% =========================================================================
% KSVD - Toolbox
% =========================================================================
The K-SVD is a new algorithm for training dictionaries for linear
representation of signals. Given a set of signals, the K-SVD tries to
extract the best dictionary that can sparsely represent those signals.
Thorough discussion concerning the K-SVD algorithm can be found in:
"The K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for
Sparse Representation", written by M. Aharon, M. Elad, and A.M. Bruckstein,
and appeared in the IEEE Trans. On Signal Processing, Vol. 54, no. 11,
pp. 4311-4322, November 2006.
In this toolbox you can find the following files:
================================================
1. KSVD - the main file in this toolbox that implements the KSVD algorithm. Input and output parameters are described inside.
2. KSVD_NN - a variation of the KSVD algorithm for non-negative matrix factorization (non-negative dictionary and coefficients).
The following 3 files implements denoising according to 3 different methods described in "Image Denoising Via Sparse and Redundant
representations over Learned Dictionaries", appeared in the IEEE Trans. on Image Processing, Vol. 15, no. 12,
pp. 3736-3745, December 2006.
===================================================================================================================================
3. denoiseImageDCT - denoising of an image using an overcomplete DCT dictionary.
4. denoiseImageGlobal - denoising of an image using a global trained dictionary. The global dictionary is stored in
the file 'globalTrainedDictionary.mat', which must exist in the directory. Alternatively, this function can be
used for denoising of images using some other dictionary, for example, a dictionary that was trained by the
K-SVD algorithm, executed by the user.
5. denoiseImageKSVD - denoising of an image using a dictionary trained on noisy patches of the image.
The following 3 files are demo files that can be executed without any parameters,
================================================================================
6. demo1 - run file that executes synthetic test to validate the K-SVD algorithm (the same synthetic test that was presented in the paper).
7. demo2 - run file that executes denoising by 3 different methods, all described in "Image Denoising Via Sparse and Redundant
representations over Learned Dictionaries", appeared in the IEEE Trans. on Image Processing, Vol. 15, no. 12,
pp. 3736-3745, December 2006.
8. demo3 - run file that executes synthetic test to validate the non-negative variation of the KSVD algorithm (the same test is presented
in "K-SVD and its non-negative variant for dictionary design", written by M. Aharon, M. Elad, and A.M. Bruckstein
and appeared in the Proceedings of the SPIE conference wavelets, Vol. 5914, July 2005.
The rest of the files assist the above files:
============================================
9. gererateSyntheticDictionaryAndData - Generates a random dictionary according to the parameters, and then generates signals as
sparse combinations of the atoms of this dictionary. Finally, it adds while Gaussian noise with a given s.d.
10. displayDictionaryElementsAsImage - displays the atoms of a dictionary as blocks for presentation purposes (see for example,
figure 5 in the paper "The K-SVD: An Algorithm for Designing of Overcomplete Dictionaries for Sparse Representation".
11. my_im2col - similar to the function 'im2col', only allow defining the sliding distance between the blocks.
The following 3 files implements the OMP (orthogonal matching pursuit) algorithm and the non-negative basis pursuit algorithm.
This algorithm is used by the above KSVD and NN-KSVD functions.
However, different sparse coding functions (or, implementations) may also be used by changing the relevant call in the KSVD file.
====================================================================================================================================
12. OMP - OMP algorithm. Finds a representation with fixed number of coefficients for each signal.
13. OMPerr - OMP algorithm. Finds a representation to the signals, allowing a (given) maximal representation error for each.
14. NN_BP - non-negative variation of the basis pursuit. finds a non-negative sparse representatation with a fixed number of coefficients for each signal.
For comments or questions please turn to Michal aharon ([email protected]) or Michael Elad ([email protected]).
没有合适的资源?快使用搜索试试~ 我知道了~
KSVD_Matlab_ToolBox.zip_KSVD_NEW svd_The Given

共23个文件
m:15个
png:5个
asv:1个

1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉
0 下载量 160 浏览量
2022-09-23
12:14:35
上传
评论
收藏 5.97MB ZIP 举报
温馨提示
The K-SVD is a new algorithm for training dictionaries for linear representation of signals. Given a set of signals, the K-SVD tries to extract the best dictionary that can sparsely represent those signals.
资源推荐
资源详情
资源评论































收起资源包目录

























共 23 条
- 1
资源评论


Kinonoyomeo
- 粉丝: 108
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 如何有效利用AI+数智应用扩大技术转移服务范围,提升机构竞争力?.docx
- 如何在经济下行环境下利用AI+数智应用提高技术转移机构的市场营收?.docx
- 什么是技术转移机构在AI+时代的核心转型策略?如何高效应对市场挑战?.docx
- 市场竞争加剧,技术转移机构如何利用AI+数智应用提升品牌价值并拓展客户?.docx
- 为什么技术转移机构需要借助AI+数智应用构建产品体系?.docx
- 中小技术转移机构如何在资源有限的前提下,通过AI+数智应用低成本打造高端服务能力?.docx
- python入门教程学习.md
- AI+数智应用技术浪潮下,科技服务机构如何借助AI+数智应用工具提升服务价值?.docx
- AI+数智应用工具如何解决科技服务产品同质化问题,提升差异化竞争力?.docx
- AI+数智应用工具如何帮助科技服务机构拓展业务,实现客户增长?.docx
- AI+数智应用技术如何助力科技服务机构优化服务流程和提升效率?.docx
- AI+数智应用如何推动技术转移服务质量和效率提升?.docx
- AI+数智应用转型如何帮助科技服务机构拓展业务增长点?.docx
- AI+数智应用自动化工具如何帮助科技服务机构在竞争中突出重围?.docx
- 观点作者:科易网AI+技术转移研究院.docx
- 技术经纪人如何通过AI+数智应用快速掌握工具,提升专业服务能力?.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
