# TensorFlow Coder (TF-Coder)
TF-Coder is a _program synthesis_ tool that helps you write TensorFlow code.
First, the tool asks for an input-output example of the desired tensor
transformation. Then, it runs a combinatorial search to find TensorFlow
expressions that perform that transformation. TF-Coder’s output is real
TensorFlow code that you can include in your projects.
## Quick Links
[**Try TF-Coder!**](https://colab.research.google.com/github/google-research/tensorflow-coder/blob/master/TF-Coder_Colab.ipynb)
The TF-Coder tool is ready-to-use at this link. Everything is already packaged
together in a Colab notebook, so no installation or download is needed.
For more information about TF-Coder, see the following documents:
* [**TF-Coder Tutorial**](Tutorial.md): walks you through using TF-Coder to
solve tensor manipulation tasks, and provides tips on getting the most out of
TF-Coder.
* [**User Journeys**](UserJourneys.md): illustrates several realistic scenarios
where TF-Coder can help accelerate your TensorFlow development in different
ways.
## Contents
* [What is TF-Coder?](#what-is-tf-coder)
* [Tutorial and Further Reading](#tutorial-and-further-reading)
* [Optional: Using TF-Coder Outside Colab](#optional-using-tf-coder-outside-colab)
* [Citation](#citation)
## What is TF-Coder?
When manipulating tensors, one must keep track of multiple dimensions, tensor
shape and DType compatibility, and of course mathematical correctness.
Additionally, there are hundreds of TensorFlow operations, and finding the right
ones to use can be a challenge.
TensorFlow Coder, or TF-Coder, can help you write tricky tensor manipulations in
TensorFlow. Instead of coding your tensor manipulation directly, you can just
demonstrate it through an illustrative input-output example, and TF-Coder can
produce the corresponding code automatically. TF-Coder performs an efficient
combinatorial search over compositions of TensorFlow operations, until it finds
a TensorFlow expression that matches the given input-output example.
TF-Coder allows you to:
* Program in TensorFlow by example
* Find the right function to use
* Automatically combine functions in clever ways
* Spend less time debugging
TF-Coder is primarily a development tool for TensorFlow users. If you just want
to use TF-Coder as a tool, you don’t need to install anything, as the tool is
ready-to-use in this
[Colab notebook](https://colab.research.google.com/github/google-research/tensorflow-coder/blob/master/TF-Coder_Colab.ipynb).
### Caveats
There are limitations to TF-Coder. It can currently find solutions involving 3-4
operations within a minute of searching, but solutions involving 6 or more
operations are too complex to find in a reasonable amount of time. Furthermore,
TF-Coder currently does not support complex or string tensors, or RaggedTensors.
The full list of supported operations can be found in the
[Colab notebook](https://colab.research.google.com/github/google-research/tensorflow-coder/blob/master/TF-Coder_Colab.ipynb#scrollTo=Q6uRr4x9WHRC).
In addition, TF-Coder only guarantees that its solutions work for the given
input-output example. The tool searches for a simple TensorFlow expression that
matches the provided input-output example, but sometimes this solution is too
simple and doesn’t generalize in the intended way. It can be helpful to make the
example as unambiguous as possible, which can often be achieved by adding more
numbers to the input and output tensors. Please review TF-Coder’s solutions to
ensure that they correctly implement the intended behavior.
In the Colab tool, we would like to log the problems given to TF-Coder and the
resulting solutions, so that we can improve the tool and build a dataset that
will accelerate program synthesis research in general, but this data collection
is completely optional.
## Tutorial and Further Reading
For more information about TF-Coder, see the following documents:
* [**TF-Coder Tutorial**](Tutorial.md): walks you through using TF-Coder to
solve tensor manipulation tasks, and provides tips on getting the most out of
TF-Coder.
* [**User Journeys**](UserJourneys.md): illustrates several realistic scenarios
where TF-Coder can help accelerate your TensorFlow development in different
ways.
* [**Our research paper**](https://arxiv.org/abs/2003.09040): describes the
technology behind TF-Coder.
## Optional: Using TF-Coder Outside Colab
Because TF-Coder is primarily a development tool and not a library that you use
in your code, we hope that the provided
[Colab notebook](https://colab.research.google.com/github/google-research/tensorflow-coder/blob/master/TF-Coder_Colab.ipynb)
is sufficient for your use cases.
However, if you would rather not use the Colab notebook, you can still install
TF-Coder as a Python package yourself:
```
pip install --user tf-coder
```
To run the TF-Coder search as a library, follow the code example in
[`tf_coder_main.py`](tf_coder/tf_coder_main.py).
To run TF-Coder on our benchmarks, run:
```
python3 tf_coder/value_search/value_search_main.py
```
To run tests, clone the repository and run `pytest`.
## Citation
If you find TF-Coder helpful for a research project, you may cite our [research
paper](https://arxiv.org/abs/2003.09040) as follows:
```
@article{TFCoder,
title={{TF-Coder}: Program Synthesis for Tensor Manipulations},
author={Kensen Shi and David Bieber and Rishabh Singh},
year={2020},
url={https://arxiv.org/abs/2003.09040},
archivePrefix={arXiv},
eprint={2003.09040}
}
```
## Disclaimer
This is a research project, not an official Google product.
To report a bug or make a feature request, please raise a
[GitHub issue](https://github.com/google-research/tensorflow-coder/issues).
没有合适的资源?快使用搜索试试~ 我知道了~
Python库 | tensorflow-coder-0.0.5.tar.gz
1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 35 浏览量
2022-04-16
04:24:42
上传
评论
收藏 119KB GZ 举报
温馨提示
资源分类:Python库 所属语言:Python 资源全名:tensorflow-coder-0.0.5.tar.gz 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
资源推荐
资源详情
资源评论

格式:gz 资源大小:53.4MB



























收起资源包目录























































































共 77 条
- 1
资源评论


挣扎的蓝藻
- 粉丝: 15w+
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 浅论网络时代的高校思想政治工作.docx
- Project-Management-Plan-Template-项目管理计划模板.doc
- 项目管理经验交流材料.docx
- 工程认证背景下软件项目管理企业捐课模式分析.docx
- 物联网对计算机通信网络的影响及问题研究.docx
- 计算机在人事管理中的应用.docx
- 论述基层文物保护信息化建设存在的问题与解决对策.docx
- (源码)基于Python的智能家居自动化系统.zip
- 互联网金融企业财务管理中存在的问题及对策.docx
- 第四章企业会计信息化及其流程重组.doc
- 物联网在智慧校园中的应用分析.docx
- 大数据时代企业管理会计的机遇与挑战.docx
- 计算机网络远程控制系统及应用研究.docx
- 互联网+时代高职《外贸英语函电》多模态教学探究.docx
- 下一代通信网络的无线传输技术研究.doc
- 大数据一期课程中的机器学习相关内容
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
