function ROCdata=roc(varargin)
% ROC - Receiver Operating Characteristics.
% The ROC graphs are a useful tecnique for organizing classifiers and
% visualizing their performance. ROC graphs are commonly used in medical
% decision making.
% If you have downloaded partest
% http://www.mathworks.com/matlabcentral/fileexchange/12705
% the routine will compute several data on test performance.
%
% Syntax: roc(x,alpha)
%
% Input: x - This is the data matrix. The first column is the column of the data value;
% The second column is the column of the tag: unhealthy (1) and
% healthy (0).
% alpha - significance level (default 0.05)
%
% Output: The ROC plot;
% The Area under the curve with Standard error and Confidence
% interval and comment.
% Cut-off point for best sensitivity and specificity.
% (Optional) the test performances at cut-off point.
%
% Example:
% load rocdata
% roc(x)
%
% Created by Giuseppe Cardillo
%
[email protected]
%
% To cite this file, this would be an appropriate format:
% Cardillo G. (2008) ROC curve: compute a Receiver Operating Characteristics curve.
% http://www.mathworks.com/matlabcentral/fileexchange/19950
%Input Error handling
args=cell(varargin);
nu=numel(args);
if isempty(nu)
error('Warning: almost the data matrix is required')
elseif nu>3
error('Warning: Max three input data are required')
end
default.values = {[],0.05,1};
default.values(1:nu) = args;
[x alpha verbose] = deal(default.values{:});
if isvector(x)
error('Warning: X must be a matrix')
end
if ~all(isfinite(x(:))) || ~all(isnumeric(x(:)))
error('Warning: all X values must be numeric and finite')
end
x(:,2)=logical(x(:,2));
if all(x(:,2)==0)
error('Warning: there are only healthy subjects!')
end
if all(x(:,2)==1)
error('Warning: there are only unhealthy subjects!')
end
if nu>=2
if ~isscalar(alpha) || ~isnumeric(alpha) || ~isfinite(alpha) || isempty(alpha)
error('Warning: it is required a numeric, finite and scalar ALPHA value.');
end
if alpha <= 0 || alpha >= 1 %check if alpha is between 0 and 1
error('Warning: ALPHA must be comprised between 0 and 1.')
end
if nu==3
verbose=logical(verbose);
end
end
clear args default nu
tr=repmat('-',1,80);
lu=length(x(x(:,2)==1)); %number of unhealthy subjects
lh=length(x(x(:,2)==0)); %number of healthy subjects
z=sortrows(x,1);
%find unique values in z
labels=unique(z(:,1));
ll=length(labels); %count unique value
a=zeros(ll,2); %array preallocation
ubar=mean(x(x(:,2)==1),1); %unhealthy mean value
hbar=mean(x(x(:,2)==0),1); %healthy mean value
for K=1:ll
if hbar<ubar
TP=length(x(x(:,2)==1 & x(:,1)>labels(K)));
FP=length(x(x(:,2)==0 & x(:,1)>labels(K)));
FN=length(x(x(:,2)==1 & x(:,1)<=labels(K)));
TN=length(x(x(:,2)==0 & x(:,1)<=labels(K)));
else
TP=length(x(x(:,2)==1 & x(:,1)<labels(K)));
FP=length(x(x(:,2)==0 & x(:,1)<labels(K)));
FN=length(x(x(:,2)==1 & x(:,1)>=labels(K)));
TN=length(x(x(:,2)==0 & x(:,1)>=labels(K)));
end
a(K,:)=[TP/(TP+FN) TN/(TN+FP)]; %Sensitivity and Specificity
end
if hbar<ubar
xroc=flipud([1; 1-a(:,2); 0]); yroc=flipud([1; a(:,1); 0]); %ROC points
labels=flipud(labels);
else
xroc=[0; 1-a(:,2); 1]; yroc=[0; a(:,1); 1]; %ROC points
end
Area=trapz(xroc,yroc); %estimate the area under the curve
%standard error of area
Area2=Area^2; Q1=Area/(2-Area); Q2=2*Area2/(1+Area);
V=(Area*(1-Area)+(lu-1)*(Q1-Area2)+(lh-1)*(Q2-Area2))/(lu*lh);
Serror=realsqrt(V);
if verbose
%confidence interval
cv=realsqrt(2)*erfcinv(alpha);
ci=Area+[-1 1].*(cv*Serror);
if ci(2)>1
ci(2)=1;
end
%z-test
SAUC=(Area-0.5)/Serror; %standardized area
p=1-0.5*erfc(-SAUC/realsqrt(2)); %p-value
%Performance of the classifier
if Area==1
str='Perfect test';
elseif Area>=0.90 && Area<1
str='Excellent test';
elseif Area>=0.80 && Area<0.90
str='Good test';
elseif Area>=0.70 && Area<0.80
str='Fair test';
elseif Area>=0.60 && Area<0.70
str='Poor test';
elseif Area>=0.50 && Area<0.60
str='Fail test';
else
str='Failed test - less than chance';
end
%display results
disp('ROC CURVE DATA')
disp(tr)
fprintf('Cut-off point\t\tSensivity\tSpecificity\n')
table=[labels'; yroc(2:end-1)'; 1-xroc(2:end-1)';]';
fprintf('%0.4f\t\t%0.4f\t\t%0.4f\n',table')
disp(tr)
disp(' ')
disp('ROC CURVE ANALYSIS')
disp(' ')
disp(tr)
str2=['AUC\t\t\tS.E.\t\t\t\t' num2str((1-alpha)*100) '%% C.I.\t\t\tComment\n'];
fprintf(str2)
disp(tr)
fprintf('%0.5f\t\t\t%0.5f\t\t\t%0.5f\t\t%0.5f\t\t\t%s\n',Area,Serror,ci,str)
disp(tr)
fprintf('Standardized AUC\t\t1-tail p-value\n')
fprintf('%0.4f\t\t\t\t%0.6f',SAUC,p)
if p<=alpha
fprintf('\t\tThe area is statistically greater than 0.5\n')
else
fprintf('\t\tThe area is not statistically greater than 0.5\n')
end
disp(' ')
%display graph
subplot(1,2,1)
HR1=plot(xroc,yroc,'r.-');
hold on
HRC1=plot([0 1],[0 1],'k');
plot([0 1],[1 0],'g')
hold off
xlabel('False positive rate (1-Specificity)')
ylabel('True positive rate (Sensitivity)')
title('ROC curve')
axis square
subplot(1,2,2)
HR2=plot(1-xroc,yroc,'r.-');
hold on
plot([0 1],[0 1],'g')
HRC2=plot([0 1],[1 0],'k');
hold off
xlabel('True negative rate (Specificity)')
ylabel('True positive rate (Sensitivity)')
title('Mirrored ROC curve')
axis square
%if partest.m was downloaded
if p<=alpha
%the best cut-off point is the closest point to (0,1)
d=realsqrt(xroc.^2+(1-yroc).^2); %apply the Pitagora's theorem
[Y,J]=min(d); %find the least distance
co=labels(J); %Set the cut-off point
subplot(1,2,1)
hold on
HCO1=plot(xroc(J),yroc(J),'bo');
hold off
legend([HR1,HRC1,HCO1],'ROC curve','Random classifier','Cut-off point','Location','NorthOutside')
subplot(1,2,2)
hold on
HCO2=plot(1-xroc(J),yroc(J),'bo');
hold off
legend([HR2,HRC2,HCO2],'ROC curve','Random classifier','Cut-off point','Location','NorthOutside')
disp(' ')
fprintf('Cut-off point for best Sensitivity and Specificity (blu circle in plot)= %0.4f\n',co)
disp('In the ROC plot, the cut-off point is the closest to [0,1] point or, if you want, the closest to the green line')
disp('Press a key to continue'); pause
%table at cut-off point
if hbar<ubar
TP=length(x(x(:,2)==1 & x(:,1)>co));
FP=length(x(x(:,2)==0 & x(:,1)>co));
FN=length(x(x(:,2)==1 & x(:,1)<=co));
TN=length(x(x(:,2)==0 & x(:,1)<=co));
else
TP=length(x(x(:,2)==1 & x(:,1)<co));
FP=length(x(x(:,2)==0 & x(:,1)<co));
FN=length(x(x(:,2)==1 & x(:,1)>=co));
TN=length(x(x(:,2)==0 & x(:,1)>=co));
end
cotable=[TP FP; FN TN];
disp('Table at cut-off point')
disp(cotable)
disp(' ')
try
partest(cotable)
catch ME
disp(ME)
disp('If you want to calculate the test performance at cutoff point please download partest.m from Fex')
disp('http://www.mathworks.com/matlabcentral/fileexchange/12705')
end
end
end
if nargout
ROCdata.AUC=Area;
ROCdata.SE=Serror;
ROCdata.xr=xroc;
ROCdata.yr=yroc;
end