function allmode=eemd(Y,Nstd,NE)
% This is an EMD/EEMD program
%
% 输入:
% Y,Inputted data:1-d data only
% Nstd,附加噪声的标准差与Y的标准差之比:Nstd = (0.1 ~ 0.4)*std(Y).
% NE,EEMD中添加噪声的总体次数:NE = 10-50.
%
% 输出:
% N*(m+1)的矩阵,其中N是输入数据Y的长度,m=fix(log2(N))-1.
% 输出的矩阵中,第一列为原始输入数据,第2,3,...,m列是从高频到低频的IMF分量,m+1列是残余分量。
%
% 注意:
% 当Nstd设置为0,NE设置为1时,该EEMD程序就退化为EMD程序。
% 此代码限制筛选数=10,停止标准不能更改。
%
% References:
% Wu, Z., and N. E Huang (2008),
% Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method.
% Advances in Adaptive Data Analysis. Vol.1, No.1. 1-41.
%
% code writer: Zhaohua Wu.
% footnote:S.C.Su 2009/03/04
%
% 这段代码中有三个循环耦合在一起。
% 1.读取数据,找出标准差,用标准差对所有数据进行分离
% 2.将TNM评估为IMF总数--eq1.
% TNM2=TNM+2,original data and residual included in TNM2
% assign 0 to TNM2 matrix
% 3.Do EEMD NE times-----------loop EEMD start
% 4.添加噪声
% 5.筛选前给出初始值
% 6.开始寻找IMF------IMF loop start
% 7.筛选10次以获得IMF------sift loop start and end
% 8.10次筛后 --we got IMF
% 9.从数据中减去IMF,让残差通过循环找到下一个IMF
% 6.在拥有了所有的imf之后-------------IMF loop end
% 9.经TNM-IMFs处理后,残差呈总体趋势
% 3.总结NE分解结果--------loop EEMD end
% 10.Devide EEMD summation by NE,std be multiply back to data
%% Association: no
% this function ususally used for doing 1-D EEMD with fixed
% stoppage criteria independently.
%
% Concerned function: extrema.m
% above mentioned m file must be put together
%function allmode=eemd(Y,Nstd,NE)
%part1.read data, find out standard deviation ,devide all data by std
xsize=length(Y);
dd=1:1:xsize;
Ystd=std(Y);
Y=Y/Ystd;
%part2.evaluate TNM as total IMF number,ssign 0 to N*TNM2 matrix
TNM=fix(log2(xsize))-5; % TNM=m
TNM2=TNM+2;
for kk=1:1:TNM2
for ii=1:1:xsize
allmode(ii,kk)=0.0;
end
end
%part3 Do EEMD -----EEMD loop start
for iii=1:1:NE %EEMD loop NE times EMD sum together
%part4 --Add noise to original data,we have X1
for i=1:xsize
temp=randn(1,1)*Nstd; % add a random noise to Y
X1(i)=Y(i)+temp;
end
%part4 --assign original data in the first column
for jj=1:1:xsize
mode(jj,1) = Y(jj); % assign Y to column 1of mode
end
%part5--give initial 0to xorigin and xend
xorigin = X1; %
xend = xorigin; %
%part6--start to find an IMF-----IMF loop start
nmode = 1;
while nmode <= TNM
xstart = xend; %last loop value assign to new iteration loop
%xstart -loop start data
iter = 1; %loop index initial value
%part7--sift 10 times to get IMF---sift loop start
while iter<=10
[spmax, spmin, flag]=extrema(xstart); %call function extrema
%the usage of spline ,please see part11.
upper= spline(spmax(:,1),spmax(:,2),dd); %upper spline bound of this sift
lower= spline(spmin(:,1),spmin(:,2),dd); %lower spline bound of this sift
mean_ul = (upper + lower)/2; %spline mean of upper and lower
xstart = xstart - mean_ul; %extract spline mean from Xstart
iter = iter +1;
end
%part8--subtract IMF from data ,then let the residual xend to start to find next IMF
xend = xend - xstart;
nmode=nmode+1;
%part9--after sift 10 times,that xstart is this time IMF
for jj=1:1:xsize
mode(jj,nmode) = xstart(jj);
end
end
%part10--after gotten all(TNM) IMFs ,the residual xend is over all trend
% put them in the last column
for jj=1:1:xsize
mode(jj,nmode+1)=xend(jj);
end
%after part 10 ,original + TNM IMFs+overall trend ---those are all in mode
allmode=allmode+mode;
end %part3 Do EEMD -----EEMD loop end
%part11--devide EEMD summation by NE,std be multiply back to data
allmode=allmode/NE;
allmode=allmode*Ystd;

Radar_LFM
- 粉丝: 1w+
最新资源
- python 练习题,python题目
- 【嵌入式系统】基于STM32单片机的按键控制LED闪烁程序:初学者快速上手指南
- 首个实现全参数训练的知识产权大模型 -MoZi(墨子)
- ADO.NET专业项目实战指南
- 一项基于大模型的App隐私开关探测技术
- 支持多情感男女声,实时离线文本合成 TTS,可单模变声、调速率音量及自定义语音模型
- 首个全参数训练的知识产权大模型 MoZi (墨子)
- 基于 Next.js 的大模型小说创作工具 AI-Novel
- mmexport1755910142185.mp4
- 基于 Next.js 的大模型小说创作工具 AI-Novel
- 【移动应用开发】多框架教程汇总:智慧林业IoT、Rhodes、Kivy、Android、Ionic4开发资源与入门指导
- 冰心3.9多开(推荐).apk
- 唯雨超自然-1.6.apk
- 大数据信息的处理模式与模型构建
- 基于 TinyVue 的前后端分离后台管理系统,支持在线配置菜单、路由、国际化及页签模式、多级菜单,模板丰富、构建工具多样,功能强大且开箱即用!
- CST联合Matlab仿真程序
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



评论2