[](https://codecov.io/gh/laszukdawid/PyEMD)
[](https://travis-ci.org/laszukdawid/PyEMD)
[](https://pyemd.readthedocs.io/)
[](https://www.codacy.com/app/laszukdawid/PyEMD?utm_source=github.com&utm_medium=referral&utm_content=laszukdawid/PyEMD&utm_campaign=badger)
[](https://ko-fi.com/A0A110NUD)
# PyEMD
## Links
- HTML documentation: <https://pyemd.readthedocs.org>
- Issue tracker: <https://github.com/laszukdawid/pyemd/issues>
- Source code repository: <https://github.com/laszukdawid/pyemd>
## Introduction
This is yet another Python implementation of Empirical Mode
Decomposition (EMD). The package contains many EMD variations and
intends to deliver more in time.
### EMD variations:
* Ensemble EMD (EEMD),
* "Complete Ensemble EMD" (CEEMDAN)
* different settings and configurations of vanilla EMD.
* Image decomposition (EMD2D & BEMD) (experimental, no support)
*PyEMD* allows to use different splines for envelopes, stopping criteria
and extrema interpolation.
### Available splines:
* Natural cubic [default]
* Pointwise cubic
* Akima
* Linear
### Available stopping criteria:
* Cauchy convergence [default]
* Fixed number of iterations
* Number of consecutive proto-imfs
### Extrema detection:
* Discrete extrema [default]
* Parabolic interpolation
## Installation
### Recommended
Simply download this directory either directly from GitHub, or using
command line:
> \$ git clone <https://github.com/laszukdawid/PyEMD>
Then go into the downloaded project and run from command line:
> \$ python setup.py install
### PyPi
Packaged obtained from PyPi is/will be slightly behind this project, so
some features might not be the same. However, it seems to be the
easiest/nicest way of installing any Python packages, so why not this
one?
> \$ pip install EMD-signal
## Example
More detailed examples are included in the
[documentation](https://pyemd.readthedocs.io/en/latest/examples.html) or
in the
[PyEMD/examples](https://github.com/laszukdawid/PyEMD/tree/master/example).
### EMD
In most cases default settings are enough. Simply import `EMD` and pass
your signal to instance or to `emd()` method.
```python
from PyEMD import EMD
import numpy as np
s = np.random.random(100)
emd = EMD()
IMFs = emd(s)
```
The Figure below was produced with input:
$S(t) = cos(22 \pi t^2) + 6t^2$

### EEMD
Simplest case of using Ensemble EMD (EEMD) is by importing `EEMD` and
passing your signal to the instance or `eemd()` method.
**Windows**: Please don't skip the `if __name__ == "__main__"` section.
```python
from PyEMD import EEMD
import numpy as np
if __name__ == "__main__":
s = np.random.random(100)
eemd = EEMD()
eIMFs = eemd(s)
```
### CEEMDAN
As with previous methods, there is also simple way to use `CEEMDAN`.
**Windows**: Please don't skip the `if __name__ == "__main__"` section.
```python
from PyEMD import CEEMDAN
import numpy as np
if __name__ == "__main__":
s = np.random.random(100)
ceemdan = CEEMDAN()
cIMFs = ceemdan(s)
```
### Visualisation
The package contain a simple visualisation helper that can help, e.g., with time series and instantaneous frequencies.
```python
import numpy as np
from PyEMD import EMD, Visualisation
t = np.arange(0, 3, 0.01)
S = np.sin(13*t + 0.2*t**1.4) - np.cos(3*t)
# Extract imfs and residue
# In case of EMD
emd = EMD()
emd.emd(S)
imfs, res = emd.get_imfs_and_residue()
# In general:
#components = EEMD()(S)
#imfs, res = components[:-1], components[-1]
vis = Visualisation()
vis.plot_imfs(imfs=imfs, residue=res, t=t, include_residue=True)
vis.plot_instant_freq(t, imfs=imfs)
vis.show()
```
### EMD2D/BEMD
*Unfortunately, this is Experimental and we can't guarantee that the output is meaningful.*
The simplest use is to pass image as monochromatic numpy 2D array. Sample as
with the other modules one can use the default setting of an instance or, more explicitly,
use the `emd2d()` method.
```python
from PyEMD.EMD2d import EMD2D #, BEMD
import numpy as np
x, y = np.arange(128), np.arange(128).reshape((-1,1))
img = np.sin(0.1*x)*np.cos(0.2*y)
emd2d = EMD2D() # BEMD() also works
IMFs_2D = emd2d(img)
```
## F.A.Q
### Why is EEMD/CEEMDAN so slow?
Unfortunately, that's their nature. They execute EMD multiple times every time with slightly modified version. Added noise can cause a creation of many extrema which will decrease performance of the natural cubic spline. For some tweaks on how to deal with that please see [Speedup tricks](https://pyemd.readthedocs.io/en/latest/speedup_eemd.html) in the documentation.
## Contact
Feel free to contact me with any questions, requests or simply to say *hi*.
It's always nice to know that I've helped someone or made their work easier.
Contributing to the project is also acceptable and warmly welcomed.
Contact me either through gmail (laszukdawid @ gmail) or search me through your
favourite web search.
### Citation
If you found this package useful and would like to cite it in your work
please use the following structure:
```
@misc{pyemd,
author = {Laszuk, Dawid},
title = {Python implementation of Empirical Mode Decomposition algorithm},
year = {2017},
publisher = {GitHub},
journal = {GitHub Repository},
howpublished = {\url{https://github.com/laszukdawid/PyEMD}},
}
```

HomeTalk
- 粉丝: 39
最新资源
- 网络信息安全B作业题和考试复习题.doc
- 互联网背景下如何提高图书编校质量.docx
- tcpip协议与网络管理标准教程.doc
- 大数据背景下高校思想政治教育过程融入路径探究.docx
- 云南基层干部教育培训信息化建设应用研究教育文档.doc
- 团购网站Groupon及中国电子商务发展分析.doc
- 外贸建站-营销型网站建设.doc
- 斩波电路Matlab仿真电力电子技术课程设计.doc
- 互联网+大连海参养殖新模式探究.docx
- python-游戏数据搜索引擎-基于Python开发的游戏信息检索系统-整合多平台游戏数据-提供快速搜索与详细展示功能-支持用户自定义筛选与收藏-适用于游戏爱好者与开发者查询游戏资.zip
- 人工智能双面观.docx
- 基于欧氏距离的K均方聚类算法研究与应用.docx
- 对安徽江苏山东网络电视台的比较分析.docx
- JavaEEJsp图书系统实用技术文档.doc
- 网络信息安全项目教程习题-解答.doc
- 物联网技术在现代种植业中的应用.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



- 1
- 2
前往页