ve certainly found this codebase to be useful for our
computer vision needs, and we hope that you will as well.
<p align="center">
<img src="g3doc/img/kites_detections_output.jpg" width=676 height=450>
</p>
Contributions to the codebase are welcome and we would love to hear back from
you if you find this API useful. Finally if you use the Tensorflow Object
Detection API for a research publication, please consider citing:
```
"Speed/accuracy trade-offs for modern convolutional object detectors."
Huang J, Rathod V, Sun C, Zhu M, Korattikara A, Fathi A, Fischer I, Wojna Z,
Song Y, Guadarrama S, Murphy K, CVPR 2017
```
\[[link](https://arxiv.org/abs/1611.10012)\]\[[bibtex](
https://scholar.googleusercontent.com/scholar.bib?q=info:l291WsrB-hQJ:scholar.google.com/&output=citation&scisig=AAGBfm0AAAAAWUIIlnPZ_L9jxvPwcC49kDlELtaeIyU-&scisf=4&ct=citation&cd=-1&hl=en&scfhb=1)\]
## Maintainers
* Jonathan Huang, github: [jch1](https://github.com/jch1)
* Vivek Rathod, github: [tombstone](https://github.com/tombstone)
* Derek Chow, github: [derekjchow](https://github.com/derekjchow)
* Chen Sun, github: [jesu9](https://github.com/jesu9)
* Menglong Zhu, github: [dreamdragon](https://github.com/dreamdragon)
## Table of contents
Before You Start:
* <a href='g3doc/installation.md'>Installation</a><br>
Quick Start:
* <a href='object_detection_tutorial.ipynb'>
Quick Start: Jupyter notebook for off-the-shelf inference</a><br>
* <a href="g3doc/running_pets.md">Quick Start: Training a pet detector</a><br>
Setup:
* <a href='g3doc/configuring_jobs.md'>
Configuring an object detection pipeline</a><br>
* <a href='g3doc/preparing_inputs.md'>Preparing inputs</a><br>
Running:
* <a href='g3doc/running_locally.md'>Running locally</a><br>
* <a href='g3doc/running_on_cloud.md'>Running on the cloud</a><br>
Extras:
* <a href='g3doc/detection_model_zoo.md'>Tensorflow detection model zoo</a><br>
* <a href='g3doc/exporting_models.md'>
Exporting a trained model for inference</a><br>
* <a href='g3doc/defining_your_own_model.md'>
Defining your own model architecture</a><br>
* <a href='g3doc/using_your_own_dataset.md'>
Bringing in your own dataset</a><br>
## Getting Help
Please report bugs to the tensorflow/models/ Github
[issue tracker](https://github.com/tensorflow/models/issues), prefixing the
issue name with "object_detection". To get help with issues you may encounter
using the Tensorflow Object Detection API, create a new question on
[StackOverflow](https://stackoverflow.com/) with the tags "tensorflow" and
"object-detection".
## Release information
### August 11, 2017
We have released an update to the [Android Detect
demo](https://github.com/tensorflow/tensorflow/tree/master/tensorflow/examples/android)
which will now run models trained using the Tensorflow Object
Detection API on an Android device. By default, it currently runs a
frozen SSD w/Mobilenet detector trained on COCO, but we encourage
you to try out other detection models!
<b>Thanks to contributors</b>: Jonathan Huang, Andrew Harp
### June 15, 2017
In addition to our base Tensorflow detection model definitions, this
release includes:
* A selection of trainable detection models, including:
* Single Shot Multibox Detector (SSD) with MobileNet,
* SSD with Inception V2,
* Region-Based Fully Convolutional Networks (R-FCN) with Resnet 101,
* Faster RCNN with Resnet 101,
* Faster RCNN with Inception Resnet v2
* Frozen weights (trained on the COCO dataset) for each of the above models to
be used for out-of-the-box inference purposes.
* A [Jupyter notebook](object_detection_tutorial.ipynb) for performing
out-of-the-box inference with one of our released models
* Convenient [local training](g3doc/running_locally.md) scripts as well as
distributed training and evaluation pipelines via
[Google Cloud](g3doc/running_on_cloud.md).
<b>Thanks to contributors</b>: Jonathan Huang, Vivek Rathod, Derek Chow,
Chen Sun, Menglong Zhu, Matthew Tang, Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wojna, Yang Song, Sergio Guadarrama, Jasper Uijlings,
Viacheslav Kovalevskyi, Kevin Murphy

liuxhcsdn
- 粉丝: 14
最新资源
- 2019 年秋季学期哈工大机器学习实验及期末考试题
- 多智能体系统中的群体行为编队实现方法
- 基于Koopman算子与EDMD算法的四旋翼无人机数据驱动控制方法及Matlab实现方案
- 基于STM32F103的多协议通信系统设计与实现
- RISC-V GNU Compiler Toolchain构建教程(VMware+Ubuntu20.04)
- CSAPP课程实验完整解决方案-包含数据实验炸弹实验攻击实验体系结构实验缓存实验Shell实验内存分配实验和代理实验-提供计算机系统基础知识的实践平台-位运算缓冲区溢.zip
- 机器学习课程相关作业任务优化重拟
- 共享型汽车租赁管理系统-基于SpringSpringMVCMyBatis框架开发的汽车租赁平台-包含用户注册登录-车辆信息管理-租赁订单处理-费用结算-数据统计分析-后台管理等.zip
- 嵌入式系统开发-LinuxShell脚本自动化-猫盘NAS设备群晖系统刷机工具-为猫盘网络存储设备提供一键式自动化刷入群晖DSM系统的解决方案包含固件下载分区调整引导写入.zip
- 2024 春季学期南开大学软件学院机器学习课程的代码资源仓库介绍
- HTML5 Canvas大转盘抽奖特效
- DevOps持续交付体系与云原生技术实践指南-包含DevOps全流程方法论云原生架构设计容器化部署微服务治理CICD流水线实现Kubernetes集群管理服务网格应用.zip
- 基于Python的人脸识别考勤管理系统 开题报告
- Python特殊方法的查找机制
- 校园活动管理系统的设计与实现 开题报告
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


