%% LVQ神经网络的预测——人脸识别
%
% <html>
% <table border="0" width="600px" id="table1"> <tr> <td><b><font size="2">该案例作者申明:</font></b></td> </tr> <tr> <td><span class="comment"><font size="2">1:本人长期驻扎在此<a target="_blank" href="http://www.ilovematlab.cn/forum-158-1.html"><font color="#0000FF">板块</font></a>里,对<a target="_blank" href="http://www.ilovematlab.cn/thread-49221-1-1.html"><font color="#0000FF">该案例</font></a>提问,做到有问必答。</font></span></td></tr><tr> <td><span class="comment"><font size="2">2:此案例有配套的教学视频,配套的完整可运行Matlab程序。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 3:以下内容为该案例的部分内容(约占该案例完整内容的1/10)。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 4:此案例为原创案例,转载请注明出处(<a target="_blank" href="http://www.ilovematlab.cn/">Matlab中文论坛</a>,<a target="_blank" href="http://www.ilovematlab.cn/forum-158-1.html">《Matlab神经网络30个案例分析》</a>)。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 5:若此案例碰巧与您的研究有关联,我们欢迎您提意见,要求等,我们考虑后可以加在案例里。</font></span></td> </tr> <tr> <td><span class="comment"><font size="2"> 6:您看到的以下内容为初稿,书籍的实际内容可能有少许出入,以书籍实际发行内容为准。</font></span></td> </tr><tr> <td><span class="comment"><font size="2"> 7:此书其他常见问题、预定方式等,<a target="_blank" href="http://www.ilovematlab.cn/thread-47939-1-1.html">请点击这里</a>。</font></span></td> </tr></table>
% </html>
%
web browser http://www.ilovematlab.cn/thread-61927-1-1.html
%% 清除环境变量
clear all
clc;
%% 人脸特征向量提取
% 人数
M=10;
% 人脸朝向类别数
N=5;
% 特征向量提取
pixel_value=feature_extraction(M,N);
%% 训练集/测试集产生
% 产生图像序号的随机序列
rand_label=randperm(M*N);
% 人脸朝向标号
direction_label=repmat(1:N,1,M);
% 训练集
train_label=rand_label(1:30);
P_train=pixel_value(train_label,:)';
Tc_train=direction_label(train_label);
T_train=ind2vec(Tc_train);
% 测试集
test_label=rand_label(31:end);
P_test=pixel_value(test_label,:)';
Tc_test=direction_label(test_label);
%% K-fold交叉验证确定最佳神经元个数
k_fold=10;
Indices=crossvalind('Kfold',size(P_train,2),k_fold);
error_min=10e10;
best_number=1;
best_input=[];
best_output=[];
best_train_set_index=[];
best_validation_set_index=[];
h=waitbar(0,'正在寻找最佳神经元个数.....');
for i=1:k_fold
% 验证集标号
validation_set_index=(Indices==i);
% 训练集标号
train_set_index=~validation_set_index;
% 验证集
validation_set_input=P_train(:,validation_set_index);
validation_set_output=T_train(:,validation_set_index);
% 训练集
train_set_input=P_train(:,train_set_index);
train_set_output=T_train(:,train_set_index);
for number=10:30
for j=1:5
rate{j}=length(find(Tc_train(:,train_set_index)==j))/length(find(train_set_index==1));
end
net=newlvq(minmax(train_set_input),number,cell2mat(rate));
% 设置网络参数
net.trainParam.epochs=100;
net.trainParam.show=10;
net.trainParam.lr=0.1;
net.trainParam.goal=0.001;
% 训练网络
net=train(net,train_set_input,train_set_output);
waitbar(((i-1)*21+number)/219,h);
%% 仿真测试
T_sim=sim(net,validation_set_input);
Tc_sim=vec2ind(T_sim);
error=length(find(Tc_sim~=Tc_train(:,validation_set_index)));
if error<error_min
error_min=error;
best_number=number;
best_input=train_set_input;
best_output=train_set_output;
best_train_set_index=train_set_index;
best_validation_set_index=validation_set_index;
end
end
end
disp(['经过交叉验证,得到的最佳神经元个数为:' num2str(best_number)]);
close(h);
%% 创建LVQ网络
for i=1:5
rate{i}=length(find(Tc_train(:,best_train_set_index)==i))/length(find(best_train_set_index==1));
end
net=newlvq(minmax(best_input),best_number,cell2mat(rate),0.01);
% 设置训练参数
net.trainParam.epochs=100;
net.trainParam.goal=0.001;
net.trainParam.lr=0.1;
%% 训练网络
net=train(net,best_input,best_output);
%% 人脸识别测试
T_sim=sim(net,P_test);
Tc_sim=vec2ind(T_sim);
result=[Tc_test;Tc_sim]
%% 结果显示
% 训练集人脸标号
strain_label=sort(train_label(best_train_set_index));
htrain_label=ceil(strain_label/N);
% 训练集人脸朝向标号
dtrain_label=strain_label-floor(strain_label/N)*N;
dtrain_label(dtrain_label==0)=N;
% 显示训练集图像序号
disp('训练集图像为:' );
for i=1:length(find(best_train_set_index==1))
str_train=[num2str(htrain_label(i)) '_'...
num2str(dtrain_label(i)) ' '];
fprintf('%s',str_train)
if mod(i,5)==0
fprintf('\n');
end
end
% 验证集人脸标号
svalidation_label=sort(train_label(best_validation_set_index));
hvalidation_label=ceil(svalidation_label/N);
% 验证集人脸朝向标号
dvalidation_label=svalidation_label-floor(svalidation_label/N)*N;
dvalidation_label(dvalidation_label==0)=N;
% 显示验证集图像序号
fprintf('\n');
disp('验证集图像为:' );
for i=1:length(find(best_validation_set_index==1))
str_validation=[num2str(hvalidation_label(i)) '_'...
num2str(dvalidation_label(i)) ' '];
fprintf('%s',str_validation)
if mod(i,5)==0
fprintf('\n');
end
end
% 测试集人脸标号
stest_label=sort(test_label);
htest_label=ceil(stest_label/N);
% 测试集人脸朝向标号
dtest_label=stest_label-floor(stest_label/N)*N;
dtest_label(dtest_label==0)=N;
% 显示测试集图像序号
fprintf('\n');
disp('测试集图像为:');
for i=1:20
str_test=[num2str(htest_label(i)) '_'...
num2str(dtest_label(i)) ' '];
fprintf('%s',str_test)
if mod(i,5)==0
fprintf('\n');
end
end
% 显示识别出错图像
error=Tc_sim-Tc_test;
location={'左方' '左前方' '前方' '右前方' '右方'};
for i=1:length(error)
if error(i)~=0
% 识别出错图像人脸标号
herror_label=ceil(test_label(i)/N);
% 识别出错图像人脸朝向标号
derror_label=test_label(i)-floor(test_label(i)/N)*N;
derror_label(derror_label==0)=N;
% 图像原始朝向
standard=location{Tc_test(i)};
% 图像识别结果朝向
identify=location{Tc_sim(i)};
str_err=strcat(['图像' num2str(herror_label) '_'...
num2str(derror_label) '识别出错.']);
disp([str_err '(正确结果:朝向' standard...
';识别结果:朝向' identify ')']);
end
end
% 显示识别率
disp(['识别率为:' num2str(length(find(error==0))/20*100) '%']);
web browser http://www.ilovematlab.cn/thread-61927-1-1.html
%%
%
% <html>
% <table align="center" > <tr> <td align="center"><font size="2">版权所有:</font><a
% href="http://www.ilovematlab.cn/">Matlab中文论坛</a> <script
% src="http://s3.cnzz.com/stat.php?id=971931&web_id=971931&show=pic" language="JavaScript" ></script> </td> </tr></table>
% </html>
%
没有合适的资源?快使用搜索试试~ 我知道了~
温馨提示
【项目资源】:包含前端、后端、移动开发、操作系统、人工智能、物联网、信息化管理、数据库、硬件开发、大数据、课程资源、音视频、网站开发等各种技术项目的源码。包括STM32、ESP8266、PHP、QT、Linux、iOS、C++、Java、python、web、C#、EDA、proteus、RTOS等项目的源码。【项目质量】:所有源码都经过严格测试,可以直接运行。功能在确认正常工作后才上传。【适用人群】:适用于希望学习不同技术领域的小白或进阶学习者。可作为毕设项目、课程设计、大作业、工程实训或初期项目立项。【附加价值】:项目具有较高的学习借鉴价值,也可直接拿来修改复刻。对于有一定基础或热衷于研究的人来说,可以在这些基础代码上进行修改和扩展,实现其他功能。【沟通交流】:有任何使用上的问题,欢迎随时与博主沟通,博主会及时解答。鼓励下载和使用,并欢迎大家互相学习,共同进步。
资源推荐
资源详情
资源评论






















格式:zip 资源大小:11.9MB






收起资源包目录






























































共 59 条
- 1
资源评论


CyMylive.
- 粉丝: 1w+
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 安全生产责任承包合同.doc
- 心肺复苏急救培训.pptx
- 第二章工程成本规划与控制.pdf
- 桥梁安装施工工艺流程图.doc
- https___github.com_raulmur_ORB_SLAM.git_https___github.com_r
- 基本C Yolo包装器(包括C桥)_Basic C# Yolo Wrapper (C++ Bridge included
- 大渡河(74+136+74)m连续梁专项施工方案.doc
- nnie yolov VS解决方案和HISI CV_nnie-yolov3 VS2017 solution and HI
- android演示中的yolov-obb推理_inference yolov8 obb in android demo.
- 乌鲁木齐地区某建筑安装工程造价分析(2953.doc
- yolov MNN CPU_GPU_yolov3 MNN框架部署 支持CPU_GPU.zip
- Jetson Nano_深度学习推理基准指令的修改和定制版本__Modified and customized vers
- Windows下TensorRT上的yolov实现_a yolov5 implementation on TensorR
- 在Windows平台上测试YOLO对象检测模型的UI程序_A UI program for testing YOLO o
- 监测设备程序-secret.docx
- 工厂成本管理与现场改善..doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
