# DNN Inception
This program is ported by C# from examples\dnn_inception_ex.cpp.
## How to use?
## 1. Build
1. Open command prompt and change to <DnnInception_dir>
1. Type the following command
````
dotnet build -c Release
````
2. Copy ***DlibDotNet.dll***, ***DlibDotNetNative.dll*** and ***DlibDotNetNativeDnn.dll*** to output directory; <DnnInception_dir>\bin\Release\netcoreapp2.0.
**NOTE**
- You should build ***DlibDotNetNative.dll*** and ***DlibDotNetNativeDnn.dll*** with CUDA.
- If you want to run at Linux and MacOS, you should build the **DlibDotNet** at first.
Please refer the [Tutorial for Linux](https://github.com/takuya-takeuchi/DlibDotNet/wiki/Tutorial-for-Linux) or [Tutorial for MacOS](https://github.com/takuya-takeuchi/DlibDotNet/wiki/Tutorial-for-MacOS).
## 2. Download demo data
Download test data from the following urls.
- http://yann.lecun.com/exdb/mnist/
- train-images-idx3-ubyte.gz
- train-labels-idx1-ubyte.gz
- t10k-images-idx3-ubyte.gz
- t10k-labels-idx1-ubyte.gz
And extract them and copy to extracted files to <DnnInception_dir>.
## 3. Run
````
cd <DnnInception_dir>
dotnet run -c Release .
The net has 43 layers in it.
layer<0> loss_multiclass_log
layer<1> fc (num_outputs=10) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<2> relu
layer<3> fc (num_outputs=32) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<4> max_pool (nr=2, nc=2, stride_y=2, stride_x=2, padding_y=0, padding_x=0)
layer<5> concat (1001,1002,1003)
layer<6> tag1001
layer<7> relu
layer<8> con (num_filters=4, nr=1, nc=1, stride_y=1, stride_x=1, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<9> skip1000
layer<10> tag1002
layer<11> relu
layer<12> con (num_filters=4, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<13> skip1000
layer<14> tag1003
layer<15> relu
layer<16> con (num_filters=4, nr=1, nc=1, stride_y=1, stride_x=1, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<17> max_pool (nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1)
layer<18> tag1000
layer<19> max_pool (nr=2, nc=2, stride_y=2, stride_x=2, padding_y=0, padding_x=0)
layer<20> concat (1001,1002,1003,1004)
layer<21> tag1001
layer<22> relu
layer<23> con (num_filters=10, nr=1, nc=1, stride_y=1, stride_x=1, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<24> skip1000
layer<25> tag1002
layer<26> relu
layer<27> con (num_filters=10, nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<28> relu
layer<29> con (num_filters=16, nr=1, nc=1, stride_y=1, stride_x=1, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<30> skip1000
layer<31> tag1003
layer<32> relu
layer<33> con (num_filters=10, nr=5, nc=5, stride_y=1, stride_x=1, padding_y=2, padding_x=2) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<34> relu
layer<35> con (num_filters=16, nr=1, nc=1, stride_y=1, stride_x=1, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<36> skip1000
layer<37> tag1004
layer<38> relu
layer<39> con (num_filters=10, nr=1, nc=1, stride_y=1, stride_x=1, padding_y=0, padding_x=0) learning_rate_mult=1 weight_decay_mult=1 bias_learning_rate_mult=1 bias_weight_decay_mult=0
layer<40> max_pool (nr=3, nc=3, stride_y=1, stride_x=1, padding_y=1, padding_x=1)
layer<41> tag1000
layer<42> input<matrix>
Traning NN...
Epoch: 1 learning rate: 0.01 average loss: 0.480985 steps without apparent progress: 8
Epoch: 2 learning rate: 0.01 average loss: 0.105669 steps without apparent progress: 15
Epoch: 3 learning rate: 0.01 average loss: 0.0740526 steps without apparent progress: 318
Epoch: 4 learning rate: 0.01 average loss: 0.0604944 steps without apparent progress: 9
Saved state to inception_sync
Epoch: 5 learning rate: 0.01 average loss: 0.0520312 steps without apparent progress: 326
Epoch: 6 learning rate: 0.01 average loss: 0.0459913 steps without apparent progress: 350
Epoch: 7 learning rate: 0.01 average loss: 0.0413119 steps without apparent progress: 10
Epoch: 8 learning rate: 0.01 average loss: 0.0379306 steps without apparent progress: 26
Saved state to inception_sync_
Epoch: 9 learning rate: 0.01 average loss: 0.0350026 steps without apparent progress: 542
Epoch: 10 learning rate: 0.01 average loss: 0.0325879 steps without apparent progress: 11
Epoch: 11 learning rate: 0.01 average loss: 0.0306371 steps without apparent progress: 550
Epoch: 12 learning rate: 0.01 average loss: 0.0287543 steps without apparent progress: 517
Epoch: 13 learning rate: 0.01 average loss: 0.0271211 steps without apparent progress: 12
Saved state to inception_sync
Epoch: 14 learning rate: 0.01 average loss: 0.0258299 steps without apparent progress: 540
Epoch: 15 learning rate: 0.01 average loss: 0.0246587 steps without apparent progress: 518
Epoch: 16 learning rate: 0.01 average loss: 0.0235673 steps without apparent progress: 522
Epoch: 17 learning rate: 0.01 average loss: 0.0224451 steps without apparent progress: 558
Epoch: 18 learning rate: 0.01 average loss: 0.0216577 steps without apparent progress: 545
Saved state to inception_sync_
Epoch: 19 learning rate: 0.01 average loss: 0.0207857 steps without apparent progress: 566
Epoch: 20 learning rate: 0.01 average loss: 0.0197219 steps without apparent progress: 979
Epoch: 21 learning rate: 0.01 average loss: 0.0189983 steps without apparent progress: 989
Epoch: 22 learning rate: 0.01 average loss: 0.0183556 steps without apparent progress: 1037
Saved state to inception_sync
Epoch: 23 learning rate: 0.01 average loss: 0.0176799 steps without apparent progress: 986
Epoch: 24 learning rate: 0.01 average loss: 0.0169129 steps without apparent progress: 970
Epoch: 25 learning rate: 0.01 average loss: 0.0161669 steps without apparent progress: 979
Epoch: 26 learning rate: 0.01 average loss: 0.0154576 steps without apparent progress: 983
Epoch: 27 learning rate: 0.01 average loss: 0.0146988 steps without apparent progress: 985
Saved state to inception_sync_
Epoch: 28 learning rate: 0.01 average loss: 0.0141198 steps without apparent progress: 984
Epoch: 29 learning rate: 0.01 average loss: 0.0135091 steps without apparent progress: 984
Epoch: 30 learning rate: 0.01 average loss: 0.0130994 steps without apparent progress: 991
Epoch: 31 learning rate: 0.01 average loss: 0.0125059 steps without apparent progress: 979
Epoch: 32 learning rate: 0.01 average loss: 0.012067 steps without apparent progress: 983
Saved state to inception_sync
Epoch: 33 learning rate: 0.01 average loss: 0.0114886 steps without apparent progress: 998
Epoch: 34 learning rate: 0.01 average loss: 0.0109174 steps without apparent progress: 560
Epoch: 35 learning rate: 0.01 average loss: 0.0106421 steps without apparent progress: 986
Epoch: 36 learning rate: 0.01 average loss: 0.0103991 steps without apparent progress: 1060
Saved state to inception_sync_
Epoch: 37 learning rate: 0.01 average loss: 0.0100768 steps without apparent progress: 1061
Epoch: 38 learnin
没有合适的资源?快使用搜索试试~ 我知道了~
DlibDotNet:针对Windows,MacOS和Linux用C ++和C#编写的Dlib .NET包装器

共1544个文件
cs:546个
h:169个
cpp:161个


温馨提示
DlibDotNet 适用于Windows,MacOS和Linux的用C ++和C#编写的Dlib包装器 DlibDotNet 包 操作系统 x86 x64 臂 的ARM64 努吉特 DlibDotNet(CPU) 视窗 ✓ ✓ -- -- Linux -- ✓ -- -- OSX -- ✓ -- -- 适用于CUDA 9.2的DlibDotNet 视窗 -- ✓ -- -- Linux -- ✓ -- -- OSX -- -- -- -- 适用于CUDA 10.0的DlibDotNet 视窗 -- ✓ -- -- Linux -- ✓ -- -- OSX -- -- -- -- 适用于CUDA 10.1的DlibDotNet 视窗 -- ✓ -- -- Linux -- ✓ -- -- OSX -- -- -- -- 适用于CUDA 10.2的DlibDotNet 视窗 -- ✓ -- -- Linux -- ✓ -- -- OSX
资源详情
资源评论
资源推荐
收起资源包目录





































































































共 1544 条
- 1
- 2
- 3
- 4
- 5
- 6
- 16

格式:zip 资源大小:163.1MB

格式:rar 资源大小:328.2MB











格式:azw3 资源大小:23.3MB





格式:pdf 资源大小:36.3KB 页数:2










火石创造
- 粉丝: 40
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 通信工程项目管理组织优化研究.docx
- 单片机街道广告牌照明控制设计方案.doc
- 商务办公楼及地下车库项目安全文明施工策划.pptx
- 浅析企业云计算架构规划.docx
- 预算定额的编制入门学习讲义.pptx
- 《建筑给水排水工程》课程设计任务书.doc
- 区块链技术支持下知识产权认证系统的优化研究.docx
- 基于大数据的高职计算机应用技术移动学习研究.docx
- 中国石化川气东送建设工程管道工程类标准合同文本【设计合同】.doc
- 试述大数据时代的物流信息化.docx
- 月分项工程质量登记表.docx
- T梁预制工艺流程.doc
- 全面预算管理--厦门大学会计系.ppt
- CRTSⅢ型板式无砟轨道施工技术介绍.pptx
- 大型装修监管记录表.doc
- 燃气管道安装工程安全技术交底-.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制

评论1