# Covid19-prediction-using-dmd
This MATLAB project analyzes and predicts COVID-19 cases using Dynamic Mode Decomposition (DMD). It includes functionalities for interactive prediction of cases and various analysis cases with different parameters. The code also features random selection of states for plotting actual vs. predicted cases to provide diverse visual insights. The project is structured to provide two primary functionalities:
- Analysis of DMD on COVID-19 Data
- Interactive Prediction of COVID-19 Cases
## Usage
Run the script: Execute the MATLAB script to start the analysis.
User Input: The script prompts the user for input to choose between analysis or interactive prediction.
- Enter 1: Perform analysis using DMD.
- Enter 2: Use interactive prediction to forecast future COVID-19 cases.
### Analysis of DMD (Option 1)
When the user selects analysis:
- Case 1: Rank 10, Number of columns for X: 100, Prediction: 3 days.
- Case 2: Rank 10, Number of columns for X: 300, Prediction: 60 days.
- Case 3: Rank 35, Number of columns for X: 100, Prediction: 20 days.
The analysis involves:
- Calculating and plotting the actual vs predicted cases.
- Plotting the discrete and continuous-time eigenvalues.
- Calculating RMSE, MSE, and MAE for the predicted values.
- Performing analysis on states and evaluating errors.
### Interactive Prediction of Cases (Option 2)
When the user selects interactive prediction:
Input Window Prediction: Predict within the input window for easy comparison.
Future Prediction: Predict the cases for a specified number of future days.
The interactive prediction involves:
- Displaying the RMSE of the predicted values.
- Plotting actual vs predicted cases for each state.
- Plotting predicted cases for future days using scatter plots.
## Functions
- DMD(Xaug, start, m, l, r, dt, n1): Computes the Dynamic Mode Decomposition and returns the eigenvalues and predictions.
- rmse(a, b): Computes the Root Mean Square Error.
- mse(a, b): Computes the Mean Square Error.
- mae(a, b): Computes the Mean Absolute Error.
## Dataset
The dataset initially contained 3,667,271 records spanning 56 states over 1,086 days. After substantial preprocessing, it was reduced to 61,959 records by combining data from all states into a unified representation and narrowing the focus.


matlab科研助手
- 粉丝: 3w+
最新资源
- A159基于springboot+vue的农产品销售系统(LW文档+完整前后端代码+sql脚本+开发文档+全套软件)
- 机器学习实践:基于 CNN 与 YOLOv5 的梦幻西游各类弹窗识别
- 西门子杯 PLC大赛-方向调整站(STATION 4)的设计与工作流程
- A160基于springboot+vue的攀枝花市鲜花销售系统(LW文档+完整前后端代码+sql脚本+开发文档+全套软件)
- A161基于springboot+vue的零食销售商城的设计与实现(LW文档+完整前后端代码+sql脚本+开发文档+全套软件)
- A162基于springboot+vue+微信小程序的校园朋友圈(完整前后端代码+sql脚本+开发文档+全套软件)
- A163基于springboot+vue的秦皇岛旅游景点管理系统(LW文档+完整前后端代码+sql脚本+开发文档+全套软件)
- A164基于springboot+vue的无可购物网站(LW文档+完整前后端代码+sql脚本+开发文档+全套软件)
- 基于 Python 的机器学习算法、数据可视化与数据分析代码
- 基于微信小程序的课堂考勤签到系统-1ux1fd8x【附万字论文+PPT+包部署+录制讲解视频】.zip
- 《探秘TDR:时域反射技术的原理、应用与发展》
- A165基于springboot+vue+spider的国内旅游景点的数据爬虫与可视化分析(LW文档+完整前后端代码+sql脚本+开发文档+全套软件)
- delphi 最新助手控件,支持12.2 12.3
- SpringBoot基于微信小程序的课堂考勤签到系统【附万字论文+PPT+包部署+录制讲解视频】.zip
- A166基于springboo+vue商品智能推荐系统的设计与实现(LW文档+完整前后端代码+sql脚本+开发文档+全套软件)
- 关于机器学习算法的形而上学层面知识解读
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


