26 February 2022 12:56:26 PM
TOMS446_TEST
C version
Test the TOMS446 library.
CHEBY_TEST
CHEBY computes the Chebyshev series for several functions.
Sin(x) Cos(x) Sin(2x) Cos(2x) X^5
0.000000 1.530395 0.000000 0.447782 0.000000
0.880101 0.000000 1.153450 -0.000000 0.625000
0.000000 -0.229807 0.000000 -0.705668 0.000000
-0.039127 0.000000 -0.257886 0.000000 0.312500
-0.000000 0.004953 -0.000000 0.067991 0.000000
0.000500 -0.000000 0.014079 -0.000000 0.062500
0.000000 -0.000042 0.000000 -0.002405 0.000000
-0.000003 -0.000000 -0.000350 -0.000000 0.000000
0.000000 0.000000 0.000000 0.000044 -0.000000
0.000000 0.000000 0.000010 0.000000 -0.000000
DFRNT_TEST
DFRNT computes the Chebyshev series for the derivative
of several functions.
Chebyshev series for d/dx of:
Sin(x) Cos(x) Sin(2x) Cos(2x) X^5
1.5304 -7.40149e-16 0.895653 3.33067e-16 3.75
9.37522e-16 -0.880101 2.22045e-15 -2.3069 1.97373e-16
-0.229807 -9.86865e-16 -1.41125 5.42776e-16 2.5
3.45403e-16 0.0391267 1.43095e-15 0.515775 -2.96059e-16
0.00495347 -1.57898e-15 0.136073 2.09709e-16 0.625
7.40149e-16 -0.000499513 1.62833e-15 -0.0281566 -6.90805e-16
-4.16875e-05 -5.92119e-16 -0.00471963 8.26499e-16 -8.88178e-16
0 3.00673e-06 5.92119e-16 0.000701696 -9.86865e-16
3.77946e-07 4.44089e-16 0.000179449 1.77636e-15 -8.88178e-16
0 0 0 0 0
ECHEB_TEST
ECHEB evaluates a Chebyshev series.
Sin(x)
-1 -0.841471 -0.841471
-0.6 -0.564642 -0.564642
-0.2 -0.198669 -0.198669
0.2 0.198669 0.198669
0.6 0.564642 0.564642
1 0.841471 0.841471
Cos(x)
-1 0.540302 0.540302
-0.6 0.825336 0.825336
-0.2 0.980067 0.980067
0.2 0.980067 0.980067
0.6 0.825336 0.825336
1 0.540302 0.540302
Sin(2x)
-1 -0.909297 -0.909302
-0.6 -0.932039 -0.932037
-0.2 -0.389418 -0.389423
0.2 0.389418 0.389423
0.6 0.932039 0.932037
1 0.909297 0.909302
Cos(2x)
-1 -0.416147 -0.416147
-0.6 0.362358 0.362357
-0.2 0.921061 0.921061
0.2 0.921061 0.921061
0.6 0.362358 0.362357
1 -0.416147 -0.416147
x^5
-1 -1 -1
-0.6 -0.07776 -0.07776
-0.2 -0.00032 -0.00032
0.2 0.00032 0.00032
0.6 0.07776 0.07776
1 1 1
EDCHEB_TEST
EDCHEB evaluates the derivative of a Chebyshev series.
Sin(x)
-1 0.540302 0.540303
-0.6 0.825336 0.825336
-0.2 0.980067 0.980067
0.2 0.980067 0.980067
0.6 0.825336 0.825336
1 0.540302 0.540303
Cos(x)
-1 0.841471 0.841471
-0.6 0.564642 0.564642
-0.2 0.198669 0.198669
0.2 -0.198669 -0.198669
0.6 -0.564642 -0.564642
1 -0.841471 -0.841471
Sin(2x)
-1 -0.832294 -0.831887
-0.6 0.724716 0.724764
-0.2 1.84212 1.84211
0.2 1.84212 1.84211
0.6 0.724716 0.724764
1 -0.832294 -0.831887
Cos(2x)
-1 1.81859 1.81858
-0.6 1.86408 1.86408
-0.2 0.778837 0.778828
0.2 -0.778837 -0.778828
0.6 -1.86408 -1.86408
1 -1.81859 -1.81858
x^5
-1 5 5
-0.6 0.648 0.648
-0.2 0.008 0.008
0.2 0.008 0.008
0.6 0.648 0.648
1 5 5
MLTPLY_TEST
MLTPLY computes the product of two Chebyshev series.
Multiply series for SIN(X) and COS(X)
and compare with series for 1/2*SIN(2X).
Sin(x) Cos(x) 1/2*Sin(2x) RESULT
4.93432e-17 1.5304 4.93432e-17 1.08149e-16
0.880101 1.23358e-16 0.576725 0.576725
1.4803e-16 -0.229807 9.86865e-17 2.11027e-16
-0.0391267 9.86865e-17 -0.128943 -0.128943
-4.93432e-17 0.00495328 -1.23358e-17 -6.2663e-17
0.000499515 -9.86865e-17 0.00703963 0.00703963
6.16791e-17 -4.18767e-05 4.31753e-17 -2.5148e-17
-3.00468e-06 -7.40149e-17 -0.000174967 -0.000174946
0 1.87921e-07 1.85037e-17 -2.69709e-17
2.0997e-08 2.46716e-17 4.98469e-06 2.50038e-06
NTGRT_TEST
NTGRT computes the Chebyshev series for the indefinite
integral of several functions.
Chebyshev series for indefinite integral of:
Sin(x) Cos(x) Sin(2x) Cos(2x) X^5
0 0 0 0 0
-4.93432e-17 0.880101 -4.93432e-17 0.576725 0
0.229807 6.16791e-18 0.352834 -4.00914e-17 0.078125
3.28955e-17 -0.0391267 3.70074e-17 -0.128943 1.23358e-17
-0.00495328 2.46716e-17 -0.0339957 1.46488e-17 0.03125
-1.11022e-17 0.000499515 -1.11022e-17 0.00703963 2.46716e-18
4.18767e-05 -2.05597e-18 0.00120243 5.13992e-19 0.00520833
4.40565e-18 -3.00461e-06 3.52452e-18 -0.000174908 6.16791e-18
-1.89105e-07 -6.16791e-18 -2.2494e-05 -1.04083e-17 3.08395e-18
0 1.044e-08 2.05597e-18 2.43645e-06 -3.42661e-18
TOMS446_TEST
Normal end of execution.
26 February 2022 12:56:26 PM