#include "fhog.h"
#ifndef max
#define max(a,b) (((a) > (b)) ? (a) : (b))
#endif
#ifndef min
#define min(a,b) (((a) < (b)) ? (a) : (b))
#endif
/*
// Getting feature map for the selected subimage
//
// API
// int getFeatureMaps(const IplImage * image, const int k, featureMap **map);
// INPUT
// image - selected subimage
// k - size of cells
// OUTPUT
// map - feature map
// RESULT
// Error status
*/
int getFeatureMaps(const IplImage* image, const int k, CvLSVMFeatureMapCaskade **map)
{
int sizeX, sizeY;
int p, px, stringSize;
int height, width, numChannels;
int i, j, kk, c, ii, jj, d;
float * datadx, *datady;
int ch;
float magnitude, x, y, tx, ty;
IplImage * dx, *dy;
int *nearest;
float *w, a_x, b_x;
// 横向和纵向的3长度{-1,0,1}矩阵
float kernel[3] = { -1.f, 0.f, 1.f };
CvMat kernel_dx = cvMat(1, 3, CV_32F, kernel); // 1*3的矩阵
CvMat kernel_dy = cvMat(3, 1, CV_32F, kernel); // 3*1的矩阵
float arg_vector;
float * r;
int * alfa;
float boundary_x[NUM_SECTOR + 1]; // boundary_x[10]
float boundary_y[NUM_SECTOR + 1];
float max, dotProd;
int maxi;
height = image->height;
width = image->width;
numChannels = image->nChannels;
// 采样图像大小的Ipl图像
dx = cvCreateImage(cvSize(image->width, image->height),
IPL_DEPTH_32F, 3);
dy = cvCreateImage(cvSize(image->width, image->height),
IPL_DEPTH_32F, 3);
// 向下取整的(边界大小/4),k = cell_size
sizeX = width / k;
sizeY = height / k;
px = 3 * NUM_SECTOR; // px=3*9=27
p = px;
stringSize = sizeX * p; // stringSize = 27*sizeX
allocFeatureMapObject(map, sizeX, sizeY, p);
/* image:输入图像.
dx:输出图像.
kernel_dx:卷积核, 单通道浮点矩阵. 如果想要应用不同的核于不同的通道,先用 cvSplit 函数分解图像到单个色彩通道上,然后单独处理。
cvPoint(-1, 0):核的锚点表示一个被滤波的点在核内的位置。 锚点应该处于核内部。缺省值 (-1,-1) 表示锚点在核中心。
函数 cvFilter2D 对图像进行线性滤波,支持 In-place 操作。当核运算部分超出输入图像时,函数从最近邻的图像内部象素差值得到边界外面的象素值。*/
cvFilter2D(image, dx, &kernel_dx, cvPoint(-1, 0)); /* 起点在(x-1,y),按x方向滤波*/
cvFilter2D(image, dy, &kernel_dy, cvPoint(0, -1)); /* 起点在(x,y-1),按y方向滤波*/
/* 初始化cos和sin函数*/
for (i = 0; i <= NUM_SECTOR; i++)
{
arg_vector = ((float)i) * ((float)(PI) / (float)(NUM_SECTOR));
boundary_x[i] = cosf(arg_vector);
boundary_y[i] = sinf(arg_vector);
}/*for(i = 0; i <= NUM_SECTOR; i++) */
r = (float *)malloc(sizeof(float) * (width * height));
alfa = (int *)malloc(sizeof(int) * (width * height * 2));
for (j = 1; j < height - 1; j++)
{
/* 每一行起点*/
datadx = (float*)(dx->imageData + dx->widthStep * j);
datady = (float*)(dy->imageData + dy->widthStep * j);
/*遍历该行每一个元素*/
for (i = 1; i < width - 1; i++)
{
/*第一颜色通道*/
c = 0;
x = (datadx[i * numChannels + c]);
y = (datady[i * numChannels + c]);
r[j * width + i] = sqrtf(x * x + y * y);
/*使用向量大小最大的通道替代储存值*/
for (ch = 1; ch < numChannels; ch++)
{
tx = (datadx[i * numChannels + ch]);
ty = (datady[i * numChannels + ch]);
magnitude = sqrtf(tx * tx + ty * ty);
if (magnitude > r[j * width + i])
{
r[j * width + i] = magnitude;
c = ch;
x = tx;
y = ty;
}
}/*for(ch = 1; ch < numChannels; ch++)*/
/* 使用sqrt(cos*x*cos*x+sin*y*sin*y)最大的替换掉*/
max = boundary_x[0] * x + boundary_y[0] * y; // max = 1*x+0*y;
maxi = 0;
for (kk = 0; kk < NUM_SECTOR; kk++)
{
dotProd = boundary_x[kk] * x + boundary_y[kk] * y;
if (dotProd > max)
{
max = dotProd;
maxi = kk;
}
else
{
if (-dotProd > max)
{
max = -dotProd;
maxi = kk + NUM_SECTOR;
}
}
}
alfa[j * width * 2 + i * 2] = maxi % NUM_SECTOR;
alfa[j * width * 2 + i * 2 + 1] = maxi;
}/*for(i = 0; i < width; i++)*/
}/*for(j = 0; j < height; j++)*/
nearest = (int *)malloc(sizeof(int) * k);
w = (float*)malloc(sizeof(float) * (k * 2));
for (i = 0; i < k / 2; i++)
{
nearest[i] = -1;
}/*for(i = 0; i < k / 2; i++)*/
for (i = k / 2; i < k; i++)
{
nearest[i] = 1;
}/*for(i = k / 2; i < k; i++)*/
for (j = 0; j < k / 2; j++)
{
b_x = k / 2 + j + 0.5f;
a_x = k / 2 - j - 0.5f;
w[j * 2] = 1.0f / a_x * ((a_x * b_x) / (a_x + b_x));
w[j * 2 + 1] = 1.0f / b_x * ((a_x * b_x) / (a_x + b_x));
}/*for(j = 0; j < k / 2; j++)*/
for (j = k / 2; j < k; j++)
{
a_x = j - k / 2 + 0.5f;
b_x = -j + k / 2 - 0.5f + k;
w[j * 2] = 1.0f / a_x * ((a_x * b_x) / (a_x + b_x));
w[j * 2 + 1] = 1.0f / b_x * ((a_x * b_x) / (a_x + b_x));
}/*for(j = k / 2; j < k; j++)*/
/*计算梯度*/
for (i = 0; i < sizeY; i++)
{
for (j = 0; j < sizeX; j++)
{
for (ii = 0; ii < k; ii++)
{
for (jj = 0; jj < k; jj++)
{
if ((i * k + ii > 0) &&
(i * k + ii < height - 1) &&
(j * k + jj > 0) &&
(j * k + jj < width - 1))
{
d = (k * i + ii) * width + (j * k + jj);
(*map)->map[i * stringSize + j * (*map)->numFeatures + alfa[d * 2]] +=
r[d] * w[ii * 2] * w[jj * 2];
(*map)->map[i * stringSize + j * (*map)->numFeatures + alfa[d * 2 + 1] + NUM_SECTOR] +=
r[d] * w[ii * 2] * w[jj * 2];
if ((i + nearest[ii] >= 0) &&
(i + nearest[ii] <= sizeY - 1))
{
(*map)->map[(i + nearest[ii]) * stringSize + j * (*map)->numFeatures + alfa[d * 2]] +=
r[d] * w[ii * 2 + 1] * w[jj * 2];
(*map)->map[(i + nearest[ii]) * stringSize + j * (*map)->numFeatures + alfa[d * 2 + 1] + NUM_SECTOR] +=
r[d] * w[ii * 2 + 1] * w[jj * 2];
}
if ((j + nearest[jj] >= 0) &&
(j + nearest[jj] <= sizeX - 1))
{
(*map)->map[i * stringSize + (j + nearest[jj]) * (*map)->numFeatures + alfa[d * 2]] +=
r[d] * w[ii * 2] * w[jj * 2 + 1];
(*map)->map[i * stringSize + (j + nearest[jj]) * (*map)->numFeatures + alfa[d * 2 + 1] + NUM_SECTOR] +=
r[d] * w[ii * 2] * w[jj * 2 + 1];
}
if ((i + nearest[ii] >= 0) &&
(i + nearest[ii] <= sizeY - 1) &&
(j + nearest[jj] >= 0) &&
(j + nearest[jj] <= sizeX - 1))
{
(*map)->map[(i + nearest[ii]) * stringSize + (j + nearest[jj]) * (*map)->numFeatures + alfa[d * 2]] +=
r[d] * w[ii * 2 + 1] * w[jj * 2 + 1];
(*map)->map[(i + nearest[ii]) * stringSize + (j + nearest[jj]) * (*map)->numFeatures + alfa[d * 2 + 1] + NUM_SECTOR] +=
r[d] * w[ii * 2 + 1] * w[jj * 2 + 1];
}
}
}/*for(jj = 0; jj < k; jj++)*/
}/*for(ii = 0; ii < k; ii++)*/
}/*for(j = 1; j < sizeX - 1; j++)*/
}/*for(i = 1; i < sizeY - 1; i++)*/
/* 释放变量*/
cvReleaseImage(&dx);
cvReleaseImage(&dy);
free(w);
free(nearest);
free(r);
free(alfa);
return LATENT_SVM_OK;
}
/*
// Feature map Normalization and Truncation
//
// API
// int normalizeAndTruncate(featureMap *map, const float alfa);
// INPUT
// map - feature map
// alfa - truncation threshold
// OUTPUT
// map - truncated and normalized feature map
// RESULT
// Error status
*/
//
int normalizeAndTruncate(CvLSVMFeatureMapCaskade *map, const float alfa)
{
int i, j, ii;
int sizeX, sizeY, p, pos, pp, xp, pos1, pos2;
float * partOfNorm; // norm of C(i, j)
float * newData;
float valOfNorm;
sizeX = map->sizeX;
sizeY = map->sizeY;
partOfNorm = (float *)malloc(sizeof(float) * (sizeX * sizeY));
p = NUM_SECTOR;
xp = NUM_SECTOR * 3;
pp = NUM_SECTOR * 12;
for (i = 0; i < sizeX * sizeY; i++)
{
valOfNorm = 0.0f;
pos = i * map->numFeatures;
for (j = 0; j < p; j++)
{
valOfNorm += map->map[po
- 1
- 2
前往页