{"architecture":"amd64","config":{"Hostname":"","Domainname":"","User":"65534","AttachStdin":false,"AttachStdout":false,"AttachStderr":false,"Tty":false,"OpenStdin":false,"StdinOnce":false,"Env":["PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin","SSL_CERT_FILE=/etc/ssl/certs/ca-certificates.crt"],"Cmd":null,"Image":"sha256:20038a0bce350821844e58b9a3f6147f41b93b8428d763d93b176f01324c5a29","Volumes":null,"WorkingDir":"/","Entrypoint":["/metrics-server"],"OnBuild":null,"Labels":null},"container":"0a36b113b0249d857785ce45aee833f015883d40cb3312f6ace838b0fb8d2bf4","container_config":{"Hostname":"0a36b113b024","Domainname":"","User":"65534","AttachStdin":false,"AttachStdout":false,"AttachStderr":false,"Tty":false,"OpenStdin":false,"StdinOnce":false,"Env":["PATH=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin","SSL_CERT_FILE=/etc/ssl/certs/ca-certificates.crt"],"Cmd":["/bin/sh","-c","#(nop) ","ENTRYPOINT [\"/metrics-server\"]"],"Image":"sha256:20038a0bce350821844e58b9a3f6147f41b93b8428d763d93b176f01324c5a29","Volumes":null,"WorkingDir":"/","Entrypoint":["/metrics-server"],"OnBuild":null,"Labels":{}},"created":"2022-02-09T09:18:57.689922166Z","docker_version":"20.10.12","history":[{"created":"1970-01-01T00:00:00Z","author":"Bazel","created_by":"bazel build ..."},{"created":"2022-02-09T09:18:56.514557099Z","created_by":"/bin/sh -c #(nop) COPY file:3a7ea41464c77f384c4e054a91477c95dda4f2ebb3da28f001ad29b59f76675f in / "},{"created":"2022-02-09T09:18:57.497925009Z","created_by":"/bin/sh -c #(nop) USER 65534","empty_layer":true},{"created":"2022-02-09T09:18:57.689922166Z","created_by":"/bin/sh -c #(nop) ENTRYPOINT [\"/metrics-server\"]","empty_layer":true}],"os":"linux","rootfs":{"type":"layers","diff_ids":["sha256:5b1fa8e3e100361047c8bcd5553ab6329b9c713c1d4eb87a646760329cea5b3a","sha256:3dc34f14eb8391ee08ae03c948661708666247a6f1f2e86bf8f1c0bcb9e5e041"]}}

longdechuanren517
- 粉丝: 0
最新资源
- 基于Matpower的储能选址定容多目标优化及熵权TOPSIS决策方法 - NSGA2
- 本文将介绍如何使用yolov5和deepsort进行目标检测和跟踪,并增加轨迹线的显示 本文的改进包括轨迹线颜色与目标框匹配、优化轨迹线只显示一段,并且当目标消失时不显示轨迹线
- 基于分解的多目标进化算法在双目标模糊柔性作业车间调度中的实践与应用
- 基于模糊控制的复合电源超级电容能量管理策略在电动汽车中的应用
- java Smart系统-题库及试卷管理模块的设计与开发(源代码+论文)
- 安全帽佩戴检测功能测试演示系统
- 本文将介绍如何使用yolov5和deepsort进行目标检测和跟踪,并增加轨迹线的显示 本文的改进包括轨迹线颜色与目标框匹配、优化轨迹线只显示一段,并且当目标消失时不显示轨迹线
- MATLAB仿真:TDOA与FDOA定位技术中TSWLS与ICWLS方法的性能对比及应用
- 一些目标检测任务需要用到的数据转换以及常见数据处理函数
- 基于SSA优化LSSVM的回归预测模型,提高预测精度超越传统LSSVM技术 - 时间序列预测 宝典
- WINCC报表功能及画面轮播解析:基于7.0至7.5版本的Web发布与CS架构访问权限控制
- LabVIEW与以太网S7协议:实现西门子PLC系列上位机程序读写的工业自动化解决方案
- 基于模糊模拟的混合NSGA-II算法优化农村电商物流配送路径规划 多目标优化
- 利用AI+deepseek求解一阶变系数线性微分方程组
- 基于C#和Halcon的PCB基板瑕疵检测系统:多维度缺陷识别与流程化管控
- 永磁同步电机无感FOC控制中负载转矩前馈补偿算法与仿真模型研究
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



评论0