# -*- coding: utf-8 -*-
"""
@author: 代码医生工作室
@公众号:xiangyuejiqiren (内有更多优秀文章及学习资料)
@来源: <深度学习之TensorFlow工程化项目实战>配套代码 (700+页)
@配套代码技术支持:bbs.aianaconda.com (有问必答)
"""
import math
import random
import numpy as np
import cv2
import matplotlib.pyplot as plt
mask_rcnn_model = __import__("8-29 mask_rcnn_model")
MaskRCNN = mask_rcnn_model.MaskRCNN
utils = __import__("8-30 mask_rcnn_utils")
visualize = __import__("8-32 mask_rcnn_visualize")
#随机生成图片类
class ShapesDataset():
def __init__(self, class_map=None):
self.image_ids = []
self.image_info = []
#第0个类是背景
self.class_info = [{ "id": 0, "name": "BG"}]
self.source_class_ids = {}
def load_shapes(self, count, height, width):
# Add classes
self.class_info.append({ "id": 1, "name": "square"})
self.class_info.append({ "id": 2, "name": "circle"})
self.class_info.append({ "id": 3, "name": "triangle"})
# Add images
for i in range(count):
bg_color, shapes = self.random_image(height, width)
self.image_info.append({"width":width,"height":height,"bg_color":bg_color,"shapes":shapes})
def load_image(self, image_id):
"""Generate an image from the specs of the given image ID.
Typically this function loads the image from a file, but
in this case it generates the image on the fly from the
specs in image_info.
"""
info = self.image_info[image_id]
bg_color = np.array(info['bg_color']).reshape([1, 1, 3])
image = np.ones([info['height'], info['width'], 3], dtype=np.uint8)
image = image * bg_color.astype(np.uint8)
for shape, color, dims in info['shapes']:
image = self.draw_shape(image, shape, dims, color)
return image
def image_reference(self, image_id):
"""Return the shapes data of the image."""
info = self.image_info[image_id]
if info["source"] == "shapes":
return info["shapes"]
else:
super(self.__class__).image_reference(self, image_id)
def load_mask(self, image_id):
"""Generate instance masks for shapes of the given image ID.
"""
info = self.image_info[image_id]
shapes = info['shapes']
count = len(shapes)
mask = np.zeros([info['height'], info['width'], count], dtype=np.uint8)
for i, (shape, _, dims) in enumerate(info['shapes']):
mask[:, :, i:i + 1] = self.draw_shape(mask[:, :, i:i + 1].copy(),
shape, dims, 1)
# Handle occlusions
occlusion = np.logical_not(mask[:, :, -1]).astype(np.uint8)
for i in range(count - 2, -1, -1):
mask[:, :, i] = mask[:, :, i] * occlusion
occlusion = np.logical_and(
occlusion, np.logical_not(mask[:, :, i]))
# Map class names to class IDs.
class_ids = np.array([self.class_names.index(s[0]) for s in shapes])
return mask, class_ids.astype(np.int32)
def draw_shape(self, image, shape, dims, color):
"""Draws a shape from the given specs."""
# Get the center x, y and the size s
x, y, s = dims
if shape == 'square':
image = cv2.rectangle(image, (x - s, y - s),
(x + s, y + s), color, -1)
elif shape == "circle":
image = cv2.circle(image, (x, y), s, color, -1)
elif shape == "triangle":
points = np.array([[(x, y - s),
(x - s / math.sin(math.radians(60)), y + s),
(x + s / math.sin(math.radians(60)), y + s),
]], dtype=np.int32)
image = cv2.fillPoly(image, points, color)
return image
def random_shape(self, height, width):
"""Generates specifications of a random shape that lies within
the given height and width boundaries.
Returns a tuple of three valus:
* The shape name (square, circle, ...)
* Shape color: a tuple of 3 values, RGB.
* Shape dimensions: A tuple of values that define the shape size
and location. Differs per shape type.
"""
# Shape
shape = random.choice(["square", "circle", "triangle"])
# Color
color = tuple([random.randint(0, 255) for _ in range(3)])
# Center x, y
buffer = 20
y = random.randint(buffer, height - buffer - 1)
x = random.randint(buffer, width - buffer - 1)
# Size
s = random.randint(buffer, height // 4)
return shape, color, (x, y, s)
def random_image(self, height, width):
"""Creates random specifications of an image with multiple shapes.
Returns the background color of the image and a list of shape
specifications that can be used to draw the image.
"""
def non_max_suppression(boxes, scores, threshold):
"""Performs non-maximum suppression and returns indices of kept boxes.
boxes: [N, (y1, x1, y2, x2)]. Notice that (y2, x2) lays outside the box.
scores: 1-D array of box scores.
threshold: Float. IoU threshold to use for filtering.
"""
def compute_iou(box, boxes, box_area, boxes_area):
"""Calculates IoU of the given box with the array of the given boxes.
box: 1D vector [y1, x1, y2, x2]
boxes: [boxes_count, (y1, x1, y2, x2)]
box_area: float. the area of 'box'
boxes_area: array of length boxes_count.
Note: the areas are passed in rather than calculated here for
efficiency. Calculate once in the caller to avoid duplicate work.
"""
# Calculate intersection areas
y1 = np.maximum(box[0], boxes[:, 0])
y2 = np.minimum(box[2], boxes[:, 2])
x1 = np.maximum(box[1], boxes[:, 1])
x2 = np.minimum(box[3], boxes[:, 3])
intersection = np.maximum(x2 - x1, 0) * np.maximum(y2 - y1, 0)
union = box_area + boxes_area[:] - intersection[:]
iou = intersection / union
return iou
assert boxes.shape[0] > 0
if boxes.dtype.kind != "f":
boxes = boxes.astype(np.float32)
# Compute box areas
y1 = boxes[:, 0]
x1 = boxes[:, 1]
y2 = boxes[:, 2]
x2 = boxes[:, 3]
area = (y2 - y1) * (x2 - x1)
# Get indicies of boxes sorted by scores (highest first)
ixs = scores.argsort()[::-1]
pick = []
while len(ixs) > 0:
# Pick top box and add its index to the list
i = ixs[0]
pick.append(i)
# Compute IoU of the picked box with the rest
iou = compute_iou(boxes[i], boxes[ixs[1:]], area[i], area[ixs[1:]])
# Identify boxes with IoU over the threshold. This
# returns indices into ixs[1:], so add 1 to get
# indices into ixs.
remove_ixs = np.where(iou > threshold)[0] + 1
# Remove indices of the picked and overlapped boxes.
ixs = np.delete(ixs, remove_ixs)
ixs = np.delete(ixs, 0)
return np.array(pick, dtype=np.int32)
# Pick random background color
bg_color = np.array([random.randint(0, 255) for _ in range