# YoloVx(yolov5/yolov4/yolov3/yolo_tiny)
## Tensorflow
1. Install NVIDIA driver
2. Install CUDA10.1 and cudnn7.5
3. Install Anaconda3, download [website](https://repo.anaconda.com/archive/Anaconda3-2020.07-Linux-x86_64.sh)
4. Install tensorflow, such as "sudo pip install tensorflow>=1.15 or tensorflow > 2.0" etc.
## Introduction
A tensorflow implementation of YOLOv5 inspired by [https://github.com/ultralytics/yolov5](https://github.com/ultralytics/yolov5).
A tensorflow implementation of YOLOv4 inspired by [https://github.com/AlexeyAB/darknet](https://github.com/AlexeyAB/darknet).
Frame code from [https://github.com/YunYang1994/tensorflow-yolov3](https://github.com/YunYang1994/tensorflow-yolov3).
Backbone: Darknet53; CSPDarknet53[[1]](https://arxiv.org/pdf/1911.11929.pdf), Mish[[2]](https://arxiv.org/abs/1908.08681); MobileNetV2; MobileNetV3(large and small)
Neck: SPP[[3]](https://arxiv.org/abs/1406.4729), PAN[[4]](https://arxiv.org/abs/1803.01534);
Head: YOLOv5/YOLOv4(Mish), YOLOv3(Leaky_ReLU)[[10]](https://arxiv.org/abs/1804.02767);
Loss: DIOU CIOU[[5]](https://arxiv.org/pdf/1911.08287v1.pdf), Focal_Loss[[6]](https://arxiv.org/abs/1708.02002); Other: Label_Smoothing[[7]](https://arxiv.org/pdf/1906.02629.pdf);
## Environment
Python 3.6.8
Tensorflow 1.13.1 or Tensorflow 2.0 up
## Quick Start
1. Download YOLOv5 weights from [yolov5.weights](https://drive.google.com/open?id=1Drs_Aiu7xx6S-ix95f9kNsA6ueKRpN2J).
2. Download YOLOv4 weights from [yolov4.weights](https://drive.google.com/open?id=1cewMfusmPjYWbrnuJRuKhPMwRe_b9PaT).
2. Convert the Darknet YOLOv4 model to a tf model.
3. Train Yolov5/Yolov4/Yolov3/Yolo_tiny.
3. Run Yolov5/Yolov4/Yolov3/Yolo_tiny detection.
### Convert weights
Running from_darknet_weights_to_ckpt.py will get tf yolov4 weight file yolov4_coco.ckpt.
```
python scripts/from_darknet_weights_to_ckpt.py
```
Running ckpt2pb.py will get tf yolov4 weight file yolov4.pb.
```
python scripts/ckpt2pb.py
```
Or running from_darknet_weights_to_pb.py directly.
```
python scripts/from_darknet_weights_to_pb.py
```
### Train
In core/config.py add your own path.
usage: python train.py gpu_id net_type(yolov5/yolov4/yolov3/tiny)
```
python train.py 0 yolov5
```
### Usage
Inference
```
python test.py
```
```
python demo.py
```
## Reference
[[1] Cross Stage Partial Network (CSPNet)](https://arxiv.org/pdf/1911.11929.pdf)
[[2] A Self Regularized Non-Monotonic Neural Activation Function](https://arxiv.org/abs/1908.08681)
[[3] Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition](https://arxiv.org/abs/1406.4729)
[[4] Path Aggregation Network for Instance Segmentation](https://arxiv.org/abs/1803.01534)
[[5] Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression](https://arxiv.org/pdf/1911.08287v1.pdf)
[[6] Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002)
[[7] When Does Label Smoothing Help?](https://arxiv.org/pdf/1906.02629.pdf)
[[8] Convolutional Block Attention Module](https://arxiv.org/abs/1807.06521)
[[9] YOLOv4: Optimal Speed and Accuracy of Object Detection](https://arxiv.org/abs/2004.10934)
[[10] YOLOv3: An Incremental Improvement](https://arxiv.org/abs/1804.02767)
[[11] Aggregated Residual Transformations for Deep Neural Networks](https://arxiv.org/abs/1611.05431)
### Acknowledgment
keras_yolov3 [https://github.com/qqwweee/keras-yolo3](https://github.com/qqwweee/keras-yolo3).
keras_yolov4 [https://github.com/Ma-Dan/keras-yolo4](https://github.com/Ma-Dan/keras-yolo4).
没有合适的资源?快使用搜索试试~ 我知道了~
资源推荐
资源详情
资源评论



























收起资源包目录





































































































共 129 条
- 1
- 2
资源评论


xinkai1688
- 粉丝: 416
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 项目管理的约束条件.doc
- 浅谈目标成本管理与控制.doc
- 运用QC方法控制钻孔灌注桩施工质量.ppt
- 别墅工程外装饰计算式.doc
- 3单因素敏感性分析的步骤.doc
- 部品车间副主任岗位职责说明书.doc
- 电缆采购招标文件(示范文本).doc
- 岩棉板外墙保温的施工工艺.doc
- 选修1算法与程序设计《13把解决问题的方法步骤化》公开课教案.docx
- 第8章-园林树木的栽植.ppt
- 医院锅炉设备与安装招标文件.doc
- 电力施工组织设计(001).doc
- 30米后张法箱梁钢绞线张拉计算书(边跨梁).doc
- 安全标志设施设备的管理规定.doc
- [广东]廉租房岩土工程勘察报告.doc
- 6万平米住宅楼消防工程施工方案.doc
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
