# Yolov8/v10 Demo for RK3588
The project is a multi-threaded inference demo of Yolov8 running on the RK3588 platform, which has been adapted for reading video files and camera feeds. The demo uses the Yolov8n model for file inference, with a maximum inference frame rate of up to 100 frames per second.
> If you want to test yolov8n with ros2 for yourself kit, click the [link](./yolov8n-ros2.md)
# Model
## Download Model File
you can find the model file in the 'src/yolov8/model', and some large files:
Link: https://pan.baidu.com/s/1zfSVzR1G7mb-EQvs6A6ZYw?pwd=gmcs Password: gmcs
Google Drive: https://drive.google.com/drive/folders/1FYluJpdaL-680pipgIQ1zsqqRvNbruEp?usp=sharing
## Model pt --> onnx
### For Yolov8
go to my blog --> [blog.kaylordut.com](https://blog.kaylordut.com/2024/02/09/rk3588's-yolov8-model-conversion-from-pt-to-rknn/#more)
### For Yolov10
go to my another repository --> [yolov10](https://github.com/kaylorchen/yolov10)
download pt model and export:
```bash
# End-to-End ONNX
yolo export model=yolov10n/s/m/b/l/x.pt format=onnx opset=13 simplify
```
## Model onnx --> rknn
go to my blog --> [blog.kaylordut.com](https://blog.kaylordut.com/2024/02/09/rk3588's-yolov8-model-conversion-from-pt-to-rknn/#more)
> TIPS: (Yolov10)
> - rknn-toolkit2(release:1.6.0) does not support some operators about attention, so it runs attention steps with CPU, leading to increased inference time.
> - rknn-toolkit2(beta:2.0.0b12) has the attention operators for 3588, so I build a docker image, you can pull it from __**kaylor/rknn_onnx2rknn:beta**__
## Inference Time
Please refer to the spreadsheet '[8vs10.xlsx](./8vs10.xlsx)' for details.
|V8l-2.0.0| V8l-1.6.0| V10l-2.0.0| V10l-1.6.0| V8n-2.0.0 |V8n-1.6.0 |V10n-2.0.0| V10n-1.6.0|
|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|:-------:|
|133.07572815534| 133.834951456311| 122.992233009709| 204.471844660194| 17.8990291262136| 18.3300970873786| 21.3009708737864| 49.9883495145631|
# Demo Video and Guideline
https://space.bilibili.com/327258623?spm_id_from=333.999.0.0
QQ group: 957577822
# Prepare
## Build the Cross-Compilation Environment
Set up a cross-compilation environment based on the following [link](https://github.com/kaylorchen/rk3588_dev_rootfs).
## Install Runtime Libraries in Your RK3588 Target Board
```bash
cat << 'EOF' | sudo tee /etc/apt/sources.list.d/kaylordut.list
deb [signed-by=/etc/apt/keyrings/kaylor-keyring.gpg] http://apt.kaylordut.cn/kaylordut/ kaylordut main
EOF
sudo mkdir /etc/apt/keyrings -pv
sudo wget -O /etc/apt/keyrings/kaylor-keyring.gpg http://apt.kaylordut.cn/kaylor-keyring.gpg
sudo apt update
sudo apt install kaylordut-dev libbytetrack
```
> If your OS is not Ubuntu22.04, and find [kaylordut-dev](https://github.com/kaylorchen/kaylordut) and [libbytetrack](https://github.com/kaylorchen/ByteTrack) sources in my github.
## Build the Project for Your RK3588
- Compile
```bash
git clone https://github.com/kaylorchen/rk3588-yolo-demo.git
cd rk3588-yolo-demo/src/yolov8
mkdir build
cd build
cmake -DCMAKE_TOOLCHAIN_FILE=/path/to/toolchain-aarch64.cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON ..
make
```
> /path/to/toolchain-aarch64.cmake is .cmake file absolute path
- Run
``` bash
Usage: ./videofile_demo [--model_path|-m model_path] [--input_filename|-i input_filename] [--threads|-t thread_count] [--framerate|-f framerate] [--label_path|-l label_path]
Usage: ./camera_demo [--model_path|-m model_path] [--camera_index|-i index] [--width|-w width] [--height|-h height][--threads|-t thread_count] [--fps|-f framerate] [--label_path|-l label_path]
Usage: ./imagefile_demo [--model_path|-m model_path] [--input_filename|-i input_filename] [--label_path|-l label_path]
```
> you can run the above command in your rk3588
没有合适的资源?快使用搜索试试~ 我知道了~
该项目是运行在RK3588平台上的Yolo多线程推理demo,已适配读取视频文件和摄像头信号,demo采用Yolov8n模型进行...

共41个文件
h:9个
cpp:9个
rknn:6个

1.该资源内容由用户上传,如若侵权请联系客服进行举报
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
2.虚拟产品一经售出概不退款(资源遇到问题,请及时私信上传者)
版权申诉

温馨提示
该项目是运行在RK3588平台上的Yolo多线程推理demo,已适配读取视频文件和摄像头信号,demo采用Yolov8n模型进行文件推理,最高推理帧率可达100帧/秒。RK3588 的 Yolov8/v10 演示该项目是运行在RK3588平台上的Yolov8多线程推理demo,已适配读取视频文件和摄像头信号,demo采用Yolov8n模型进行文件推理,最高推理帧率可达100帧/秒。如果你想亲自测试 yolov8n 和 ros2 套件,请点击链接模型下载模型文件你可以在'src/yolov8/model'中找到模型文件,以及一些大文件链接https: //pan.baidu.com/s/1zfSVzR1G7mb-EQvs6A6ZYw ?pwd=gmcs 密码gmcsGoogle Drive https: //drive.google.com/drive/folders/1FYluJpdaL-680pipgIQ1zsqqRvNbruEp ?usp=sharing型号 pt --> onnx对于Yolov8转到我的博客 --> blog.kaylordut.c
资源推荐
资源详情
资源评论



格式:zip 资源大小:92.0MB


























收起资源包目录















































共 41 条
- 1
资源评论

- kidsold2025-04-30总算找到了自己想要的资源,对自己的启发很大,感谢分享~
- 梦乐呵2025-05-14果断支持这个资源,资源解决了当前遇到的问题,给了新的灵感,感谢分享~
- gulang_9540572025-08-18资源中能够借鉴的内容很多,值得学习的地方也很多,大家一起进步!
- 诡谲4042025-05-28资源很受用,资源主总结的很全面,内容与描述一致,解决了我当下的问题。
- 普通网友2025-03-08资源内容总结地很全面,值得借鉴,对我来说很有用,解决了我的燃眉之急。

赵闪闪168
- 粉丝: 1746
上传资源 快速赚钱
我的内容管理 展开
我的资源 快来上传第一个资源
我的收益
登录查看自己的收益我的积分 登录查看自己的积分
我的C币 登录后查看C币余额
我的收藏
我的下载
下载帮助


最新资源
- 互联网+和专业实验相结合的教学模式的探究.docx
- 二级建造师——施工管理笔记工程项目管理笔记第章.doc
- 以就业力为导向的网络工程专业人才培养研究.docx
- 浅论退役军人档案信息化建设.docx
- 中小型企业网络构建与整体规划设计方案.doc
- OpenAI 接口接入适配,支持千帆大模型平台、讯飞星火大模型、腾讯混元以及MiniMax、Deep-Seek,等兼容OpenAI接口,仅单可执行文件,配置超级简单,一键部署,开箱即用. Seamle
- java课程设计方案象棋java源码.doc
- 选修三专题一《基因工程的基本操作程序》教案.doc
- 基于数字化校园网中网络安全技术的研究.docx
- 人脸识别技术二次开发附接口函数.doc
- 泡沫玻璃项目管理建议书.doc
- 单片机课设数码管同时循环显示0.doc
- 中国运营商网络流量市场调研报告-行业现状调查与发展战略评估.docx
- 办公软件应用教案(系统应用).docx
- 客户端与服务器端通信.doc
- 基于互联网+概念的地铁施工现场安全管理对策.docx
资源上传下载、课程学习等过程中有任何疑问或建议,欢迎提出宝贵意见哦~我们会及时处理!
点击此处反馈



安全验证
文档复制为VIP权益,开通VIP直接复制
