# pix2pix-tensorflow
Based on [pix2pix](https://phillipi.github.io/pix2pix/) by Isola et al.
[Article about this implemention](https://affinelayer.com/pix2pix/)
Tensorflow implementation of pix2pix. Learns a mapping from input images to output images, like these examples from the original paper:
<img src="docs/examples.jpg" width="900px"/>
This port is based directly on the torch implementation, and not on an existing Tensorflow implementation. It is meant to be a faithful implementation of the original work and so does not add anything. The processing speed on a GPU with cuDNN was equivalent to the Torch implementation in testing.
## Setup
### Prerequisites
- Tensorflow 1.0.0
### Recommended
- Linux with Tensorflow GPU edition + cuDNN
### Getting Started
```sh
# clone this repo
git clone https://github.com/affinelayer/pix2pix-tensorflow.git
cd pix2pix-tensorflow
# download the CMP Facades dataset (generated from http://cmp.felk.cvut.cz/~tylecr1/facade/)
python tools/download-dataset.py facades
# train the model (this may take 1-8 hours depending on GPU, on CPU you will be waiting for a bit)
python pix2pix.py \
--mode train \
--output_dir facades_train \
--max_epochs 200 \
--input_dir facades/train \
--which_direction BtoA
# test the model
python pix2pix.py \
--mode test \
--output_dir facades_test \
--input_dir facades/val \
--checkpoint facades_train
```
The test run will output an HTML file at `facades_test/index.html` that shows input/output/target image sets.
If you have Docker installed, you can use the provided Docker image to run pix2pix without installing the correct version of Tensorflow:
```sh
# train the model
python tools/dockrun.py python pix2pix.py \
--mode train \
--output_dir facades_train \
--max_epochs 200 \
--input_dir facades/train \
--which_direction BtoA
# test the model
python tools/dockrun.py python pix2pix.py \
--mode test \
--output_dir facades_test \
--input_dir facades/val \
--checkpoint facades_train
```
## Datasets and Trained Models
The data format used by this program is the same as the original pix2pix format, which consists of images of input and desired output side by side like:
<img src="docs/ab.png" width="256px"/>
For example:
<img src="docs/418.png" width="256px"/>
Some datasets have been made available by the authors of the pix2pix paper. To download those datasets, use the included script `tools/download-dataset.py`. There are also links to pre-trained models alongside each dataset, note that these pre-trained models require the Tensorflow 0.12.1 version of pix2pix.py since they have not been regenerated with the 1.0.0 release:
| dataset | example |
| --- | --- |
| `python tools/download-dataset.py facades` <br> 400 images from [CMP Facades dataset](http://cmp.felk.cvut.cz/~tylecr1/facade/). (31MB) <br> Pre-trained: [BtoA](https://mega.nz/#!2xpyQBoK!GVtkZN7lqY4aaZltMFdZsPNVE6bUsWyiVUN6RwJtIxQ) | <img src="docs/facades.jpg" width="256px"/> |
| `python tools/download-dataset.py cityscapes` <br> 2975 images from the [Cityscapes training set](https://www.cityscapes-dataset.com/). (113M) <br> Pre-trained: [AtoB](https://mega.nz/#!rxByxK6S!W9ZBUqgdGTFDWVlOE_ljVt1G3bU89bdu_nS9Bi1ujiA) [BtoA](https://mega.nz/#!b1olDbhL!mxsYC5AF_WH64CXoukN0KB-nw15kLQ0Etii-F-HDTps) | <img src="docs/cityscapes.jpg" width="256px"/> |
| `python tools/download-dataset.py maps` <br> 1096 training images scraped from Google Maps (246M) <br> Pre-trained: [AtoB](https://mega.nz/#!i8pkkBJT!3NKLar9sUr-Vh_vNVQF-xwK9-D9iCqaCmj1T27xRf4w) [BtoA](https://mega.nz/#!r8xwCBCD!lNBrY_2QO6pyUJziGj7ikPheUL_yXA8xGXFlM3GPL3c) | <img src="docs/maps.jpg" width="256px"/> |
| `python tools/download-dataset.py edges2shoes` <br> 50k training images from [UT Zappos50K dataset](http://vision.cs.utexas.edu/projects/finegrained/utzap50k/). Edges are computed by [HED](https://github.com/s9xie/hed) edge detector + post-processing. (2.2GB) <br> Pre-trained: [AtoB](https://mega.nz/#!OoYT3QiQ!8y3zLESvhOyeA6UsjEbcJphi3_uEt534waSL5_f_D4Y) | <img src="docs/edges2shoes.jpg" width="256px"/> |
| `python tools/download-dataset.py edges2handbags` <br> 137K Amazon Handbag images from [iGAN project](https://github.com/junyanz/iGAN). Edges are computed by [HED](https://github.com/s9xie/hed) edge detector + post-processing. (8.6GB) <br> Pre-trained: [AtoB](https://mega.nz/#!KlpBHKrZ!iJ3x6xzgk0wnJkPiAf0UxPzhYSmpC3kKH1DY5n_dd0M) | <img src="docs/edges2handbags.jpg" width="256px"/> |
The `facades` dataset is the smallest and easiest to get started with.
### Creating your own dataset
#### Example: creating images with blank centers for [inpainting](https://people.eecs.berkeley.edu/~pathak/context_encoder/)
<img src="docs/combine.png" width="900px"/>
```sh
# Resize source images
python tools/process.py \
--input_dir photos/original \
--operation resize \
--output_dir photos/resized
# Create images with blank centers
python tools/process.py \
--input_dir photos/resized \
--operation blank \
--output_dir photos/blank
# Combine resized images with blanked images
python tools/process.py \
--input_dir photos/resized \
--b_dir photos/blank \
--operation combine \
--output_dir photos/combined
# Split into train/val set
python tools/split.py \
--dir photos/combined
```
The folder `photos/combined` will now have `train` and `val` subfolders that you can use for training and testing.
#### Creating image pairs from existing images
If you have two directories `a` and `b`, with corresponding images (same name, same dimensions, different data) you can combine them with `process.py`:
```sh
python tools/process.py \
--input_dir a \
--b_dir b \
--operation combine \
--output_dir c
```
This puts the images in a side-by-side combined image that `pix2pix.py` expects.
#### Colorization
For colorization, your images should ideally all be the same aspect ratio. You can resize and crop them with the resize command:
```sh
python tools/process.py \
--input_dir photos/original \
--operation resize \
--output_dir photos/resized
```
No other processing is required, the colorization mode (see Training section below) uses single images instead of image pairs.
## Training
### Image Pairs
For normal training with image pairs, you need to specify which directory contains the training images, and which direction to train on. The direction options are `AtoB` or `BtoA`
```sh
python pix2pix.py \
--mode train \
--output_dir facades_train \
--max_epochs 200 \
--input_dir facades/train \
--which_direction BtoA
```
### Colorization
`pix2pix.py` includes special code to handle colorization with single images instead of pairs, using that looks like this:
```sh
python pix2pix.py \
--mode train \
--output_dir photos_train \
--max_epochs 200 \
--input_dir photos/train \
--lab_colorization
```
In this mode, image A is the black and white image (lightness only), and image B contains the color channels of that image (no lightness information).
### Tips
You can look at the loss and computation graph using tensorboard:
```sh
tensorboard --logdir=facades_train
```
<img src="docs/tensorboard-scalar.png" width="250px"/> <img src="docs/tensorboard-image.png" width="250px"/> <img src="docs/tensorboard-graph.png" width="250px"/>
If you wish to write in-progress pictures as the network is training, use `--display_freq 50`. This will update `facades_train/index.html` every 50 steps with the current training inputs and outputs.
## Testing
Testing is done with `--mode test`. You should specify the checkpoint to use with `--checkpoint`, this should point to the `output_dir` that you created previously with `--mode train`:
```sh
python pix2pix.py \
--mode test \
--output_dir facades_test \
--input_dir facades/val \
--checkpoint facades_train
```
The testing mode will load some of the configuration options from the checkpoint provided so you do not need to speci

weixin_39837642
- 粉丝: 2
最新资源
- 该项目为一个集数据抓取与展示一体的ACM队员数据系统,基于Django、python实现。.zip
- 辅助背单词软件,基于艾宾浩斯记忆曲线(其实背啥都行)的Python重构版,增加在线查词与翻译等功能.zip
- 基于C开发的命令行输入输出流重定向与实时分析工具_支持快捷按键和文本框输入实时过滤计算分析多格式结果呈现文本提示弹窗曲线表格支持批量测试和日志抓取_用于开发调试协议分.zip
- 各种有用的web api 基于Golang, Python(tornado django scrapy gevent).zip
- 华南理工大学找到卷王,基于 Python 的综测系统数据爬虫.zip
- 湖南大学(HNU)数据库系统课程大作业 ATM系统 前端基于Python的PyQt5,后端基于MySQL.zip
- (新闻爬虫),基于python+Flask+Echarts,实现首页与更多新闻页面爬取
- 基于 Flask + Requests 的全平台音乐接口 Python 版.zip
- 基于 FFmpeg ,使用 Python 开发的批量媒体文件格式转换器。.zip
- 基于 CAI 的 OneBot Python 实现.zip
- 基于 nonebot2 开发的消息交互式 Python 解释器,依赖 docker SDK.zip
- 基于 Python 3 + Django 2 开发的用于适配手机的简单 Jenkins 构建平台.zip
- Python 语言的爬楼梯问题实现-计算爬到第 n 级台阶的方法数
- 基于 Napcat, NcatBot, JMComic-Crawler-Python 的 QQ 机器人。.zip
- 基于 Python Tornado 的博客程序 (练习).zip
- 基于 Python 3.5 + Django 2.0 开发的简单个人博客.zip
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈


