没有合适的资源?快使用搜索试试~ 我知道了~
本文实例为大家分享了Python+OpenCV实现图像的全景拼接的具体代码,供大家参考,具体内容如下 环境:python3.5.2 + openCV3.4 1.算法目的 将两张相同场景的场景图片进行全景拼接。 2.算法步骤 本算法基本步骤有以下几步: 步骤1:将图形先进行桶形矫正 没有进行桶形变换的图片效果可能会像以下这样: 图片越多拼接可能就会越夸张。 本算法是将图片进行桶形矫正。目的就是来缩减透视变换(Homography)之后图片产生的变形,从而使拼接图片变得畸形。 步骤2:特征点匹配 本算法使用的sift算法匹配,它具有旋转不变性和缩放不变性,具体原理在之后会补上一篇关于sift算
资源详情
资源评论
资源推荐

Python+OpenCV实现图像的全景拼接实现图像的全景拼接
本文实例为大家分享了Python+OpenCV实现图像的全景拼接的具体代码,供大家参考,具体内容如下
环境:python3.5.2 + openCV3.4
1.算法目的算法目的
将两张相同场景的场景图片进行全景拼接。
2.算法步骤算法步骤
本算法基本步骤有以下几步:
步骤步骤1::将图形先进行桶形矫正
没有进行桶形变换的图片效果可能会像以下这样:
图片越多拼接可能就会越夸张。
本算法是将图片进行桶形矫正。目的就是来缩减透视变换(Homography)之后图片产生的变形,从而使拼接图片变得畸形。
步骤步骤2::特征点匹配
本算法使用的sift算法匹配,它具有旋转不变性和缩放不变性,具体原理在之后会补上一篇关于sift算法的文章,这里就不做详细介绍。
在匹配特征点的过程中,透视矩阵选取了4对特征点计算,公式为
点的齐次坐标依赖于其尺度定义,因此矩阵H也仅依赖尺度定义,所以,单应性矩阵具有8个独立的自由度。
如果在选取的不正确的特征点,那么透视矩阵就可能计算错误,所以为了提高结果的鲁棒性,就要去除这些错误的特征点,而为了提高结果的鲁棒性,就要去除这些错误的特征点,而RANSAC方法就是用来方法就是用来
删除这些错误的特征点。删除这些错误的特征点。
**RANSAC:**用来找到正确模型来拟合带有噪声数据的迭代方法。基本思想:数据中包含正确的点和噪声点,合理的模型应该能够在描述正确数据点
的同时摈弃噪声点。
RANSAC方法随机获取4对不同的特征匹配坐标,计算出透视矩阵H1,再将第二张图的特征匹配点经过这个矩阵H1映射到第一张图的坐标空间里,通
过计算来验证这个H1矩阵是否满足绝大部分的特征点。

通过迭代多次,以满足最多特征匹配点的特征矩阵H作为结果。
这样正常情况就可以去除错误的特征点了,除非匹配错误的特征点比正确的还多。
下图是我在嘉庚图书馆旁拍摄的照片的特征点匹配。
步骤步骤3::利用得到的变换矩阵进行图片的拼接。
可以看出基本做到了无缝拼接。只是在色差上还是看得出衔接的部分存在。
剩余6页未读,继续阅读
















格式:docx 资源大小:4.9MB 页数:22







格式:pdf 资源大小:711.9KB 页数:7






weixin_38567813
- 粉丝: 4
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- SQL实训图书管理.doc
- 飞机钣金成形信息化的关键技术解决路径.docx
- ADPCM的语音编解码设计方案.doc
- 《单片机应用与仿真训练》设计报告:单片机的遥控窗帘.doc
- 历年计算机二级MS-Office真题.docx
- 利用BIOSIS-PREVIEWS.ppt
- 数据库原理课程设计模板.doc
- DICEPXAEP嵌入式优秀教学实验系统.doc
- ACCESS课程设计要求与选题.doc
- 互联网+时代的平面设计理念.docx
- 大数据时代政策预测的挑战及应对.docx
- 区块链技术对我国体育产业发展的影响研究.docx
- 农村家庭迈向信息化实现策略研究分析方案.doc
- ppt模板电子商务总结汇报类PPT模板.pptx
- §1电子商务概述21.ppt
- 大力推进智慧城市建设-将现代化国际港口城市建设推向新阶段.ppt
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论0