MySQL 8.0 C API Developer Guide

Abstract
This is the MySQL 8.0 C API Developer Guide. This document accompanies MySQL 8.0 Reference Manual.

The C API provides low-level access to the MySQL client/server protocol and enables C programs to access
database contents. The C API code is distributed with MySQL and implemented in the | i bnysql cl i ent library.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2026-01-22 (revision: 84306)

https://dev.mysql.com/doc/refman/8.0/en/
http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieee ittt e e e e et e e e et e e e eaea s Vi
1 THE MYSQL € AP i ettt et ettt e et e e e e 1
2 MySQL C API IMPIEMENTALIONSueiiitieeeiei ettt ettt e et e e e e et e e e re e eennns 3
3 Writing C API-Based Client APPIICALIONS ...ttt e e e e e eens 5
3.1 Example C API ClIeNt PrOQIaMSccouuuiiiiiiiiiieieii ettt ettt e et e e e et e eeenbe e eeees 5

3.2 Building C AP CHENE PrOGIamSiiii et e e e et e e et e e et e e e e aeneeeens 5

3.3 Building C API Client Programs UsiNg PKG-CONIQccouuuiiiiiiieiiiiiieeeii e 8

3.4 Writing C API Threaded Client Programscc.uuioiiiiiiiiii e 9

3.5 RUNNING C API ClI@NE PrOGIamMSceeviiieiiiiiieeiii ettt e e e e e e eenees 10

3.6 USING C API FEALUIES ... ittt ittt ettt e e ettt e et et a e ettt e et e et e e e enba e eeens 11
3.6.1 Support for ENcrypted CONNECTIONSuuiiiiiieieiii et 11

3.6.2 SSL SESSION REUSEuuiiiiiiiie ettt ettt 12

3.6.3 Multiple Statement EXECUtiON SUPPOITcoovuiiiiiiiieiiii et 13

3.6.4 Prepared Statement Handling of Date and Time Valuesccccoooeiiiiiiniiiiiinneciininnnn, 15

3.6.5 Prepared CALL Statement SUPPOIToiieitieeiiiieeeeei et 16

3.6.6 Prepared Statement ProbIEMScoouiiiiiiiiii e 20

3.6.7 Optional Result Set Metatdatauueiiiiiieiii e 21

3.6.8 Automatic Reconnection CONLIOloiiiiiiiiiiiii e 21

3.6.9 NULL mysql_store_result() Return After mysgl_query() SUCCESScovvevivriiieeiinnnnnn. 23

3.6.10 Results Available from @ QUETYuuiiiiiiie e 23

3.6.11 Obtaining the Unique ID for the Last Inserted ROWcoovviiiiiiiiiiiiiiiiiiiiieeeiiieees 23

3.6.12 Obtaining the Server Version and Client Library Versionc.cc.ccccoiiiiiiiiiinneiinnnnnn. 24

4 C API FUNCHON RETEIENCE ...t ettt et e et e e enaans 25
5 C API BASIC INTEITACEciiiiiieiiei ettt ettt e et e e eaeas 33
5.1 Overview of the C API BasiC INTEITACEiiiiiiiiiiiii e 34

5.2 C API BaSIC Data SIMUCIUIEScceutiiiiiiie ittt et e e e et eeaaa s 36

5.3 C API BasiC FUNCHON REFEIENCEcoouiiiiiii et e 42

5.4 C API Basic FUNCHON DESCIIPLIONSccouuiiiiiiiiieiiiiie ettt et e s 46
5.4.1 mySql_affeCted_TOWS() ..euuueiiiiii et a7

5.4.2 MySOl_AULOCOMIMIL() +oevvuneietineeeeei ettt e e e e e e e e e e s 48

5.4.3 mMySql_bind_Parami()oooeuunieiiii e 48

5.4.4 MYSOI_CRANGE_USEI() +.uueieiiieeiiii ettt ettt e e e e et e 50

5.4.5 mysql_character_Set_NAmME()uoeeuniieiiiei et 51

5.4.6 MYSHI_ClOSE() -.eteeriieieiti ettt ettt 52

5.4.7 MYSOL_COMMIL() ovneetie ettt et e et e e e et e e et e e e e e et e e e e eenaeaeen 52

5.4.8 MYSHOl_CONNECT() etneitnieit ettt e e e e et e e e e et e e et e e ean e e e et e eeanaaeennns 52

5.4.9 mysqgl_create db()coeuniiieiie e 52

5.4.20 MySQl_data_SEEK() . ..u i 53

o A 0V | e (= o 18 o T PP 54

5.4.12 MYSQI_ArOP_aD() «eeeueeeiiiiee it 54

5.4.13 mysqgl_dump_debug_iNfO()coeuruiiiiiieii e 55

o O 7 1) Vo | I T) ISP 55

5.4.15 MYSOI_BITNO() <rtneiiitii ettt ettt ettt 56

5.4.16 MYSOI_EITON() 1errtneiiiii ettt ettt ettt 57

5.4.17 MySQl_eSCaPE_SING() . evrrruneeennneetiii ettt ettt e 58

5.4.18 mMysql_fetCh_field()coourniiii e e 58

5.4.19 mysql_fetch_field_dir€Ct()uuiiiiiiie i e 58

5.4.20 mysql_fetCh_fieldS()cuuuieiiiiiee e 59

5.4.21 mysqgl_fetCh_1eNgthS() ... oo e e 60

5.4.22 MySqI_fEICh_TOW() ...eneeiei e 60

5.4.23 MySQI_fIeld_COUNT() «..nnieiiiie et 62

MySQL 8.0 C API Developer Guide

5.4.24 MySOl_field_SEEK() ..vvvniiii e 63
5.4.25 MySOl_field_teII() ..ovveeee e e 63
5.4.26 MYSAl_frE@ FESUI() oevuuieini it e e e 63
5.4.27 mysql_free_ssl SeSSION_data()ccuveirnieiiiieii e 64
5.4.28 mysql_get_character _Set iNfO()ooeerieiiiiiiii e 64
5.4.29 mysql_get Client iNfO()oeeuiiiii e e 65
5.4.30 mysql_get ClIeNt_ VErSION() «.ueiuueiii e e e e e e e e e e e e e e e 65
5.4.31 mysqgl_get hoSt iNFO() ..uevveiiiiie e 65
2 09\ ViTo | I o = a0 o1 1o 1 PSS N 66
5.4.33 mysqgl_get proto_iNfO() ..oeeeniiiii i 67
5.4.34 mysql_get _Server_iNfO()oouuui i 67
5.4.35 MySQl_get _SEIVEr_VEISION() ..uuueiruieiiiieeiieeie et e e e e e e e e e e e e e e et e e ean e eees 68
5.4.36 MySql_get SSI_CIPNEI() «.vueieeiii e 68
5.4.37 mysql_get _SS|_SeSSION_datal)uoevvnieiiiieiii i 68
5.4.38 mysql_get SS|_SESSION_FEUSEA() ...cvvuiiiieiiie e e e e e 69
5.4.39 MYSAl_NEX_SIING() oivrneiiieii e e 69
5.4.40 MYSOL_INTO() 1orrniiiiieiii e 70
L 5 01V | L1 PP 71
0 b 01T | I T FST=T A T [T 71
Lo o B 401V To | 1 73
5.4.44 mMySql_lIBrary _ €NA() «.ueeue e 74
5.4.45 mMySql_lIBrary INit()ooeenoreie e 74
5.4.46 MYSAL_LIST ADS() ivvniiiiiieii i 75
5.4.47 MySOl_lISt_fIElAS() .vuovvvnieeiie e 76
5.4.48 MYSOI_lISt PrOCESSES() «rvvueetniiiiiieiiee i et e e e et e e e e e e e e e e e e e et e e e 77
5.4.49 MySOl_lISt taDIES() oevuiiiiiiiii e 78
5.4.50 MYSQl_MOIE_TESUIS() «.vvuiierieii e et et e e e e e e e e e e et e e eaaaeees 79
5.4.51 MYSOl NEXE TESUI() . .evveneiiiieii e e e e 79
5.4.52 mysql_nuUM_FIEIAS() ..vuneiiiiei e 81
5.4.53 MYSOL NUM_TOWS() .iiuniiiiiieiitiei e e et e e e e e e e e et e e et e et e e st e e et eeaaeeanaas 82
Y O 401 ViTo | I L[T (N 82
5.4.55 MYSOlL OPtONSA() 1ovvuniiii ittt e e e e e e a e 91
TG 40V To | I o1 LT 1 I P 92
S A 401V To | e 18 1= Y/ P 93
5.4.58 MySql_real _CONNECL() ...ivvniii i e e e e e e e e 93
5.4.59 mysql_real_connect dNS_SIV() ...ccuuiiiiiiiiiie e e 98
5.4.60 mysql_real _eSCape _StNG() «.ueerueiiiieiiii et 99
5.4.61 mysqgl_real_escape_String_qUOLE()uveiunieiinieiie e e 100
5.4.62 MYSAl_r€aAl_QUETY() ovvuneeii ettt 102
5.4.63 MYSAl_reffE@SN() ..ovveiiiiii e 103
7)V | I =1 (o = o [104
5.4.65 mMysql_reset_CONNECHON() ...ovuuiiiieii e e e e e e e e e e e ean e ees 105
5.4.66 mysqgl_reset_server_public_KeY()couiiiiiiiiiii 105
5.4.67 mysql_result._metadatal)oeeiriiiiiiie 106
5.4.68 MYSAl_TOHDACK() ..vuieeieiieci e 106
5.4.69 MYSOl TOW_SEEK() +rvuueiineiitieiii e ee e ettt e e e e e e e e e e e et e e e e e e 107
5.4.70 MYSOlL_TOW_TEII() wvvneieieeii e 107
5.4.71 mMySql_SElECt dD() «.vuieeniiii i 107
5.4.72 MYSOl_SEIVEI_ENA() .ievuiiiiiii ettt e e 108
T 01V To [T Y= G 1L T 108
5.4.74 mysqgl_session_track get firSt()cooeiuiiiiiiiii 109
5.4.75 mysql_session_track get NEXL()ccuuiiiiieiiiieii e 115
5.4.76 mysql_set _Character _SEI()ccuiiiiiuieiiii e e 116
5.4.77 mysqgl_set_local_infile_default()ccoeeeiiiiiiii 116

MySQL 8.0 C API Developer Guide

5.4.78 mysqgl_set_local_infile_handler()coooeiiiii i 117
5.4.79 mysql_Set _SErver_OPLiON()eeeuuieeiieeii et e e 118
5.4.80 MySOl_SHULAOWN() 1.vniiieiiiii e e e e e e e e 119
S 01 VA To | ST |53 = L (= 119
5.4.82 MYSOL_SSI SEI() ovvuniiiiieii et 120
SR T 401V To | =) - L 121
5.4.84 MySQl_SIOre@ FESUIL() ..vuveeneiiieii e e e e e e e e e e e aaas 122
5.4.85 MySOl_thread Qd()uoeernieiiiee e 123
5.4.86 MYSOl_USE_TESUI() evvuiiinieiiii e ee et e e e e e e e e e et e e et eeanaeeees 124
5.4.87 mMySql_Warning_COUNT()uiiiuueieieeiiie e e e e e e e e e e e e e e e e et e e e e e e eaneees 125

6 C API Prepared Statement INtEIFACEiiiiiii e 127
6.1 Overview of the C API Prepared Statement Interfaceccoovvviiiiiiiiiii i 128
6.2 C API Prepared Statement Data StrUCIUIESccvvuiiiiiiiiie e e e 129
6.2.1 C API Prepared Statement TypPe COOESvvivniiiiieiiii e e e e 133
6.2.2 C API Prepared Statement TYpe CONVEISIONSevvvnieiiiieeiiieeiiieeeieeeineeaineeaaeeeens 135

6.3 C API Prepared Statement FUNCLION REEIENCEccvviiiiiiiii e 136
6.4 C API Prepared Statement FUNCtioN DESCIPONSc.uuiviiiieiiieiiii e e e 137
6.4.1 mysql_stmt_affected_rOWS()ueiie i 138
6.4.2 MySql_SIME_Attr GEL() oovvniiii e 138
6.4.3 MYSOl_SIME_Ar SET() vovuiieniiiii e e 138
6.4.4 mysqgl_stmMt_biNd_Parami()coeuniiiiiii e 140
6.4.5 mysqgl_StMt_BINA _reSUI() ..covvniiii i 140
6.4.6 MYSHl_SIME_CIOSE() . .vvviieiiie it e e e e e e e e e e e aanas 141
6.4.7 mysql_StMt_data SEEK()uiiireiiie e 142
6.4.8 MYSOl SIME_EITNO() « . eiitiieii et e e e e e e e et e et e et e e e e eaanas 142
Lo e I 401 VETo | IS (0L A=Y (PN 143
6.4.10 MySQOl_SIME EXECULE() .ivvnieiiieii e e e e e e e e e e aans 143
6.4.11 Mysql_SIME FEICN() oevniii i e 147
6.4.12 mysql_stmt_fetch_COIUMN()iii e 152
6.4.13 mysql_stmt_field _COUNL()uireneei e 153
6.4.14 mysql_StMt_fre€ reSUIL()uveereiei e 153
6.4.15 MySOl_ SIME_INIT() oounirriiei e 153
6.4.16 Mysqgl_StME INSEIt_IA() «.oevnirii i 154
6.4.17 mysqgl_StMt_NEXE FESUI() ..ovvreiii e 154
6.4.18 MySl_SIME NUM_TOWS() +.evvneiiiieiiie e e e e e e e e e e e e e e e e e eaens 155
6.4.19 mysql_Stmt_param_COUNL() ...ceuueiinieii e e e e e e e 156
6.4.20 mysqgl_stmt_param_metadatal)cooeeuieiiiiiiiii e 156
6.4.21 MYSQl_SIME PrEPArE() «vvneveeeeei e et e e e e e e e e e e e e e 156
6.4.22 MYSOl_SIME FESEL() 1vvniieriiii et e e e 157
6.4.23 mysql_stmt_result._ metadatal)cooevuieiiiiii 158
6.4.24 MySQl_SIME TOW_SEEK() +evnniiinieiiiieee et e e e e e e e e e e e e eaas 159
6.4.25 MySgl_SIME TOW_tEII() ..unereeieii e 160
6.4.26 mysql_stmt_send_1ong_data()ooeveriiiiiiii 160
6.4.27 MySgl_SIME SOISTAE() +.vuevveieiiiee e 162
6.4.28 MysSql_StMt_StOre _reSUIL()uevveneieiee e e e e e e e 162

7 C API ASYNChIONOUS INTEITACEvuiiiiiieii e e e e e e e et e et e e aa e eaas 165
7.1 Overview of the C APl Asynchronous INtErfaceoovvvuiiiiiiiiii e 165
7.2 C API Asynchronous Interface Data StrUCIUIESccuuiiiiniiiiiiiiii e e e 170
7.3 C API Asynchronous FUNCtion REEIENCEu.iiiiiiiii i 170
7.4 C API Asynchronous FUunction DeSCHPLIONSccuuiiiiiiiiii e e e 171
7.4.1 mysqgl_fetch_row_nonblocking() «...couveeiiiiiee e 171
7.4.2 mysql_free_result_nonblocking()c.vuviieiii i 172
7.4.3 mysqgl_next_result_nonbloCKiNg() . ..ccvveiiiie e 172
7.4.4 mysqgl_real_connect_NonblOCKING()uevvnieiiiieiii e 173

MySQL 8.0 C API Developer Guide

7.4.5 mysqgl_real_query_nonblockiNg()ccvueeeieii e 173

7.4.6 mysql_store_result_NonbIOCKING()covvniiiiiiei e 174

8 C API Thread INTEITACE ...coovvi e e e et e e e ettt e e e e et a e e e et e e e eentnaeeaees 177
8.1 C API Thread FUNCLion REFEIENCEiiiiiiii e 177

8.2 C API Threaded FUNCLION DESCIPLIONSuuiiiiiieiie e e e e e e e e e e s 177
8.2.1 MySql_thread ENa() ...ccvuiiiiei e 177

8.2.2 Mysql_thread INIt()eeeeieii e 178

8.2.3 mysql_thread Safe()couuiiiiiiii e 178

9 C API Client PlUgiN INTEITACEciiiiiii et e e e e e e e e e e e e e e eaaaeees 179
9.1 C API Plugin FUNCLION REFEIENCEiiiii e e e e aaas 179

9.2 C API Plugin FUNCLiON DESCIIPLIONSuuiiiiiciiiieiii e e e e e e e e e e e e e e et e eaaaeees 179
9.2.1 mysql_client_find_pluging)oooeiii 180

9.2.2 mysql_client_register_PIUGIN() «....oveeeeeiieie e e 180

9.2.3 mysqgl_plugin_get OPtioN() ..ovvueiii e 181

9.2.4 MySql_1oad _PIUGIN() «evneeeeneeiiee e e 181

S I T 401 ViTo | I o= To IR o] 0T 11 NN/) 182

9.2.6 MySql_PIUGIN_OPLIONS() +vvuerrreriiieii e e e e e e e e e e e e e e e et e e 183

10 C API Binary LOG INtEITACEiiiiiciii et e e e e e e e e e e e e e eaaaeee 185
10.1 Overview of the C API Binary Log INtEIfaceccoeviiiiiieiii e 185

10.2 C API Binary LOg Data SIrUCIUIESc.uiiiiiiii e e e e e e e e e e e eaens 186

10.3 C API Binary Log FUNCHION REfEIENCEccvviiiiiiiei e 187

10.4 C API Binary Log FUNCtion DESCIPLIONScovuuiiiiieiiii e e e e 188
O 1)<Yo | I o] 1] (o To [od [0 =T=) PSS 188

10.4.2 mysql_binlog _fEtCh() . .cuu i 188

10.4.3 mySqgl_biNlog OPEN() wuuniien et 189

0 = PR 191

Vi

Preface and Legal Notices

This is the MySQL 8.0 C API Developer Guide. This document accompanies MySQL 8.0 Reference
Manual.

The C API provides low-level access to the MySQL client/server protocol and enables C programs
to access database contents. The C API code is distributed with MySQL and implemented in the
i brmysgl client library.

Legal Notices

Copyright © 1997, 2026, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted

in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications

of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed

by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Vii

https://dev.mysql.com/doc/refman/8.0/en/
https://dev.mysql.com/doc/refman/8.0/en/

Documentation Accessibility

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish

or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/ t opi c/
| ookup?ct x=accé& d=t r s if you are hearing impaired.

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 The MySQL C API

The C API provides low-level access to the MySQL client/server protocol and enables C programs
to access database contents. The C API code is distributed with MySQL and implemented in the
I'i bnysqgl client library. See Chapter 2, MySQL C API Implementations.

Most other client APIs use the | i brrysql cl i ent library to communicate with the MySQL server.
(Exceptions are Connector/J and Connector/NET.) This means that, for example, you can take advantage
of many of the same environment variables that are used by other client programs because they are
referenced from the library. For a list of these variables, see Overview of MySQL Programs.

For instructions on building client programs using the C API, see Section 3.2, “Building C API Client
Programs”. For programming with threads, see Section 3.4, “Writing C API Threaded Client Programs”.

Note

If, after an upgrade, you experience problems with compiled client programs,
such as Conmands out of sync or unexpected core dumps, the programs
were probably compiled using old header or library files. In this case, check the
date of the nysql . h file and | i brrysql cl i ent . a library used for compilation

to verify that they are from the new MySQL distribution. If not, recompile the
programs with the new headers and libraries. Recompilation might also be
necessary for programs compiled against the shared client library if the library
major version number has changed (for example, from | i bnysqgl cl i ent. so. 17
tolibnysqgl client. so. 18). For additional compatibility information, see
Section 3.5, “Running C API Client Programs”.

Clients have a maximum communication buffer size. The size of the buffer that is allocated initially (16KB)
is automatically increased up to the maximum size (16MB by default). Because buffer sizes are increased
only as demand warrants, simply increasing the maximum limit does not in itself cause more resources to
be used. This size check is mostly a precaution against erroneous statements and communication packets.

The communication buffer must be large enough to contain a single SQL statement (for client-to-server
traffic) and one row of returned data (for server-to-client traffic). Each session's communication buffer is
dynamically enlarged to handle any query or row up to the maximum limit. For example, if you have BLOB
values that contain up to 16MB of data, you must have a communication buffer limit of at least 16MB (in
both server and client). The default maximum built into the client library is 1GB, but the default maximum in
the server is 1IMB. You can increase this by changing the value of the nax_al | owed packet parameter
at server startup. See Configuring the Server.

The MySQL server shrinks each communication buffer to net _buf f er _| engt h bytes after each query.
For clients, the size of the buffer associated with a connection is not decreased until the connection is
closed, at which time client memory is reclaimed.

https://dev.mysql.com/doc/refman/8.0/en/programs-overview.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/server-configuration.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_net_buffer_length

Chapter 2 MySQL C API Implementations

The MySQL C APl is a C-based API that client applications written in C can use to communicate with
MySQL Server. Client programs refer to C API header files at compile time and link to a C API library file,
['i bnysqgl client, atlink time.

To obtain the C API header and library files required to build C API client programs, install a MySQL Server
distribution.

You can install a binary distribution that contains the C API files pre-built, or you can use a MySQL
Server source distribution and build the C API files yourself. Building MySQL Server also builds

I'i bmysgl cli ent; see Installing MySQL from Source. It cannot be built alone, but configuring with the
optional -DWITHOUT_SERVER=0ON CMake option is related.

The names of the library files to use when linking C API client applications depend on the library type and
platform for which a distribution is built:

» On Unix (and Unix-like) systems, the static library is | i bnysqgl cl i ent . a. The dynamic library is
i bmysgl cli ent. soonmost Unix systems and | i brrysql cl i ent. dyl i b on macOS.

e On Windows, the static library is mysql cl i ent. | i b and the dynamic library is | i bnysql . dl | .
Windows distributions also include | i bnysql . | i b, a static import library needed for using the dynamic
library.

Windows distributions also include a set of debug libraries. These have the same names as the
nondebug libraries, but are located in the | i b/ debug library. You must use the debug libraries when
compiling clients built using the debug C runtime.

On Unix, you may also see libraries that include _r in the names. Before MySQL 5.5, these were built as
thread-safe (re-entrant) libraries separately from the non-_r libraries. As of 5.5, both libraries are the same
and the _r names are symbolic links to the corresponding non-_r names. There is no need to use the _r
libraries. For example, if you use nysql _confi g to obtain linker flags, you can use nysqgl _config --

I i bs in all cases, even for threaded clients. There is no need to use nysql _config --libs_r.

https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_without_server

Chapter 3 Writing C API-Based Client Applications

Table of Contents

3.1 Example C API ClIENt PrOGIAMS .. .ccouuiiiiiiii ettt e e et e e e e et e e abi e e ennans
3.2 BUilding C API CHENt PrOGIAIMSuiiiiiiiieeiiiie ettt e et e e e et e e et e e e e et e e e eetaaeaees
3.3 Building C API Client Programs Using PKG-CONFIQuiiiiiiiiiiiiiii e
3.4 Writing C API Threaded ClIENt PrOQramsuuuiiiiiiiieiiiii ettt e e e e eeens
3.5 RUNNING C AP ClIENE PrOGIAMS .. ceeviiieiiiiie ettt ettt e e e et et e e e eab e e e eab e e eeaanns
3.6 USING € API FEALUIES ...ttt ettt ettt e e et e e et et e et e et e et eebe e e e eeba e eaeees
3.6.1 Support for Encrypted CONNECHIONSuiiiiiiieiiiii et e eeaa e eaaans
3.6.2 SSL SESSION REUSEuuiiiiiiii ettt ettt ettt e et ettt e et e e e et e eeeaa s
3.6.3 Multiple Statement EXECULION SUPPOITuuiiiiiiiieiiiii et
3.6.4 Prepared Statement Handling of Date and Time Valuesccoooieiiiiiiiiiinieiiiiin e,
3.6.5 Prepared CALL Statement SUPPOITiiiiuieeiiiie ettt
3.6.6 Prepared Statement ProbIEMSooiiiiiiiii e
3.6.7 Optional Result Set Metadatac.uuiiiiiiiiiiiii e
3.6.8 Automatic ReCoONNECtion CONLIOluiiiiiiiiii e
3.6.9 NULL mysql_store_result() Return After mysql_query() SUCCESSccoevvvueiieiiiiinieiiiiinneeennn,
3.6.10 Results Available from a QUETY oo et
3.6.11 Obtaining the Unique ID for the Last INserted ROWcoouuuiiiiiiiiiiiiiiiinecceieeceii e
3.6.12 Obtaining the Server Version and Client Library VErsioncccooevveiiiiiiiiiiiiiiciiiineeeens

The following sections provide information on building client applications that use the C API. Topics include

compiling and linking clients, writing threaded clients, and troubleshooting runtime problems.

3.1 Example C API Client Programs

Many of the clients in MySQL source distributions are written in C, such as nysql , nysql admi n, and
nmysgl show. If you are looking for examples that demonstrate how to use the C API, take a look at those

clients: Obtain a source distribution and look in its cl i ent directory. See How to Get MySQL.

For information about individual C API functions, the sections for most functions include usage examples.

3.2 Building C API Client Programs

This section provides guidelines for compiling C programs that use the MySQL C API.
» Compiling MySQL Clients on Unix
» Compiling MySQL Clients on Microsoft Windows

» Troubleshooting Problems Linking to the MySQL Client Library

Compiling MySQL Clients on Unix

The examples here use gcc as the compiler. A different compiler might be appropriate on some systems
(for example, cl ang on macOS or FreeBSD, or Sun Studio on Solaris). Adjust the examples as necessary.

You may need to specify an - | option when you compile client programs that use MySQL header files,
so that the compiler can find them. For example, if the header files are installed in / usr/ | ocal / nysql /

i ncl ude, use this option in the compile command:

-1 /usr/local /mysql/include

https://dev.mysql.com/doc/refman/8.0/en/getting-mysql.html

Compiling MySQL Clients on Microsoft Windows

You can link your code with either the dynamic or static MySQL C client library. The dynamic library base
nameis | i bnysql cl i ent and the suffix differs by platform (for example, . so for Linux, . dyl i b for
macOS). The static library is named | i brmysql cl i ent . a on all platforms.

MySQL clients must be linked using the - | nysql cl i ent option in the link command. You may also need
to specify a - L option to tell the linker where to find the library. For example, if the library is installed in /
usr/local / mysqgl /Ii b, use these options in the link command:

-L/usr/local /nysqgl/lib -1nysqlclient
The path names may differ on your system. Adjust the - | and - L options as necessary.

To make it simpler to compile MySQL programs on Unix, use the nysql _confi g script. See mysqgl_config
— Display Options for Compiling Clients.

nmysql _confi g displays the options needed for compiling or linking:

nysqgl _config --cflags
nysqgl _config --1ibs

You can invoke those commands at the command line to get the proper options and add them manually
to compilation or link commands. Alternatively, include the output from mysql _conf i g directly within
command lines using backticks:

gcc -c “nysqgl _config --cflags™ prognane.c
gcc -o progname prognanme.o ~nysql _config --libs’

On Unix, linking uses dynamic libraries by default. To link to the static client library instead, add its path
name to the link command. For example, if the library is located in / usr /| ocal / nysql / | i b, link like this:

gcc -o progname prognane.o /usr/local/nmysql/lib/libmysqglclient.a

Oruse mysgl _confi g to provide the path to the library:

gcc -0 prognane prognane.o nysqgl _config --variabl e=pkglibdir /libnysqglclient.a

nysql _confi g does not currently provide a way to list all libraries needed for static linking, so it might be
necessary to name additional libraries on the link command (for example, - | nsl -1 socket on Solaris).
To get an idea which libraries to add, use nmysql _config --libsandl dd Iibnysqglclient.so (or
otool -L libmysqglclient.dylibonmacOS).

pkg- confi g can be used as an alternative to mnysql _conf i g for obtaining information such as
compiler flags or link libraries required to compile MySQL applications. For example, the following pairs of
commands are equivalent:

nysql _config --cflags
pkg-config --cflags nysqlclient

nysqgl _config --1ibs
pkg-config --1ibs nysqlclient

To produce flags for static linking, use this command:
pkg-config --static --1ibs nysqlclient
For more information, see Section 3.3, “Building C API Client Programs Using pkg-config”.

Compiling MySQL Clients on Microsoft Windows

To specify header and library file locations, use the facilities provided by your development environment.

https://dev.mysql.com/doc/refman/8.0/en/mysql-config.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-config.html

Troubleshooting Problems Linking to the MySQL Client Library

To build C API clients on Windows, you must link in the C client library, as well as the Windows ws2_32
sockets library and Secur32 security library.

You can link your code with either the dynamic or static MySQL C client library:

e The dynamic library is named | i bnysql . dl | . In addition, the | i brrysqgl . | i b static import library is
needed for using the dynamic library.

* The static library is named nysql cl i ent. | i b. To link with the static C client library, the client
application must be compiled with the same version of Visual Studio used to compile the C client library
(which is Visual Studio 2015 for the static C client library built by Oracle).

When using the Oracle-built MySQL C client library, follow these rules when it comes to linking the C
runtime for your client application:

» For the MySQL C client library from a Community distribution of MySQL.:

¢ Always link dynamically to the C runtime (use the / MD compiler option), whether you are linking to the
static or dynamic C client library. Also, target hosts running the client application must have the Visual
C++ Redistributable for Visual Studio 2015 installed.

» For the MySQL C client library from a Commercial distribution of MySQL.:
« If linking to the static C client library, link statically to the C runtime (use the / MI' compiler option).

« If linking to the dynamic C client library, link either statically or dynamically to the C runtime (use either
/ MI or / ND compiler option).

In general, when linking to a static MySQL C client library, the client library and the client application must
use the same compiler options when it comes to linking the C runtime—that is, if your C client library is
compiled with the / MT option, your client application should also be compiled with the / MTI" option, and so
on (see the MSDN page describing the C library linking options for more details). Follow this rule when
you build your own static MySQL C client library from a source distribution of MySQL and link your client
application to it.

Note

Debug Mode: Because of the just-mentioned linking rule, you cannot build your
application in debug mode (with the / Mrd or / MDd compiler option) and link it to

a static C client library built by Oracle, which is not built with the debug options.
Instead, you must build the static client library from source with the debug options.

Troubleshooting Problems Linking to the MySQL Client Library

The MySQL client library includes SSL support built in. It is unnecessary to specify either - | ssl or -
| crypt o at link time. Doing so may in fact result in problems at runtime.

If the linker cannot find the MySQL client library, you might get undefined-reference errors for symbols that
start with mysql _, such as those shown here:

/tnp/ ccFKsdPa. o: In function “nain':

/ t np/ ccFKsdPa. o(. t ext +Oxb) : undefined reference to “nysql _init"'

/ tnp/ ccFKsdPa. o(. t ext +0x31): undefined reference to "nysql _real _connect'
/ t np/ ccFKsdPa. o(. t ext +0x69) : undefined reference to "nysql _error’

/ t np/ ccFKsdPa. o(. t ext +0x9a): undefined reference to "nysql _cl ose’

You should be able to solve this problem by adding - Ldi r _pat h -1 nmysql cl i ent atthe end of your link
command, where di r _pat h represents the path name of the directory where the client library is located.
To determine the correct directory, try this command:

https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx

Building C API Client Programs Using pkg-config

nysqgl _config --1ibs

The output from nysql _conf i g might indicate other libraries that should be specified on the link
command as well. You can include nysql _confi g output directly in your compile or link command using
backticks. For example:

gcc -0 prognanme prognane.o ~nysqgl_config --1ibs”

If an error occurs at link time that the f | oor symbol is undefined, link to the math library by adding - | m
to the end of the compile/link line. Similarly, if you get undefined-reference errors for other functions that
should exist on your system, such as connect (), check the manual page for the function in question to
determine which libraries you should add to the link command.

If you get undefined-reference errors such as the following for functions that do not exist on your system, it
usually means that your MySQL client library was compiled on a system that is not 100% compatible with
yours:

nf _format.o(.text+0x201): undefined reference to *_ | xstat

In this case, you should download a source distribution for the latest version of MySQL and compile the
MySQL client library yourself. See Installing MySQL from Source.

3.3 Building C API Client Programs Using pkg-config

MySQL distributions contain a mysql cl i ent . pc file that provides information about MySQL configuration
for use by the pkg- conf i g command. This enables pkg- confi g to be used as an alternative to

nmysql _confi g for obtaining information such as compiler flags or link libraries required to compile
MySQL applications. For example, the following pairs of commands are equivalent:

nysql _config --cflags
pkg-config --cflags nysqlclient

nysqgl _config --1ibs
pkg-config --1ibs nysqlclient

The last pkg- conf i g command produces flags for dynamic linking. To produce flags for static linking, use
this command:

pkg-config --static --libs nysqlclient
On some platforms, the output with and without - - st at i ¢ might be the same.
Note

If pkg- confi g does not find MySQL information, it might be necessary to
set the PKG_CONFI G_PATH environment variable to the directory in which the
nysqgl cl i ent. pc file is located, which by default is usually the pkgconfi g
directory under the MySQL library directory. For example (adjust the location
appropriately):

For sh, bash, ...
export PKG CONFI G PATH=/ usr /| ocal / mysql /i b/ pkgconfi g

For csh, tcsh, .
set env PKG_CONFI G_PATH /usr /| ocal / mysql /i b/ pkgconfi g

The nysql conf i g. pc installation location can be controlled using the
| NSTALL_PKGCONFI GDI R Cvake option. See MySQL Source-Configuration
Options.

The - - vari abl e option takes a configuration variable name and displays the variable value:

https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_install_pkgconfigdir
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html

Writing C API Threaded Client Programs

installation prefix directory

pkg-config --variabl e=prefix mnysqlclient

header file directory

pkg-config --variabl e=i ncl udedir mysql client
library directory

pkg-config --variabl e=libdir nysqlclient

To see which variable values pkg- conf i g can display using the - - var i abl e option, use this command:

pkg-config --print-variables nysqlclient

You can use pkg- confi g within a command line using backticks to include the output that it produces for
particular options. For example, to compile and link a MySQL client program, use pkg- confi g as follows:

gcc -c "~ pkg-config --cflags nysqlclient® prognane.c
gcc -0 prognanme prognane.o " pkg-config --libs nysqglclient®

3.4 Writing C API Threaded Client Programs

This section provides guidance for writing client programs that use the thread-related functions in the
MySQL C API. For further information about these functions, see Section 8.2, “C API Threaded Function
Descriptions”. For examples of source code that uses them, look in the cl i ent directory of a MySQL
source distribution:

* The source for nysql i nport uses threading in the code associated with the - - use-t hr eads option.

» The source for mysql sl ap uses threads to set up simultaneous workloads, to test server operation
under high load.

As an alternative to thread programming, applications may find the asynchronous (nonblocking) C API
functions useful. These functions enable applications to submit multiple outstanding requests to the
server and determine when each has finished using polling. For more information, see Chapter 7, C API
Asynchronous Interface.

If undefined-reference errors occur when linking a threaded program against the MySQL client library, the
most likely cause is that you did not include the thread libraries on the link/compile command.

The client library is almost thread-safe. The biggest problem is that the subroutines in sql / net _serv. cc
that read from sockets are not interrupt-safe. This was done with the thought that you might want to have
your own alarm that can break a long read to a server. If you install interrupt handlers for the SI GPI PE
interrupt, socket handling should be thread-safe.

To avoid aborting the program when a connection terminates, MySQL blocks S| GPI PE on the first call to
nysqgl library init(),nmysql _init(),ormysqgl _connect().To use yourown S| GPl PE handler,
firstcall mysqgl _I'i brary_init(),theninstall your handler.

The client library is thread-safe per connection. Two threads can share the same connection with the
following caveats:

» Unless you are using the asynchronous C API functions mentioned previously, multiple threads
cannot send a query to the MySQL server at the same time on the same connection. In particular,
you must ensure that between calls to mysqgl _real query() (ornysqgl query())and
nmysql _store_result() inone thread, no other thread uses the same connection. To do
this, use a mutex lock around your pair of mysql _real _query() (ornysqgl _query())and
mysql _store result() calls. Aftermysql store result() returns, the lock can be released and
other threads may query the same connection.

If you use POSIX threads, you can use pt hr ead_nut ex_| ock() and pt hr ead_mut ex_unl ock() to
establish and release a mutex lock.

https://dev.mysql.com/doc/refman/8.0/en/mysqlimport.html#option_mysqlimport_use-threads

Running C API Client Programs

Note

If you examine programs in a MySQL source distribution, instead of calls to

pt hread_nut ex_ | ock() and pt hread_nut ex_unl ock() , you will see
callstonative _mutex | ock() andnative_ nutex_unl ock(). The latter
functions are defined in the t hr _nut ex. h header file and map to platform-
specific mutex functions.

» Multiple threads can access different result sets that are retrieved with nysql _store_result().

» Touse nysql _use_result(),you mustensure that no other thread uses the same connection until
the result set is closed. However, it really is best for threaded clients that share the same connection to
use nysqgl store_result().

If a thread does not create the connection to the MySQL database but calls MySQL functions, take the
following into account:

When you call nysql _init (), MySQL creates a thread-specific variable for the thread that is used

by the debug library (among other things). If you call a MySQL function before the thread has called
nysqgl _init(),the thread does not have the necessary thread-specific variables in place and you are
likely to end up with a core dump sooner or later. To avoid problems, you must do the following:

1. Callnysqgl _l'ibrary_init() before any other MySQL functions. It is not thread-safe, so call it
before threads are created, or protect the call with a mutex.

2. Arrange for nysql _thread_init() tobe called early in the thread handler before calling any MySQL
function. (If you call mysql _init(),itcallsmysql thread_init() foryou.)

3. Inthe thread, call nysql thread _end() before calling pt hr ead_exi t (). This frees the memory
used by MySQL thread-specific variables.

The preceding notes regarding mysql i nit () also applytonysql connect (), which calls
nysqgl _init().

3.5 Running C API Client Programs

If, after an upgrade, you experience problems with compiled client programs, such as Conmands out of
sync or unexpected core dumps, the programs were probably compiled using old header or library files. In
this case, check the date of the nysql . h header file and | i brrysql cl i ent . a library used for compilation
to verify that they are from the new MySQL distribution. If not, recompile the programs with the new
headers and libraries. Recompilation might also be necessary for programs compiled against the shared
client library if the library major version number has changed (for example, from | i bnysql cl i ent . so. 17
tolibnysqlclient.so. 18).

The major shared client library version determines compatibility. (For example, for

I'i bnysqgl client.so.18. 1. 0, the major version is 18.) Libraries shipped with newer versions of MySQL
are drop-in replacements for older versions that have the same major number. As long as the major library
version is the same, you can upgrade the library and old applications should continue to work with it.

Undefined-reference errors might occur at runtime when you try to execute a MySQL program. If these
errors specify symbols that start with mysql _ or indicate that the | i brmysqgl cl i ent library cannot be
found, it means that your system cannot find the shared | i bnysql cl i ent . so library. The solution to this
problem is to tell your system to search for shared libraries in the directory where that library is located.
Use whichever of the following methods is appropriate for your system:

10

Using C API Features

Add the path of the directory where | i brmysql cl i ent. so is located to the LD LI BRARY_PATH or
LD LI BRARY environment variable.

On macOS, add the path of the directory where | i brrysql cl i ent. dyl i b is located to the
DYLD LI BRARY_PATH environment variable.

Copy the shared-library files (such as | i bnysql cl i ent. so) to some directory that is searched by your
system, such as /| i b, and update the shared library information by executing | dconf i g. Be sure to
copy all related files. A shared library might exist under several names, using symlinks to provide the
alternate names.

3.6 Using C API Features

The following sections discuss techniques for working with several features of the C API into your
applications. It also covers some restrictions and troubleshooting topics.

3.6.1 Support for Encrypted Connections

This section describes how C applications use the C API capabilities for encrypted connections. By default,
MySQL programs attempt to connect using encryption if the server supports encrypted connections, falling
back to an unencrypted connection if an encrypted connection cannot be established (see Configuring
MySQL to Use Encrypted Connections). For applications that require control beyond the default behavior
over how encrypted connections are established, the C API provides these capabilities:

The nmysql _opti ons() function enables applications to set the appropriate SSL/TLS options before
calling nysql _real _connect (). For example, to require the use of an encrypted connection, see
Enforcing an Encrypted Connection.

The nysql get ssl _ci pher () function enables applications to determine, after a connection has
been established, whether the connection uses encryption. A NULL return value indicates that encryption
is not being used. A non-NULL return value indicates an encrypted connection and names the encryption
cipher. See Section 5.4.36, “mysqgl_get_ssl_cipher()".

Options for Encrypted Connections
Enforcing an Encrypted Connection

Improving Security of Encrypted Connections

Options for Encrypted Connections

nysql _opti ons() provides the following options for control over use of encrypted connections. For
option details, see Section 5.4.54, “mysql_options()”.

MYSQL_OPT_SSL_CA: The path name of the Certificate Authority (CA) certificate file. This option, if used,
must specify the same certificate used by the server.

MYSQL_OPT_SSL_CAPATH: The path name of the directory that contains trusted SSL CA certificate files.
MYSQL_OPT_SSL_CERT: The path name of the client public key certificate file.

MYSQL_OPT_SSL_Cl PHER: The list of encryption ciphers the client permits for connections that use TLS
protocols up through TLSv1.2.

MYSQL_OPT_SSL_CRL: The path name of the file containing certificate revocation lists.
MYSQL_OPT_SSL_CRLPATH: The path name of the directory that contains certificate revocation list files.
MYSQL_OPT_SSL_KEY: The path name of the client private key file.

11

https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html

SSL Session Reuse

e MYSQL_OPT_SSL_MODE: The connection security state.

o IMYSQL_OPT_SSL_SESSI ON_DATA: Serialized session data from an encrypted connection that was
returned by a call to the mysql get ssl _sessi on_dat a() function while the connection was active.

e MYSQ._OPT_TLS CI PHERSUI TES: The list of encryption ciphersuites the client permits for connections
that use TLSv1.3.

e MYSQ._OPT_TLS VERSI ON: The encryption protocols the client permits.

The deprecated nysql _ssl _set () function can be used as a convenience routine that is equivalent to a
set of mysql _options() calls that specify certificate and key files, encryption ciphers, and so forth. See
Section 5.4.82, “mysql_ssl_set()".

Enforcing an Encrypted Connection

nmysqgl _options() options for information such as SSL certificate and key files are used to establish
an encrypted connection if such connections are available, but do not enforce any requirement that the
connection obtained be encrypted. To require an encrypted connection, use the following technique:

1. Callnmysql _options() as necessary supply the appropriate SSL parameters (certificate and key
files, encryption ciphers, and so forth).

2. Callnysqgl _options() to passthe MYSQL_OPT_SSL_MODE option with a value of
SSL_MODE_REQUI RED or one of the more-restrictive option values.

3. Callnysql real connect () to connect to the server. The call fails if an encrypted connection
cannot be obtained; exit with an error.

Improving Security of Encrypted Connections

For additional security relative to that provided by the default encryption, clients can supply a CA certificate
matching the one used by the server and enable host name identity verification. In this way, the server and
client place their trust in the same CA certificate and the client verifies that the host to which it connected is
the one intended:

» To specify the CA certificate, call mysqgl _opti ons() to pass the M\YySQL_OPT_SSL_CA (or
MYSQL_OPT_SSL_CAPATH) option, and call mysql _opti ons() to pass the MYSQL_OPT_SSL_MODE
option with a value of SSL_MODE VERI FY_CA.

» To enable host name identity verification as well, call mysql opti ons() to pass the
MYSQL_OPT_SSL_MODE option with a value of SSL_MODE_VERI FY_| DENTI TY rather than
SSL_MODE_VERI FY_CA.

Note

Host name identity verification with SSL_MODE_VERI FY_| DENTI TY does not
work with self-signed certificates created automatically by the server, or manually
using nysql _ssl _rsa_set up (see Creating SSL and RSA Certificates and Keys
using MySQL). Such self-signed certificates do not contain the server name as the
Common Name value.

Host name identity verification also does not work with certificates that specify the
Common Name using wildcards because that name is compared verbatim to the
server name.

3.6.2 SSL Session Reuse

12

https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-rsa-files-using-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-rsa-files-using-mysql.html

Multiple Statement Execution Support

As of MySQL 8.0.29, the server supports SSL session reuse by default, but only within a configurable
timeout period after a user enables the feature. All MySQL client applications support session reuse. For a
description of server-side and client-side operations, see Reusing SSL Sessions.

This section describes how C applications can use the C API capabilities to enable session reuse for
encrypted connections.

SSL session reuse works as follows:

1. With an active SSL connection ongoing, your application can request the current SSL session data by
calling nysql _get ssl _sessi on_dat a() . The call returns a pointer to an in-memory object, which
is currently the PEM serialization of the session as an ASCII string.

2. Your application then passes the pointer to nysql _opti ons() with the
MYSQL_OPT_SSL_SESSI ON_DATA option for use in the new connection it is building (during the pre-
connect phase).

3. At runtime, the application connects as it normally does. At this point the prior session has to potential
to be reused. Your application can determine whether a session is being reused for the new connection
by calling mnysql get ssl _session_reused() . The call returns TRUE if there was a session and it
was reused.

4. After your application no longer needs the pointer, it is important to free it with a call to
nmysql _free_ssl session_data().

MySQL uses a random TLS context-related context ID, which also applies to session reuse. With TLS 1.3,
when the previously described call sequence occurs, OpenSSL uses pre-shared keys for session reuse. In
contrast, with TLS 1.2, OpenSSL uses session tickets.

3.6.3 Multiple Statement Execution Support

By default, mysqgl real query() and nysql _query() interpret their statement string argument as a
single statement to be executed, and you process the result according to whether the statement produces
a result set (a set of rows, as for SELECT) or an affected-rows count (as for | NSERT, UPDATE, and so
forth).

MySQL also supports the execution of a string containing multiple statements separated by semicolon (;)
characters. This capability is enabled by special options that are specified either when you connect to the
server with nysql _real _connect () or after connecting by calling nysql _set _server _option().

Executing a multiple-statement string can produce multiple result sets or row-count indicators. Processing
these results involves a different approach than for the single-statement case: After handling the result
from the first statement, it is necessary to check whether more results exist and process them in turn

if so. To support multiple-result processing, the C APl includes the nysqgl _nore_resul ts() and

nysqgl next result () functions. These functions are used at the end of a loop that iterates as long as
more results are available. Failure to process the result this way may result in a dropped connection to the
server.

Multiple-result processing also is required if you execute CALL statements for stored procedures. Results
from a stored procedure have these characteristics:

» Statements within the procedure may produce result sets (for example, if it executes SELECT
statements). These result sets are returned in the order that they are produced as the procedure
executes.

In general, the caller cannot know how many result sets a procedure will return. Procedure execution
may depend on loops or conditional statements that cause the execution path to differ from one call to
the next. Therefore, you must be prepared to retrieve multiple results.

13

https://dev.mysql.com/doc/refman/8.0/en/reusing-ssl-sessions.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Multiple Statement Execution Support

« The final result from the procedure is a status result that includes no result set. The status indicates
whether the procedure succeeded or an error occurred.

The multiple statement and result capabilities can be used only with nysql _real query() or
nmysgl _query() . They cannot be used with the prepared statement interface. Prepared statement
handlers are defined to work only with strings that contain a single statement. See Chapter 6, C API
Prepared Statement Interface.

To enable multiple-statement execution and result processing, the following options may be used:

e« The nysqgl real connect () function has a f | ags argument for which two option values are
relevant:

e CLI ENT_MULTI RESULTS enables the client program to process multiple results. This option must

be enabled if you execute CALL statements for stored procedures that produce result sets. Otherwise,

such procedures result in an error Error 1312 (0A000): PROCEDURE proc_name can't
return a result set in the given context.CLI ENT_MJILTI RESULTS s enabled by
default.

e CLI ENT_MULTI _STATEMENTS enables nysql _real _query() and nysql _query() to execute
statement strings containing multiple statements separated by semicolons. This option also enables
CLI ENT_MULTI _RESULTS implicitly, so a f | ags argument of CLI ENT_MJLTI _STATEMENTS
tonysqgl real connect () is equivalent to an argument of CLI ENT_MJLTI _STATEMENTS |
CLI ENT_MULTI _RESULTS. That is, CLI ENT_MJLTI _STATEMENTS is sufficient to enable multiple-
statement execution and all multiple-result processing.

 After the connection to the server has been established, you can use the
nysql set server _option() function to enable or disable multiple-statement
execution by passing it an argument of MYSQL_OPTI ON_MJULTI _STATEMENTS ON or
MYSQL_OPTI ON_MULTI _STATEMENTS_COFF. Enabling multiple-statement execution with this function
also enables processing of “simple” results for a multiple-statement string where each statement
produces a single result, but is not sufficient to permit processing of stored procedures that produce
result sets.

The following procedure outlines a suggested strategy for handling multiple statements:

1. Pass CLI ENT_MJLTI STATEMENTSto nmysql real connect (), to fully enable multiple-statement
execution and multiple-result processing.

2. After calling nysql _real query() ormysgl query() and verifying that it succeeds, enter a loop
within which you process statement results.

3. For each iteration of the loop, handle the current statement result, retrieving either a result set or an
affected-rows count. If an error occurs, exit the loop.

4. Atthe end of the loop, call mysql next result () tocheck whether another result exists and initiate

retrieval for it if so. If no more results are available, exit the loop.

One possible implementation of the preceding strategy is shown following. The final part of the loop can
be reduced to a simple test of whether nysql next resul t () returns nonzero. The code as written

distinguishes between no more results and an error, which enables a message to be printed for the latter
occurrence.

/* connect to server with the CLI ENT_MJLTI _STATEMENTS option */
if (nysqgl _real _connect (nysqgl, host_nane, user_nane, password,
db_nane, port_num socket_nane, CLI ENT_MULTI _STATEMENTS) == NULL)

{

14

https://dev.mysql.com/doc/refman/8.0/en/call.html

Prepared Statement Handling of Date and Time Values

}

printf("mysql _real _connect() failed\n");

nmysql _cl ose(nysql);
exit(1);

/* execute multiple statements */
status = nysql _query(nysql,

DROP TABLE | F EXI STS test_tabl e;\

CREATE TABLE test_table(id INT);\

I NSERT | NTO test_tabl e VALUES(10);\
UPDATE test_table SET i d=20 WHERE i d=10;\
SELECT * FROM test _tabl e;\

DROP TABLE test_table");

if (status)

{

}

printf("Could not execute statement(s)");

nmysql _cl ose(nysql);
exit(0);

/* process each statenent result */
do {

}

/* did current statement return data? */

result = nmysqgl _store_result(mysql);

if (result)

{
/* yes; process rows and free the result set */
process_result_set(nysql, result);
nmysql _free_result(result);

}

el se /* no result set or error */

{
if (nysqgl _field_count(mysqgl) == 0)
{

printf("%Ild rows affected\n",
nmysql _affected_rows(mysql));

}
else /* some error occurred */
{
printf("Could not retrieve result set\n");
br eak;
}
}

/* more results? -1 = no, >0 = error, O = yes (keep | ooping) */
if ((status = nysql _next _result(mysql)) > 0)

printf("Could not execute statenent\n");
while (status == 0);

nmysql _cl ose(nysql);

3.6.4 Prepared Statement Handling of Date and Time Values

The binary (prepared statement) protocol enables you to send and receive date and time values (DATE,
TI ME, DATETI ME, and TI MESTAMP), using the MYSQL_ Tl IVE structure. The members of this structure are
described in Section 6.2, “C API Prepared Statement Data Structures”.

To send temporal data values, create a prepared statement using nysql _stnt _prepare() . Then,
before calling nysql _stnt _execut e() to execute the statement, use the following procedure to set up
each temporal parameter:

1.

In the MYSQL_ BI ND structure associated with the data value, set the buf f er _t ype member to
the type that indicates what kind of temporal value you're sending. For DATE, Tl ME, DATETI ME,
or TI MESTANP values, set buf f er _t ype to MYSQL_TYPE_DATE, M\YSQL_TYPE_TI ME,
MYSQL_TYPE_DATETI ME, or MYSQL_TYPE_TI MESTAMP, respectively.

15

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

Prepared CALL Statement Support

2. Setthe buf f er member of the MYSQL_BI ND structure to the address of the MYSQL_ Tl VE structure in
which you pass the temporal value.

3. Fillin the members of the MYSQL_TI IVE structure that are appropriate for the type of temporal value to
pass.

Use nysqgl _stnt_bind_paran() to bind the parameter data to the statement. Then you can call
mysql _stnt _execute().

To retrieve temporal values, the procedure is similar, except that you set the buf f er _t ype member to the
type of value you expect to receive, and the buf f er member to the address of a MYSQL_ Tl VE structure
into which the returned value should be placed. Use nmysql stnt _bind _result() to bind the buffers to
the statement after calling mysql _st mt _execut e() and before fetching the results.

Here is a simple example that inserts DATE, Tl ME, and TI MESTAMP data. The nysql variable is assumed
to be a valid connection handler.

MYSQL_TIME ts;
MYSQL_BI ND bi nd[3] ;
MYSQL_STMI *stnt;

strmov(query, "INSERT |NTO test_table(date field, tinme_field, \
tinmestanp_field) VALUES(?,?,?");

stmt = nysql _stnt_init(nysql);
if (!stnt)

fprintf(stderr, " nysql_stnt_init(), out of nenory\n");
exit(0);

}
if (nysql _stnt_prepare(nysqgl, query, strlen(query)))
{

fprintf(stderr, "\n nysql _stnt_prepare(), |INSERT failed");
fprintf(stderr, "\n %", nysql _stnt_error(stnt));
exit(0);

}

/* set up input buffers for all 3 paraneters */
bi nd[0] . buf fer _type= MYSQ._TYPE_DATE;

bi nd[0] . buffer= (char *)&ts;

bi nd[0].is_null= 0;

bi nd[0] . | engt h= O0;

bi nd[1] = bi nd[2] = bi nd[0] ;

nysql _stnt_bi nd_paran(stnt, bind);

/* supply the data to be sent in the ts structure */
ts.year= 2002;

ts. nont h= 02;

ts. day= 03;

ts. hour= 10;
ts. m nute= 45;
ts. second= 20;

nysql _stnt_execute(stnt);

3.6.5 Prepared CALL Statement Support

This section describes prepared-statement support in the C API for stored procedures executed using
CALL statements:

16

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/call.html

Prepared CALL Statement Support

Stored procedures executed using prepared CALL statements can be used in the following ways:

» A stored procedure can produce any number of result sets. The number of columns and the data types
of the columns need not be the same for all result sets.

» The final values of OUT and | NOUT parameters are available to the calling application after the procedure
returns. These parameters are returned as an extra single-row result set following any result sets
produced by the procedure itself. The row contains the values of the OUT and | NOUT parameters in the
order in which they are declared in the procedure parameter list.

For information about the effect of unhandled conditions on procedure parameters, see Condition
Handling and OUT or INOUT Parameters.

The following discussion shows how to use these capabilities through the C API for prepared statements.
To use prepared CALL statements through the PREPARE and EXECUTE statements, see CALL Statement.

An application that executes a prepared CALL statement should use a loop that fetches a result and then
invokes nysql _stnt _next resul t() todetermine whether there are more results. The results consist
of any result sets produced by the stored procedure followed by a final status value that indicates whether
the procedure terminated successfully.

If the procedure has OUT or | NOUT parameters, the result set preceding the final status value
contains their values. To determine whether a result set contains parameter values, test whether the
SERVER PS OUT PARAMNS bit is set in the ser ver _st at us member of the MYSQL connection handler:

nmysql - >server _status & SERVER PS_OUT_PARAMS

The following example uses a prepared CALL statement to execute a stored procedure that produces
multiple result sets and that provides parameter values back to the caller by means of OUT and | NOUT
parameters. The procedure takes parameters of all three types (I N, OUT, | NOUT), displays their initial
values, assigns new values, displays the updated values, and returns. The expected return information
from the procedure therefore consists of multiple result sets and a final status:

» One result set from a SELECT that displays the initial parameter values: 10, NULL, 30. (The OUT
parameter is assigned a value by the caller, but this assignment is expected to be ineffective: OUT
parameters are seen as NULL within a procedure until assigned a value within the procedure.)

» One result set from a SELECT that displays the modified parameter values: 100, 200, 300.
» One result set containing the final OUT and | NOUT parameter values: 200, 300.
» Afinal status packet.

The code to execute the procedure:

MYSQL_STMI *stnt ;
MYSQL_BIND ps_parans[3]; [/* input paraneter buffers */

i nt int_data[3]; /* input/output values */
bool is_null[3]; /* output value nullability */
int st at us;

/* set up stored procedure */
status = nysql _query(nysqgl, "DROP PROCEDURE | F EXI STS pl");
test_error(mysqgl, status);

status = nysql _query(nysql,
" CREATE PROCEDURE p1("
IN p_in INT, "
QUT p_out INT, "
I NOUT p_inout INT) "
"BEG N "
SELECT p_in, p_out, p_inout; "

17

https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/conditions-and-parameters.html
https://dev.mysql.com/doc/refman/8.0/en/conditions-and-parameters.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/prepare.html
https://dev.mysql.com/doc/refman/8.0/en/execute.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Prepared CALL Statement Support

SET p_in = 100, p_out = 200, p_inout = 300;
SELECT p_in, p_out, p_inout;
"END") ;
test_error(mysqgl, status);

/* initialize and prepare CALL statement with parameter placehol ders */
stmt = nmysql _stnt _init(nysql);
if (!stnt)
{
printf("Could not initialize statement\n");
exit(1);
}
status = nysqgl _stnt_prepare(stnt, "CALL pl(?, 2, ?)", 16);
test_stnt_error(stmt, status);

/* initialize parameters: p_in, p_out, p_inout (all INT) */
menset (ps_paranms, 0, sizeof (ps_parans));

ps_parans[0] . buf fer _type = MYSQL_TYPE_LONG

ps_par ans[0] .
ps_par ans[0] .
ps_par ans[0] .

ps_par ans[1] .
ps_par ans[1] .
ps_parans[1] .
ps_parans[1] .

ps_par anms[2] .

buffer = (char *) & nt_data[O0];
l ength = O;
is_null = 0;

buf fer_type = MYSQL_TYPE_LONG
buffer = (char *) & nt_data[1];
length = 0

is_null =

buf fer_type = MYSQL_TYPE_LONG

ps_parans[2] . buffer = (char *) & nt_datal2];
ps_parans[2] .1 ength 0;
ps_parans[2].is_null = 0;

/* bind paraneters */
status = nysql _stnt_bi nd_paran(stnt, ps_parans);
test_stnt_error(stmt, status);

/* assign values to paranmeters and execute statenment */
int_data[0]= 10; /* p_in */

int_data[1]= 20; /* p_out */

int_data[2]= 30; /* p_inout */

status = nysql _stnt_execute(stnt);
test_stnt_error(stmt, status);

/* process results until there are no nore */
do {
int i;
int numfields;
MYSQL_FI ELD *fi el ds;
MYSQL_BI ND *rs_bi nd;

/* nunber of columms in result */
/* for result set netadata */
/* for output buffers */

/* the colum count is >0 if there is a result set */
/* 0if the result is only the final status packet */
num fields = nmysql _stmt _field_count(stnt);

if (numfields > 0)
{
/* there is aresult set to fetch */
printf("Nunber of colums in result: %\n", (int) numfields);

/* what kind of result set is this? */
printf("Data: ");
i f(nmysql ->server_status & SERVER PS_OUT_PARAMS)
printf(“this result set contains OUT/I NOUT paraneters\n");
el se
printf("this result set is produced by the procedure\n");

Prepared CALL Statement Support

MYSQL_RES *rs_netadata = nysqgl _stnt_result_mnetadata(stnt);
test_stnt_error(stm, rs_metadata == NULL);

fields = nmysql _fetch_fiel ds(rs_metadata);

rs_bind = (MYSQL_BIND *) mall oc(sizeof (MYSQL_BIND) * numfields);
if (!rs_bind)
{
printf("Cannot allocate output buffers\n");
exit(1);
}
menmset (rs_bind, 0, sizeof (MYSQL_BIND) * numfields);

/* set up and bind result set output buffers */

for (i =0; i < numfields; ++i)

{
rs_bind[i].buffer_type = fields[i].type;
rs_bind[i].is_null = & s_null[i];

switch (fields[i].type)
{
case MYSQL_TYPE_LONG
rs_bind[i].buffer = (char *) &int_data[i]);
rs_bind[i].buffer_length = sizeof (int_data);
br eak;

defaul t:
fprintf(stderr, "ERROR unexpected type: %.\n", fields[i].type);
exit(1);
}
}

status = nysqgl _stnt_bind_result(stnt, rs_bind);
test_stnt_error(stmt, status);

/* fetch and display result set rows */
while (1)

{
status = nysqgl _stnt_fetch(stnt);

if (status == 1 || status == MYSQ._NO _DATA)
br eak;

for (i =0; i < numfields; ++i)

{
switch (rs_bind[i].buffer_type)

case MYSQL_TYPE_LONG
if (*rs_bind[i].is_null)
printf(" val[%] = NULL;", i);
el se
printf(" val[%] = %d;",
i, (long) *((int *) rs_bind[i].buffer));
br eak;

defaul t:
printf(" unexpected type (%l)\n",
rs_bind[i].buffer_type);
}

}
printf("\n");
}

nmysql _free_result(rs_netadata); /* free netadata */
free(rs_bind); /* free output buffers */

Prepared Statement Problems

el se

{

/* no colums = final status packet */
printf("End of procedure output\n");
}

/* more results? -1 = no, >0 = error, O = yes (keep | ooking) */
status = nysqgl _stnt_next_result(stnt);
if (status > 0)
test_stnt_error(stmt, status);
} while (status == 0);

nmysql _stmt _cl ose(stnt);

Execution of the procedure should produce the following output:

Nunber of columms in result: 3

Data: this result set is produced by the procedure
val [0] = 10; val[1] = NULL; val[2] = 30;

Nunber of columms in result: 3

Data: this result set is produced by the procedure
val [0] = 100; val[1] = 200; val[2] = 300;

Nunber of columms in result: 2

Data: this result set contains OUT/INOUT paraneters
val [0] = 200; val[1] = 300;

End of procedure out put

The code uses two utility routines, t est _error () andtest _stnt _error (), to check for errors and
terminate after printing diagnostic information if an error occurred:

static void test_error(MYSQL *nysqgl, int status)
if (status)

fprintf(stderr, "Error: % (errno: %l)\n",
nmysql _error(nysqgl), nysql _errno(nysql));
exit(1);
}
}

static void test_stmt _error(MYSQL_STMI *stnt, int status)
if (status)
fprintf(stderr, "Error: % (errno: %l)\n",
mysql _stmt _error(stnt), nysql_stnt_errno(stnt));
exit(1);

}
}

3.6.6 Prepared Statement Problems

Here follows a list of the currently known problems with prepared statements:

e TI ME, TI MESTAMP, and DATETI ME do not support parts of seconds (for example, from
DATE_FORNMAT()).

* When converting an integer to string, ZEROFI LL is honored with prepared statements in some cases
where the MySQL server does not print the leading zeros. (For example, with M N(nurber - wi t h-
zerofill)).

« When converting a floating-point number to a string in the client, the rightmost digits of the converted
value may differ slightly from those of the original value.

20

https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_min
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_min

Optional Result Set Metadata

» Prepared statements do not support multi-statements (that is, multiple statements within a single string
separated by ; characters).

» The capabilities of prepared CALL statements are described in Section 3.6.5, “Prepared CALL Statement
Support”.

3.6.7 Optional Result Set Metadata

When a client executes a statement that produces a result set, MySQL makes available the data the
result set contains, and by default also result set metadata that provides information about the result

set data. Metadata is contained in the MYSQL_FI ELD structure (see Section 5.2, “C API Basic Data
Structures”), which is returned by the nysql _fetch field(), nysqgl fetch field direct(),and
nmysqgl fetch fields() functions.

Clients can indicate on a per-connection basis that result set metadata is optional and that the client will
indicate to the server whether to return it. Suppression of metadata transfer by the client can improve
performance, particularly for sessions that execute many queries that return few rows each.

There are two ways for a client to indicate that result set metadata is optional for a connection. They are
equivalent, so either one suffices:

 Prior to connect time, enable the MYSQL_OPT_OPTI ONAL_RESULTSET_METADATA option for
nysql _options().

» At connect time, enable the CLI ENT_OPTI ONAL_RESULTSET _METADATAflag for the cl i ent _fl ag
argument of mysqgl _real connect ().

For metadata-optional connections, the client sets the r esul t set _net adat a system variable to control
whether the server returns result set metadata. Permitted values are FULL (return all metadata) and NONE
(return no metadata). The default is FULL, so even for metadata-optional connections, the server by default
returns metadata.

For metadata-optional connections, the nysql _fetch field(),nysql _fetch field direct(),and
nysqgl fetch fields() functions return NULL whenresul t set _net adat a is set to NONE.

For connections that are not metadata-optional, setting r esul t set _net adat a to NONE produces an
error.

To check whether a result set has metadata, the client calls the nysql result _net adat a() function.
This function returns RESULTSET METADATA FULL or RESULTSET NMETADATA NONE to indicate that the
result set has full metadata or no metadata, respectively.

nysqgl result netadata() is useful if the client does not know in advance whether a result set has
metadata. For example, if a client executes a stored procedure that returns multiple result sets and might
change the resul t set _net adat a system variable, the client can invoke nysql result netadat a()
for each result set to determine whether it has metadata.

3.6.8 Automatic Reconnection Control

The MySQL client library can perform an automatic reconnection to the server if it finds that the connection
is down when you attempt to send a statement to the server to be executed. If auto-reconnect is enabled,
the library tries once to reconnect to the server and send the statement again.

Note

Beginning with MySQL 8.0.34, the automatic reconnection feature is deprecated.
The related MYSQL_OPT_RECONNECT option is still available but now returns

21

https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata

Automatic Reconnection Control

a deprecation warning to the standard error output if your application calls the
nysqgl get option() ornysqgl options() function with the option, even when
setting it to false.

Expect automatic reconnection functionality to be removed in a future version of
MySQL.

Auto-reconnect is disabled by default.

If the connection has gone down, the effect of mysql _pi ng() depends on the auto-reconnect state. If
auto-reconnect is enabled, mysql _pi ng() performs a reconnect. Otherwise, it returns an error.

Some client programs might provide the capability of controlling automatic reconnection. For example,
nysql reconnects by default, but the - - ski p-r econnect option can be used to suppress this behavior.

If an automatic reconnection does occur (for example, as a result of calling mysql _pi ng()), there is no
explicit indication of it. To check for reconnection, call nysql t hread_i d() to get the original connection
identifier before calling nysql _pi ng(), then call nysqgl _t hread_i d() again to see whether the
identifier changed.

Automatic reconnection can be convenient because you need not implement your own reconnect code, but
if a reconnection does occur, several aspects of the connection state are reset on the server side and your
application will not be notified.

Reconnection affects the connection-related state as follows:

* Rolls back any active transactions and resets autocommit mode.
» Releases all table locks.

» Closes (and drops) all TEMPORARY tables.

» Reinitializes session system variables to the values of the corresponding global system variables,
including system variables that are set implicitly by statements such as SET NANES.

» Loses user-defined variable settings.

» Releases prepared statements.

» Closes HANDLER variables.

» Resets the value of LAST | NSERT | () to 0.
» Releases locks acquired with GET_LOCK() .

» Loses the association of the client with the Performance Schemat hr eads table row that determines
connection thread instrumentation. If the client reconnects after a disconnect, the session is associated
with a new row in the t hr eads table and the thread monitoring state may be different. See The threads
Table.

If reconnection occurs, any SQL statement specified by calling nysqgl _opti ons() with the
MYSQL_| NI T_COVMAND option is re-executed.

If the connection drops, it is possible that the session associated with the connection on the server side
will still be running if the server has not yet detected that the client is no longer connected. In this case,
any locks held by the original connection still belong to that session, so you may want to kill it by calling

nysql _kill().

22

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_reconnect
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/handler.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html

NULL mysql_store_result() Return After mysql_query() Success

3.6.9 NULL mysql_store result() Return After mysql_query() Success

It is possible for nysql _store_result () toreturn NULL following a successful call to the server using
nysql _real _query() ornysqgl _query().When this happens, it means one of the following conditions
occurred:

e There was anal | oc() failure (for example, if the result set was too large).
» The data could not be read (an error occurred on the connection).

* The query returned no data (for example, it was an | NSERT, UPDATE, or DELETE).

You can always check whether the statement should have produced a nonempty result by calling
nysqgl _field count().Ifmysgl field count() returns zero, the result is empty and the

last query was a statement that does not return values (for example, an | NSERT or a DELETE). If
nysqgl field count() returns a nonzero value, the statement should have produced a honempty
result. See the description of the mysql fi el d_count () function for an example.

You can test for an error by calling nysql _error () ornysqgl _errno().

3.6.10 Results Available from a Query

In addition to the result set returned by a query, you can also get the following information:

 nysql affected rows() returns the number of rows affected by the last query when doing an
| NSERT, UPDATE, or DELETE.

For a fast re-create, use TRUNCATE TABLE.

* nysql _num rows() returns the number of rows in a result set. With mysql _store_resul t (),
nysqgl _num rows() may be called as soon as nysql store_result() returns. With
nysql use result(),nysqgl _numrows() may be called only after you have fetched all the rows
with nysql _fetch_row().

* nysql _insert_id() returns the ID generated by the last query that inserted a row into a table with an
AUTO_| NCREMENT index. See Section 5.4.42, “mysql_insert_id()".

e Some queries (LOAD DATA, | NSERT | NTO ... SELECT, UPDATE) return additional information. The
result is returned by nysql _i nf o() . See the description for nysql i nf o() for the format of the string
that it returns. nysql _i nf o() returns a NULL pointer if there is no additional information.

3.6.11 Obtaining the Unique ID for the Last Inserted Row

If you insert a record into a table that contains an AUTO | NCREMENT column, you can obtain the value
stored into that column by calling the mysqgl i nsert i d() function.

You can check from your C applications whether a value was stored in an AUTO_| NCREMENT column
by executing the following code (which assumes that you've checked that the statement succeeded). It
determines whether the query was an | NSERT with an AUTO_| NCREMENT index:

if ((result = nysqgl _store_result(&ysqgl)) == 0 &&
nysql _field_count(&ysqgl) == 0 &&
nysql _i nsert_id(&mysqgl) != 0)

used_id = nysql _insert_id(&ysql);

23

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

Obtaining the Server Version and Client Library Version

When a new AUTO | NCREMENT value has been generated, you can also obtain it by executing a SELECT
LAST | NSERT | D() statement with mysql real query() ornysql query() and retrieving the value
from the result set returned by the statement.

When inserting multiple values, the last automatically incremented value is returned.

For LAST | NSERT | () , the most recently generated ID is maintained in the server on a per-connection
basis. It is not changed by another client. It is not even changed if you update another AUTO | NCREMENT
column with a nonmagic value (that is, a value that is not NULL and not 0). Using LAST | NSERT _| DY)
and AUTO | NCRENMENT columns simultaneously from multiple clients is perfectly valid. Each client will
receive the last inserted ID for the last statement that client executed.

If you want to use the ID that was generated for one table and insert it into a second table, you can use
SQL statements like this:

I NSERT | NTO foo (auto,text)

VALUES(NULL, ' text'); # generate ID by inserting NULL
I NSERT | NTO foo2 (id,text)

VALUES(LAST_INSERT_ID(), " 'text'); # use IDin second table

nmysqgl _insert _id() returns the value stored into an AUTO | NCREMENT column, whether that value is
automatically generated by storing NULL or O or was specified as an explicit value. LAST | NSERT | D()
returns only automatically generated AUTO | NCREMENT values. If you store an explicit value other than
NULL or O, it does not affect the value returned by LAST | NSERT | IX() .

For more information on obtaining the last ID in an AUTO_| NCREMENT column:

» Forinformation on LAST | NSERT |), which can be used within an SQL statement, see Information
Functions.

» Forinformation on mysql _i nsert _i d(), the function you use from within the C API, see
Section 5.4.42, “mysql_insert_id()".

» For information on obtaining the auto-incremented value when using Connector/J, see Retrieving
AUTO | NCREMENT Column Values through JDBC.

 For information on obtaining the auto-incremented value when using Connector/ODBC, see Obtaining
Auto-Increment Values.

3.6.12 Obtaining the Server Version and Client Library Version

The string and numeric forms of the MySQL server version are available at compile time as the values
of the M\YSQL_SERVER VERSI ONand MYSQL_VERSI ON_| D macros, and at runtime as the values of the
nysqgl get server _info() andnysql _get server_version() functions.

The client library version is the MySQL version. The string and numeric forms of this version are available
at compile time as the values of the MYSQL_SERVER_VERSI ON and MyYSQL_VERSI ON_| D macros, and
at runtime as the values of the nysqgl _get _client_info() andnysqgl _get _client_version()
functions.

24

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html
https://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-last-insert-id.html
https://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-last-insert-id.html
https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html
https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html

The following table summarizes all functions available for the MySQL C API. For greater detail, see the

individual function descriptions.

Table 4.1 C API Functions

Chapter 4 C API Function Reference

Name Description Introduced Deprecated
mysqgl _af fected _rows(Number of rows
changed/deleted/inserted
by last UPDATE, DELETE,
or | NSERT statement
mysqgl _aut ocommit () |Setautocommit mode
mysql _bi nd_paran{() |Define query attributes |8.0.23
for next statement
executed
mysql _bi nl og_cl ose()Close replication event
stream
mysql _binl og_f et ch()Read event from
replication event stream
mysql _bi nl og_open() |Open replication event
stream
mysqgl _change_user () |Change user and
database on an open
connection
mysqgl _charact er _set | Defaeft)character
set name for current
connection
mysqgl _client find_ plRegtung pointer to a plugin
nysql _client _regi st eRegistegianglugin
mysqgl _cl ose() Close connection to
server
mysqgl _commit () Commit transaction
mysql _connect () Connect to MySQL Yes
server
mysqgl _create_db() Create database Yes
mysql _dat a_seek() Seek to arbitrary row
number in query result
set
mysql _debug() Perform DBUG_PUSH with
given string
mysql _drop_db() Drop database Yes

mysqgl _dunp_debug i nf

Géuise server to write
debug information to

error log

25

https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

Name

Description

Introduced

Deprecated

mysql _eof ()

Determine whether last
row of result set has
been read

Yes

nysql _errno()

Error number for most
recently invoked MySQL
function

nysql _error()

Error message for most
recently invoked MySQL
function

mysqgl _escape_string

Escape special
characters in string for
use in SQL statement

mysql _fetch_field()

Type of the next table
field

mysql _fetch field di

Talle (field type for given
field number

mysqgl _fetch fiel ds(

Return array of all field
structures

mysqgl _fetch_| engths

Return lengths of all
columns in current row

mysql _fetch_row()

Fetch next result set row

mysqgl _fetch_row nonbAsyrichnoriqusly fetch 8.0.16
next result set row

mysqgl field _count () |Number of result columns
for most recent statement

mysqgl field seek() |Seektocolumn within
result set row

mysql _field tell () |Field position for last
mysql _fetch_field()
call

mysqgl free result() |Free result set memory

mysqgl _free result noAsyrotkomaysly free 8.0.16
result set memory

nysql _free_ssl _sessiDispdaé ®f session 8.0.29
data handle from last
nmysqgl _get _ssl _sessi on_dat a()

call

mysql _get _character |

| édrmation(gbout default
character set

mysqgl _get _client _inf

Glient version (string)

mysqgl _get _client_ve

Gliemt(Jersion (integer)

mysqgl _get _host _info

Information about the
connection

26

Name Description Introduced Deprecated
mysql _get _option() |Value ofa
mysql _options()
option
nysql _get _prot o_i nf pPjotocol version used by
the connection
mysqgl _get server i ni&élver version number
(string)
nysql _get _server _verSéemwe(yersion number
(integer)
mysql _get _ssl _ci phefCurrent SSL cipher
mysqgl get ssl _sessi pRetlmh se$sion data for |8.0.29
SSL-enabled connection
mysqgl _get ssl _sessi ¢Whetheread§gssion is 8.0.29
reused
mysqgl _hex_string() |Encode stringin
hexadecimal format
mysql _info() Information about most
recently executed
statement
mysqgl _init() Get or initialize a MYSQL
structure
mysqgl _insert _id() ID generated for an
AUTO | NCREMENT
column by previous
statement
mysqgl _kill () Kill a thread Yes
mysql _I'i brary_end() |Finalize MySQL C API
library
mysqgl _|ibrary_init()lInitialize MySQL C API
library
mysql _|ist_dbs() Return database names
matching regular
expression
mysqgl _list_fields()|Return field names Yes
matching regular
expression
mysql _|'i st_processeslist of current server Yes

threads

mysqgl _|ist_tables()

Return table names
matching regular

expression
mysql | oad_pl ugi n() |Load a plugin
mysql _| oad_pl ugi n_v(Load a plugin

27

Name Description Introduced Deprecated
mysql _nore_resul t s()Check whether more
results exist
mysqgl next result () |Return/initiate next
result in multiple-result
execution
nysql _next _resul t _noAsynobkomaysly return/ |8.0.16
initiate next result in
multiple-result execution
mysqgl _num fiel ds() |Number of columnsin
result set
mysql _num rows() Number of rows in result
set
mysql _options() Set option prior to
connecting
mysql _options4() Set option prior to
connecting
mysql _pi ng() Ping server
mysqgl _pl ugi n_get optGenplugin option 8.0.27
nysql _pl ugi n_opt i on$$et plugin option
mysqgl _query() Execute statement
mysqgl _real _connect (JConnect to MySQL
server
mysql _real connect _d@ensect(td MySQL 8.0.22
server using DNS SRV
record
mysqgl real connect nAsyriahcémaougly connect |8.0.16
to MySQL server
mysqgl real escape_stEncade special
characters in statement
string
mysqgl _real escape_siEncadejspecidl)
characters in statement
string accounting for
guoting context
mysql _real query() |Execute statement
mysqgl real query_ nonphsyrdhromgysly execute |8.0.16
statement
mysqgl _refresh() Flush or reset tables and Yes
caches
mysqgl _rel oad() Reload grant tables Yes

mysql _reset_connect i

Resget the connection to
clear session state

mysqgl reset _server _

Clelar cakleed RSA public
key from client library

28

Name Description Introduced Deprecated
mysqgl result _net adaiWhether a result set has |8.0.13
metadata
mysql _rol | back() Roll back transaction
mysqgl _row seek() Seek to row offset in
result set
mysqgl _row tell () Current position within
result set row
mysql _sel ect _db() Select database
mysqgl server _end() |Finalize MySQL C API Yes
library
nysql _server _init () [Initialize MySQL C API Yes
library
nysql _sessi on_t r ack |Giest dart aft §8ssion
state-change information
mysql _sessi on_track|Next parkof $ession
state-change information
mysqgl set char act er |Set ¢yrrent connection
default character set
mysqgl _set | ocal _infiS$et ld@ARUDATA LOCAL
handler callbacks to
default values
nysql _set _| ocal _i nf i Installzapfliea{ion-specific
LOAD DATA LOCAL
handler callbacks
mysql _set _server _opi$etgption for current
connection
mysql _shut down() Shut down MySQL server Yes
mysql _sql state() SQLSTATE value for
most recently invoked
MySQL function
mysqgl _ssl _set () Prepare to establish SSL 8.0.35

connection to server

mysql _stat ()

Server status

mysqgl _stnt _af fected]

| Nombe) of rows
changed/deleted/inserted
by last prepared UPDATE,
DELETE, or | NSERT
statement

mysqgl _stmt _attr_get

Get attribute value for
prepared statement

mysqgl _stmnt_attr_set

$et attribute value for
prepared statement

mysql _stmt _bi nd_par

rAggociate application

data buffers with

29

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

Name

Description

Introduced

Deprecated

parameter markers in
prepared statement

mysqgl _stmt _bind _res

IAsgqciate application
data buffers with columns
in result set

mysqgl _stmt _cl ose()

Free memory used by
prepared statement

mysql _stnmt _data_see

Beek to arbitrary row
number in prepared
statement result set

mysqgl _stmt _errno()

Error number for most
recently invoked MySQL
prepared-statement
function

mysqgl _stmt _error()

Error message for most
recently invoked MySQL
prepared-statement
function

mysqgl _stnt _execut e(

Execute prepared
statement

mysql _stmt _fetch()

Fetch next result set row
and return data for all
bound columns

mysqgl _stnt _fetch _col

Eetches data for one
column of current result
set row

mysqgl _stnt _field co

INti(nber of result columns
for most recent prepared
statement

mysqgl _stmt _free_res

ufFtee) resources allocated
to statement handler

mysql _stmt _init()

Allocate and initialize
memory for M\YSQL_ STMT
structure

mysqgl _stnt _insert i

O generated for an
AUTO | NCREMENT
column by previous
prepared statement

mysqgl _stmt _next _res

uRetUrn/initiate next
result in multiple-result
prepared statement
execution

mysqgl _stnt _num rows

Row count from buffered
statement result set

mysql _stnmt _param co

INufber of parameters in
prepared statement

30

Name

Description

Introduced

Deprecated

mysql _stmt _param nef

Retura parameter
metadata as result set

mysqgl _stnt _prepare(

Prepare statement for
execution

mysqgl _stmt _reset ()

Reset statement buffers
on server side

mysqgl _stmt_result_m

cRetlmn pfgpared
statement metadata as
result set

mysql _stm _row seek

$eek to row offset in
prepared statement result
set

mysqgl _stnt _row tell

Current position within
prepared statement result
set row

mysqgl _stmt _send_| on

ySellad &ng data in chunks
to server

mysqgl _stnt_sql state

$QLSTATE value for
most recently invoked
MySQL prepared-
statement function

mysql _stmt _store_re

sRetrigve and store entire
result set

mysqgl store_resul t(

Retrieve and store entire
result set

mysqgl _store_result

nAsyriahecamoug]y retrieve
and store entire result set

8.0.16

mysqgl _thread_end()

Finalize thread handler

mysql _thread_id()

Current thread ID

nysql _thread_init()

Initialize thread handler

mysqgl _thread_safe()

Whether client is
compiled thread-safe

mysqgl _use_result()

Initiate row-by-row result
set retrieval

mysql _war ni ng_count

Warning count for

previous statement

31

32

Chapter 5 C API Basic Interface

Table of Contents

5.1 Overview of the C API BaSIC INTEITACEiiiiiiiiieiiiii e e e 34
5.2 C API BASIC DAta SITUCLUIESceeeeiiiiiiiieee ettt e e et e e et e e e et e e e et e e e eaan s 36
5.3 C API BasiC FUNCHON REFEIENCEovuiieiiiii e e e e e e ea e eeees 42
5.4 C API BasiC FUNCLION DESCIPLIONSuuuiiiiiiiii e et e e e e e e e e e e e e e et e e et e e e e aaaeees 46
5.4.1 MySql_affeCted_TOWS() .ovuiiie it 47
0 7 111 V2To | = LU (oo o 1] 011) PPN 48
5.4.3 MysSql_biNd_Parami()coouniiiiiii i e 48
Y O 40\ ViTo | I g = U Lo TSI Y £ (N 50
5.4.5 mysql_character_SEt NAME() ...ccuuiiiieiiiii e 51
L G 111V | I [0 1=) PN 52
L0 A 411V£To | I oT0 121 01 Y 52
TSI 111V | oo L 1Yo { (P 52
5.4.9 MySOl_Create db() ..uuivieeii i 52
0 O 0\ Vi To o F= =TT = PPN 53
Lo 5 A 91V | o 1= 10 o |) PPN 54
L0 7 91 V2T | e [(0] o N | o) T 54
5.4.13 mysql_dump_debug _INfO()iiiniiiici e 55
Lo 7 401V To | =T) PP 55
o ST 401 VAT | =T 1 Lo) 56
L0 G 40 VATo | =T (1 (PPN 57
5.4.17 MySOl_€SCAPE_SIING() ovvvueirnieiiieiii ettt et e e e e e e e e e e e e e e e e e e et e ra e aa 58
5.4.18 mMysql_fetCh _field()covvneeii e 58
5.4.19 mysql_fetch_field dir€Ct()ooevniiiiiiii e 58
5.4.20 mMySql_fetCh _fIeldS() .. ccvviiiiiei e 59
5.4.21 mysql_fetch 18NGINS() ...vvuiii i 60
L 401V To | I (= (od T (0 T 60
0 91 VAT | I (1] (o I oo 101 PPN 62
5.4.24 MYSOl_fIeld_SEEK() . .evvvnieiiiiii et e 63
5.4.25 MYSAl_fIeld_TEII() ..evvneii e 63
5.4.26 MYSOl_frE@ _FESUI() .evuiiiii e e e e 63
5.4.27 mysql_free_SS|_SESSION_AALA() ..u.evvvnerrieiiieiii e 64
5.4.28 mysql_get_character _Set iNfO()oovuuiiiiiiiii e 64
5.4.29 mysqgl_get ClIENt INTO() ..vuiiienieiiiei e e 65
5.4.30 Mysql_get ClIENT VEISION() v.uueirneiii et e e e e e e e e e e e e e e et e et e e e eeanas 65
5.4.31 mMysql_get hoSt INTO() ..vvvniiiiieiii e 65
0 2 191 ViTo | I o [al o o1 1o 1) PSP 66
5.4.33 Mysql_get _Proto _iNfO() ..oeuuiiiiiiiiii e 67
5.4.34 mysql_get SErver_IiNfO()iiiuuiiiii i 67
5.4.35 MYSQl_gEt SEIVEI _VEISION() «ovuuereniiiiiieeii ettt e et e et e e e e e e e et e et e e et e e et e e s e e et aeeaneesnaees 68
5.4.36 MySql_get SSI_CIPNEI() ..vuiienieii e 68
5.4.37 mysql_get SS|_SeSSION_datal)ocvvvuiiiiieiiie e 68
5.4.38 mysql_get _SS|_SESSION_TEUSEU() ...cvvuueiiriiiii e ettt e e e e e e e e e e e e e e e e e ees 69
5.4.39 MYSAlL NEX_SIING() - evvneiiiieeii et e e e e r e 69
5.4.40 MYSOL INFO() 1orrniiiiiiiiie i a e e ra e 70
L0 5 1)V | L1 PPN 71
0 o 01V To | I Y= ST [T PPN 71
L o B 401V | 1 PN 73
5.4.44 MySOl_IBrary _€NA() ..u.ceuniiiiiei e 74

33

Overview of the C API Basic Interface

5.4.45 MySOl_IBrary INIt() «...oeeenoe e
5.4.46 MYSAl_LIST ADS() ovvvniiiiiieiie e a e
5.4.47 MYSOl_LIStfIEIAS() ..nvvrnieiiiei e
5.4.48 MYSOI LISt PrOCESSES() «rvvueeuniiiiiieiii ettt et e e e et e et e e e e e e e e e e aa e e et e e et e e et e e e e eaen
5.4.49 MySOl_lISt tADIES() 1ovvuiiiiiii e
5.4.50 MYSOl_MOIE_TESUIIS() «evuneiinieiiiiei it e e e e e e e e e e e et e e et e e et e e enn s
5.4.51 MYSOlL NEXE TESUI() «.evvneiiieii et e e e et e e e e e e e e e e e e e aaaees
5.4.52 MysSAl_NUM_FIEIAS() c.vuniiiiie e e
5.4.53 MYSOL NUM_TOWS() «.iituiiiiieeiii ittt e e e e e e e e e e e e et e e et e e et e e et e e st e e et e eaaeesnnaees
Y A 401 ViTo | I 141 T (N
TSR 101V To | o) L1 [0 1S T PP
TG 40 V2To | o1 LT T I
S A 401V To | e 18 1=/ PP
5.4.58 MYSOl_ral _CONNECL() ...evvrnieiii it e e e e e e e e et e e et e e et e eeaaeees
5.4.59 mysql_real _CONNECE ANS_ SIV() ..oivuniiiiiieii i e e e e e e eeaa s
5.4.60 mysql_real _eSCape StNG() «.ueeerniiirnieiiiei et e e e
5.4.61 mysqgl_real_escape_String_ QUOLE()ueieueiiiieiiii e e e e e e e e e e e
o Gy 0\ To | I =T o [V T=T oY
5.4.63 MYSOL FEITESN() ..oveeiiii i
0 7 01V | I =1 (o =T [
5.4.65 MySQl_reSet_CONNECHON() ...ivuniiii e e e e e e e e e e et e e e e aenas
5.4.66 mysqgl_reset_server_public_KeY()coouiiiiiiii
5.4.67 mysql_result_metadatal)oeveiiiiiiie e
o1 I 401V To | I 01 o= Uox) S
5.4.69 MYSOl TOW_SEEK() +rruueerneiitieiiii ettt ettt e et e e e e e e e e et e e et e e e et e e et e e et e e e e e eaneeaen
0 O 401V To | I o) VA (=L S
5.4.71 MySOl_SEIECT D) 1ovnniieneii i
5.4.72 MYSOl_SEIVET _ENA() .ivvniiiieiii ettt et e e e e e e e e e e e
5.4.73 MYSOl_SEIVEL INMIL() evvreiiiieee e e e e e e e e e e e et e e e e aaas
5.4.74 mysql_session_track get firSt()couiiiiiiiii e
5.4.75 mysql_sessSion_track get NEXL()cvuveiiiiiiii i
5.4.76 mMysSql_Set_Character _SE()ceuuiiiiieiii i e e e e e a e
5.4.77 mysql_set_local_infile_default()ccoeeiiiiiiii
5.4.78 mysqgl_set_local_infile_handler()oooeiioiii e
5.4.79 mMySQl_SEt_SEIVEr_OPLION() «evuueeeneeiieeiiieee e et ettt e e e e e e e e e e e e et e e et e e et e e e e aaaaaes
5.4.80 MYSOl_SHULAOWN() 1.vnniieieii i e e e e e e e e e et e e e e e eeaen
S A 01V To | =T |5 €= L (=) P
5.4.82 MYSOL SSI SBI() orvrniiiiiei et
SR T 401V To | =) - L
5.4.84 MYSOl_SIOrE FESUIL() 1.vuueerneiiieii e et e e e e e e e e e e e et e e e e
5.4.85 MYSAl_thread Qd() ...vuoeeeeeiiiei e e
5.4.86 MYSOl_USE_FESUI() «.evvueiiieiii it e e e e e e e e e e e e e et e e e e ean s
5.4.87 mMySql_WarNing_COUNT()uuiiirnieiiieii et e e e e e e e e e e e e e e e et eeaaneeennaas

This chapter describes the set of MySQL C API “basic” interface. For the most part, this interface

comprises the original set of C API data structures and functions to handle client/server interaction,
before others were invented for more specialized purposes (such as prepared-statement handling). Other
chapters describe more those more specialized data structures and functions.

5.1 Overview of the C API Basic Interface

Application programs should use this general outline for interacting with MySQL by means of the client
library:

34

Overview of the C API Basic Interface

1. Initialize the MySQL client library by calling nysql library init().

2. Initialize a connection handler by calling nysql _i ni t () and connect to the server by calling a
connection-establishment function such as nysql _real connect ().

3. Issue SQL statements and process their results. (The following discussion provides more information
about how to do this.)

4. Close the connection to the MySQL server by calling nysql _cl ose().
5. End use of the MySQL client library by calling nysqgl _I'i brary_end() .

The purpose of calling nysql _library_init() andnysql _l'ibrary_end() isto provide proper
initialization and finalization of the MySQL client library. For applications that are linked with the client
library, they provide improved memory management. If you do not call mysql _I'i brary_end(), a block
of memory remains allocated. (This does not increase the amount of memory used by the application, but
some memory leak detectors will complain about it.)

In a nonmultithreaded environment, the callto mysql _|i brary_init () may be omitted, because

nysql _i nit () will invoke it automatically as necessary. However, nysql _library_init() is

not thread-safe in a multithreaded environment, and thus neither is mysql _i ni t (), which calls

nmysqgl _library init().Youmusteithercallnysql |ibrary init() priortospawning any threads,
or else use a mutex to protect the call, whether you invoke nysql _| i brary_i nit () orindirectly through
nmysql _i nit (). This should be done prior to any other client library call.

To connect to the server, call mysqgl i nit () toinitialize a connection handler, then call a connection-
establishment function such as nysql _real _connect () with that handler (along with other information
such as the host name, user name, and password). When you are done with the connection, call

nysqgl _cl ose() to terminate it. Do not use the handler after it has been closed.

Upon connection, nysql _real connect () setsthereconnect flag (part of the MYSQL structure)
to a value of 0. You can use the MYSQL_OPT_RECONNECT option (deprecated as of MySQL 8.0.34) to
nysqgl _options() to control reconnection behavior. Setting the flag to 1 cause the client to attempt
reconnecting to the server before giving up if a statement cannot be performed because of a lost
connection.

Note

Beginning with 8.0.34, the automatic reconnection feature (Section 3.6.8,
“Automatic Reconnection Control”) is deprecated and subject to removal in a future
release of MySQL.

While a connection is active, the client may send SQL statements to the server using

mysql _real query() ormysql _query() . The difference between the two is that nysqgl _query()
expects the query to be specified as a null-terminated string whereas mysql _real _query() expects
a counted string. If the string contains binary data (which may include null bytes), you must use

mysql _real _query().

For each non-SELECT query (for example, | NSERT, UPDATE, DELETE), you can find out how many rows
were changed (affected) by calling nysql _af fected_rows().

For SELECT queries, you retrieve the selected rows as a result set. (Note that some statements are
SELECT-like in that they return rows. These include SHOW DESCRI BE, and EXPLAI N. Treat these
statements the same way as SELECT statements.)

There are two ways for a client to process result sets. One way is to retrieve the entire result set all at
once by calling nysql _store_resul t (). This function acquires from the server all the rows returned by

35

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/describe.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

C API Basic Data Structures

the query and stores them in the client. The second way is for the client to initiate a row-by-row result set
retrieval by calling mysqgl _use_resul t (). This function initializes the retrieval, but does not actually get
any rows from the server.

In both cases, you access rows by calling nysql _fetch_row().Withnmysql store result(),
nmysqgl fetch row() accesses rows that have previously been fetched from the server. With

nmysqgl use result(),nysql _fetch row() actually retrieves the row from the server. Information
about the size of the data in each row is available by calling nysql _fetch_I engt hs().

After you are done with a result set, call mysqgl _free_result () to free the memory used for it.

The two retrieval mechanisms are complementary. Choose the approach that is most appropriate for each
client application. In practice, clients tend to use nmysql store_resul t () more commonly.

An advantage of mysql store_resul t () isthat because the rows have all been fetched to the
client, you not only can access rows sequentially, you can move back and forth in the result set using
nmysqgl data_seek() ornysql row seek() to change the current row position within the result set.
You can also find out how many rows there are by calling nysqgl _num r ows() . On the other hand, the
memory requirements for nysql _store_resul t () may be very high for large result sets and you are
more likely to encounter out-of-memory conditions.

An advantage of mysql _use_resul t () is that the client requires less memory for the result set because
it maintains only one row at a time (and because there is less allocation overhead, nysqgl _use_resul t ()
can be faster). Disadvantages are that you must process each row quickly to avoid tying up the server,
you do not have random access to rows within the result set (you can only access rows sequentially),

and the number of rows in the result set is unknown until you have retrieved them all. Furthermore, you
must retrieve all the rows even if you determine in mid-retrieval that you've found the information you were
looking for.

The API makes it possible for clients to respond appropriately to statements (retrieving rows only

as necessary) without knowing whether the statement is a SELECT. You can do this by calling

nysqgl store_result() aftereachnysqgl real query() (ornysqgl _query()). If the result

set call succeeds, the statement was a SELECT and you can read the rows. If the result set call

fails, call mysql field count() todetermine whether a result was actually to be expected. If

nysqgl field count() returns zero, the statement returned no data (indicating that it was an | NSERT,
UPDATE, DELETE, and so forth), and was not expected to return rows. If nysql field count() is
nonzero, the statement should have returned rows, but did not. This indicates that the statement was a
SELECT that failed. See the description for nysql _fi el d _count () for an example of how this can be
done.

Both nysql store result() and mysqgl use result () enable you to obtain information about

the fields that make up the result set (the number of fields, their names and types, and so forth). You

can access field information sequentially within the row by calling nysqgl _fetch_fi el d() repeatedly,
or by field number within the row by calling nysql _fetch_fi el d_di rect (). The current field

cursor position may be changed by calling mysqgl fi el d_seek() . Setting the field cursor affects
subsequent calls to mysql _fetch fiel d().You can also getinformation for fields all at once by calling
nysql _fetch_fields().

For detecting and reporting errors, MySQL provides access to error information by means of the

nmysqgl _errno() and nysql _error () functions. These return the error code or error message for the
most recently invoked function that can succeed or fail, enabling you to determine when an error occurred
and what it was.

5.2 C API Basic Data Structures

36

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

C API Basic Data Structures

This section describes C API data structures other than those used for prepared statements, the
asynchronous interface, or the replication stream interface. For information about those, see Section 6.2,
“C API Prepared Statement Data Structures”, Section 7.2, “C APl Asynchronous Interface Data
Structures”, and Section 10.2, “C API Binary Log Data Structures”.

MYSQL

This structure represents the handler for one database connection. It is used for almost all MySQL
functions. Do not try to make a copy of a MYSQL structure. There is no guarantee that such a copy will be
usable.

MYSQL_RES

This structure represents the result of a query that returns rows (SELECT, SHOW DESCRI BE, EXPLAI N).
The information returned from a query is called the result set in the remainder of this section.

MYSQL_ROW

This is a type-safe representation of one row of data. It is currently implemented as an array of
counted byte strings. (You cannot treat these as null-terminated strings if field values may contain
binary data, because such values may contain null bytes internally.) Rows are obtained by calling

nmysql _fetch_row).
MYSQ._FI ELD

This structure contains metadata: information about a field, such as the field's name, type, and size. Its
members are described in more detail later in this section. You may obtain the MYSQL_FI ELD structures
for each field by calling mysqgl _fetch_fi el d() repeatedly. Field values are not part of this structure;
they are contained in a MYSQL_ ROWSstructure.

MYSQL_FI ELD_OFFSET

This is a type-safe representation of an offset into a MySQL field list. (Used by nysql _fiel d_seek().)
Offsets are field numbers within a row, beginning at zero.

my_ul ongl ong

A type used for 64-bit unsigned integers. The ny_ul ongl ong type was used before MySQL 8.0.18. As
of MySQL 8.0.18, use the ui nt 64_t C type instead.

ny_bool

A boolean type, for values that are true (nonzero) or false (zero). The my_bool type was used before
MySQL 8.0. As of MySQL 8.0, use the bool ori nt C type instead.

Note

The change from my_bool to bool means that the nysql . h header file requires
a C++ or C99 compiler to compile.

The MYSQL_FI ELD structure contains the members described in the following list. The definitions apply
primarily for columns of result sets such as those produced by SELECT statements. M\YSQL_FI ELD
structures are also used to provide metadata for OUT and | NOUT parameters returned from stored
procedures executed using prepared CALL statements. For such parameters, some of the structure
members have a meaning different from the meaning for column values.

37

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/describe.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/call.html

C API Basic Data Structures

Tip

To view the MYSQL_FI ELD member values for result sets interactively, start the
nysql client with the - - col unm-t ype- i nf o option, then execute some sample
queries.

char * name

The name of the field, as a null-terminated string. If the field was given an alias with an AS clause, the
value of nane is the alias. For a procedure parameter, the parameter name.

char * org_nane

The name of the field, as a null-terminated string. Aliases are ignored. For expressions, the value is an
empty string. For a procedure parameter, the parameter name.

char * table

The name of the table containing this field, if it is not a calculated field. For calculated fields, the t abl e
value is an empty string. If the column is selected from a view, t abl e names the view. If the table or
view was given an alias with an AS clause, the value of t abl e is the alias. For a UNI ON, the value is the
empty string. For a procedure parameter, the procedure name.

char * org table

The name of the table, as a null-terminated string. Aliases are ignored. If the column is selected from a
view, or g_t abl e names the view. If the column is selected from a derived table, or g_t abl e names
the base table. If a derived table wraps a view, or g_t abl e still names the base table. If the column

is an expression, or g _t abl e is the empty string. For a UNI ON, the value is the empty string. For a
procedure parameter, the value is the procedure name.

char * db

The name of the database that the field comes from, as a null-terminated string. If the field is a
calculated field, db is an empty string. For a UNI ON, the value is the empty string. For a procedure
parameter, the name of the database containing the procedure.

char * catal og
The catalog name. This value is always " def " .
char * def

The default value of this field, as a null-terminated string. This is set only if you use
mysql _list_fields().

unsi gned long |l ength
The width of the field. This corresponds to the display length, in bytes.

The server determines the | engt h value before it generates the result set, so this is the minimum length
required for a data type capable of holding the largest possible value from the result column, without
knowing in advance the actual values that will be produced by the query for the result set.

For string columns, the | engt h value varies on the connection character set. For example, if the
character setis | ati nl, a single-byte character set, the | engt h value for a SELECT ' abc' query is
3. If the character set is ut f 8nmb4, a multibyte character set in which characters take up to 4 bytes, the
| engt h value is 12.

38

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_column-type-info
https://dev.mysql.com/doc/refman/8.0/en/union.html
https://dev.mysql.com/doc/refman/8.0/en/union.html
https://dev.mysql.com/doc/refman/8.0/en/union.html

C API Basic Data Structures

unsi gned | ong max_| ength

The maximum width of the field for the result set (the length in bytes of the longest field value for the
rows actually in the result set). If you use mysql store_result() ormysql |ist_fields(),this
contains the maximum length for the field. If you use nysql _use_resul t (), the value of this variable

is zero.

The value of nax_| engt h is the length of the string representation of the values in the result set. For
example, if you retrieve a FLOAT column and the “widest” value is - 12. 345, max_| engt h is 7 (the

length of ' - 12. 345").

If you are using prepared statements, max_| engt h is not set by default because for the binary protocol
the lengths of the values depend on the types of the values in the result set. (See Section 6.2, “C

API Prepared Statement Data Structures”.) If you want the nax_| engt h values anyway, enable the
STMI_ATTR _UPDATE_NMAX LENGTH option with mysql _stnt _attr_set () and the lengths will be
set when you call nysql _stnt_store result().(See Section 6.4.3, “mysqgl_stmt_attr_set()”, and

Section 6.4.28, “mysql_stmt_store_result()".)

unsi gned int nane_l ength

The length of nane.

unsigned int org_nane_| ength
The length of or g_nane.

unsigned int table | ength
The length of t abl e.

unsigned int org_table_length
The length of org_t abl e.
unsigned int db_length

The length of db.

unsigned int catal og_|ength
The length of cat al og.

unsi gned int def l|length

The length of def .

unsigned int flags

Bit-flags that describe the field. The f | ags value may have zero or more of the bits set that are shown in

the following table.

Flag Value

Flag Description

NOT_NULL_FLAG

Field cannot be NULL

PRI _KEY_FLAG

Field is part of a primary key

UNI QUE_KEY_FLAG

Field is part of a unique key

MULTI PLE_KEY_FLAG

Field is part of a nonunique key

39

https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html

C API Basic Data Structures

Flag Value Flag Description

UNSI GNED_FLAG Field has the UNSI GNED attribute

ZEROFI LL_FLAG Field has the ZEROFI LL attribute

Bl NARY_FLAG Field has the Bl NARY attribute

AUTO _| NCREMENT_FLAG Field has the AUTO | NCREVENT attribute

ENUM_FLAG Field is an ENUM

SET_FLAG Field is a SET

BLOB FLAG Field is a BLOB or TEXT (deprecated)

TI MESTAMP_FLAG Field is a TI MESTAMP (deprecated)

NUM_FLAG Field is numeric; see additional notes following
table

NO DEFAULT VALUE FLAG Field has no default value; see additional notes
following table

Some of these flags indicate data type information and are superseded by or used in conjunction with
the MYSQL_TYPE_ xxx value in the fi el d- >t ype member described later:

e To check for BLOB or TI MESTAMP values, check whether t ype is MYSQL_TYPE_BLOB or
MYSQL_TYPE_TI MESTAMP. (The BLOB_FLAGand TI MESTAMP_FLAGflags are unneeded.)

« ENUMand SET values are returned as strings. For these, check that the t ype value is
MYSQL_TYPE_STRI NGand that the ENUM FLAGor SET_FLAGflag is set in the f | ags value.

NUM _FLAG indicates that a column is numeric. This includes columns with a type of
MYSQ._TYPE_DECI MAL, MYSQL_TYPE_NEWDECI MAL, MYSQL_TYPE_TI NY, MYSQL_TYPE_SHORT,
MYSQL_TYPE_LONG MYSQL_TYPE FLOAT, MYSQL_TYPE_DOUBLE, MYySQL_TYPE_NULL,
MYSQL_TYPE LONGLONG MYSQL_TYPE | NT24, and MYSQL_TYPE_YEAR.

NO DEFAULT_VALUE FLAGindicates that a column has no DEFAULT clause in its definition. This does
not apply to NULL columns (because such columns have a default of NULL), or to AUTO_| NCREMENT
columns (which have an implied default value).

The following example illustrates a typical use of the f | ags value:

if (field->flags & NOT_NULL_FLAG
printf("Field cannot be null\n");

You may use the convenience macros shown in the following table to determine the boolean status of
the f | ags value.

Flag Status Description

'S NOT_NULL(fI ags) True if this field is defined as NOT NULL

IS PRI _KEY(fl ags) True if this field is a primary key

IS BLOB(fl ags) True if this field is a BLOB or TEXT (deprecated;
testfi el d- >t ype instead)

e unsigned int decinmals
The number of decimals for numeric fields, and the fractional seconds precision for temporal fields.

e unsigned int charsetnr

https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

C API Basic Data Structures

An ID number that indicates the character set/collation pair for the field.

Normally, character values in result sets are converted to the character set indicated by the
character_set resul ts system variable. In this case, char set nr corresponds to the

character set indicated by that variable. Character set conversion can be suppressed by setting
character_set results toNULL. Inthis case, char set nr corresponds to the character set of the
original table column or expression. See also Connection Character Sets and Collations.

To distinguish between binary and nonbinary data for string data types, check whether the char set nr
value is 63. If so, the character set is bi nar y, which indicates binary rather than nonbinary data. This
enables you to distinguish Bl NARY from CHAR, VARBI NARY from VARCHAR, and the BLOB types from the
TEXT types.

char set nr values are the same as those displayed in the | d column of the SHOW COLLATI ON
statement or the | D column of the | NFORVATI ON_ SCHEMA COLLATI ONS table. You can use those
information sources to see which character set and collation specific char set nr values indicate:

nysqgl > SHOW COLLATI ON WHERE | d = 63;

dfocccooooooo dfcccooocooo dfocccoqmoooooooo dfoccooooooo dfcccooocooo +
| Collation | Charset | Id | Default | Conpiled | Sortlen |
dfocccooooooo dfcccooocooo dfocccoqmoooooooo dfoccooooooo dfcccooocooo +
| binary | binary | 63 | Yes | Yes | 1|
dfocccooooooo dfcccooocooo dfocccoqmoooooooo dfoccooooooo dfcccooocooo +

nysql > SELECT COLLATI ON_NAMVE, CHARACTER SET NAVE
FROM | NFORMATI ON_SCHEMA. COLLATI ONS WHERE | D = 33;

doococcococcooocooo doococcooocococoooooo +
| COLLATI ON_NAME | CHARACTER SET_NAME |
doococcococcooocooo doococcooocococoooooo +
| utf8_general _ci | utf8 |
doococcococcooocooo doococcooocococoooooo +

enum enum field_types type

The type of the field. The t ype value may be one of the MYSQL_TYPE_ symbols shown in the following

table.

Type Value Type Description
MYSQL_TYPE_TI NY TI NYI NT field
MYSQL_TYPE_SHORT SMALLI NT field
MYSQL_TYPE_LONG | NTEGER field
MYSQL_TYPE_ | NT24 VEDI UM NT field
MYSQL_TYPE_LONGLONG Bl G NT field

MYSQL_TYPE_DECI MAL

DECI VAL or NUVERI Cfield

MYSQL_TYPE_NEWDEC! MAL

Precision math DECI MAL or NUVERI C

MYSQL_TYPE_FLOAT FLOAT field
MYSQL_TYPE_DOUBLE DOUBLE or REAL field
MYSQL_TYPE_BI T BI T field
MYSQL_TYPE_TI MESTAMP TI MESTAMP field
MYSQL_TYPE_DATE DATE field
MYSQL_TYPE_TI ME TI VE field

41

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/charset-connection.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/show-collation.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-collations-table.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/bit-type.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html

C API Basic Function Reference

Type Value Type Description
MYSQL_TYPE_DATETI ME DATETI IVE field
MYSQL_TYPE_YEAR YEAR field

MYSQL_TYPE_STRI NG

CHAR or Bl NARY field

MYSQL_TYPE_VAR_STRI NG

VARCHAR or VARBI NARY field

MYSQL_TYPE_BLOB

BLOB or TEXT field (use max_| engt h to determine
the maximum length)

MYSQL_TYPE_SET SET field
MYSQL_TYPE_ENUM ENUMfield
MYSQL_TYPE_GEOVETRY Spatial field

MYSQL_TYPE_NULL

NUL L-type field

The MYSQL_TYPE_TI ME2, \WSQL_TYPE_DATETI ME2, and MYSQL_TYPE_TI MESTAMP2) type codes
are used only on the server side. Clients see the MYSQL_TYPE_TI Mg, MYSQL_TYPE_DATETI ME, and

MYSQL_TYPE_TI MESTANP codes.

You can use the | S NUM) macro to test whether a field has a numeric type. Pass the t ype value to
'S NUM) and it evaluates to TRUE if the field is numeric:

if (IS NUMfield->type))
printf("Field is nuneric\n");

ENUMand SET values are returned as strings. For these, check that the t ype value is
MYSQL_TYPE_STRI NGand that the ENUM FLAGor SET_FLAGflag is set in the f | ags value.

5.3 C API Basic Function Reference

The following table summarizes the functions available in the C API basic interface. For greater detail, see
the descriptions in Section 5.4, “C API Basic Function Descriptions”.

Table 5.1 C API Basic Interface Functions

Name Description Introduced Deprecated
mysqgl _af fect ed_r ows(Number of rows
changed/deleted/inserted
by last UPDATE, DELETE,
or | NSERT statement
mysqgl aut ocommi t () |Setautocommit mode
mysqgl _bind_paran{() |Define query attributes |8.0.23

for next statement
executed

mysgl _change_user () |Change user and
database on an open
connection

mysqgl _char act er _set | Defapft)character
set name for current
connection

mysqgl _cl ose() Close connection to

server

42

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

C API Basic Function Reference

Name Description Introduced Deprecated
mysqgl _commit () Commit transaction
mysql _connect () Connect to MySQL Yes
server
mysqgl _create_db() Create database Yes
nmysqgl _dat a_seek() Seek to arbitrary row
number in query result
set
mysql _debug() Perform DBUG_PUSH with
given string
mysql _drop_db() Drop database Yes
mysqgl _dunp_debug_ i niGéuse server to write
debug information to
error log
mysqgl _eof () Determine whether last Yes
row of result set has
been read
mysql _errno() Error number for most
recently invoked MySQL
function
mysqgl _error() Error message for most
recently invoked MySQL
function
mysql escape_stri ng(Escape special
characters in string for
use in SQL statement
mysqgl _fetch field()|Type of the next table
field
mysqgl fetch fiel d_diTatuae(field type for given
field number
mysqgl fetch fiel ds()Return array of all field
structures
mysqgl _fetch | engt hs{Return lengths of all
columns in current row
mysqgl _fetch_row() Fetch next result set row
mysqgl _field_count () |Number of result columns
for most recent statement
mysqgl field seek() |Seektocolumn within
result set row
mysqgl _field tell () |Field position for last
nysql _fetch_field()
call
mysqgl _free_result () |Free result set memory
mysqgl free_ssl _sessibispdae af session 8.0.29

data handle from last

43

C API Basic Function Reference

Name Description Introduced Deprecated
nmysqgl get ssl _sessi on_data()
call

mysqgl _get char act er | mé&drmation(dbout default
character set

nysql _get _cli ent _i n{@Gliént version (string)

mysqgl _get client verGliemt(Jersion (integer)

mysqgl get host i nf o(Information about the
connection

mysqgl get option() |Valueofa
nmysqgl _options()
option

mysqgl _get pr ot o_i nf pPjotocol version used by
the connection

mysqgl _get server _i ni®éjver version number
(string)

mysqgl get server verSemwef yersion number
(integer)

mysqgl _get ssl _ci phefCurrent SSL cipher

mysqgl _get _ssl _sessi pRetlmh sg¥sion data for |8.0.29
SSL-enabled connection

mysqgl _get ssl _sessi ¢Whetheread$gssion is 8.0.29
reused

mysqgl hex_string() |Encode stringin
hexadecimal format

mysqgl _info() Information about most
recently executed
statement

mysqgl _init() Get or initialize a MYSQL
structure

mysqgl _insert _id() ID generated for an
AUTO _| NCREMENT
column by previous
statement

nysql _kill() Kill a thread Yes

nysql _l'i brary_end() |Finalize MySQL C API
library

mysqgl _|ibrary_init()Initialize MySQL C API
library

mysqgl _|ist_dbs() Return database names
matching regular
expression

mysqgl |ist fields()|Return field names Yes

matching regular

expression

44

C API Basic Function Reference

Name Description Introduced Deprecated
mysql _|'i st_processeslist of current server Yes
threads
mysqgl _|ist _tabl es() |Returntable names
matching regular
expression
mysqgl _nore_resul t s()Check whether more
results exist
mysqgl _next result () |Return/initiate next
result in multiple-result
execution
mysql _num fields() |Number of columnsin
result set
mysqgl _num rows() Number of rows in result
set
mysqgl _options() Set option prior to
connecting
mysql _options4() Set option prior to
connecting
mysql _ping() Ping server
mysqgl _query() Execute statement
mysqgl _real connect (JConnect to MySQL
server
mysqgl _real _connect _¢@ensect(td MySQL 8.0.22
server using DNS SRV
record
mysql _real escape_siEncade special
characters in statement
string
mysqgl real escape_siEncadespecidl)
characters in statement
string accounting for
guoting context
mysqgl real query() |Execute statement
mysqgl _refresh() Flush or reset tables and Yes
caches
mysql _rel oad() Reload grant tables Yes
mysqgl reset connect |Re$ét the connection to
clear session state
mysqgl _reset server pQlear caklegd RSA public
key from client library
mysqgl _result_net adatWhether a result set has |8.0.13

metadata

mysql _rol | back()

Roll back transaction

45

C API Basic Function Descriptions

connection to server

Name Description Introduced Deprecated
mysql _row_seek() Seek to row offset in
result set
mysqgl _row tell () Current position within
result set row
mysqgl _sel ect _db() Select database
mysqgl _server_end() |Finalize MySQL C API Yes
library
mysql _server _init () |Initialize MySQL C API Yes
library
mysql _sessi on_track|iest gart eft g8ssion
state-change information
mysqgl session_track|Next parkof $ession
state-change information
nysql _set _char act er |Set ¢yrrent connection
default character set
mysql _set | ocal _i nfj$et IdOARUDATA LOCAL
handler callbacks to
default values
mysqgl set | ocal i nfilnstdllzaptlieation-specific
LOAD DATA LOCAL
handler callbacks
mysqgl set server _opi$etndption for current
connection
mysql _shut down() Shut down MySQL server Yes
mysql _sql state() SQLSTATE value for
most recently invoked
MySQL function
mysqgl _ssl _set () Prepare to establish SSL 8.0.35

nysql _stat ()

Server status

mysqgl _store_result(

Retrieve and store entire
result set

mysql _thread_id()

Current thread ID

mysqgl _use result()

Initiate row-by-row result
set retrieval

mysqgl _war ni ng_count

Warning count for

previous statement

5.4 C API Basic Function Descriptions

This section describes C API functions other than those used for prepared statements, the asynchronous
interface, or the replication stream interface. For information about those, see Section 6.4, “C API Prepared
Statement Function Descriptions”, Chapter 7, C API Asynchronous Interface, and Chapter 10, C API

Binary Log Interface.

46

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

mysql_affected_rows()

In the descriptions here, a parameter or return value of NULL means NULL in the sense of the C
programming language, not a MySQL NULL value.

Functions that return a value generally return a pointer or an integer. Unless specified otherwise, functions
returning a pointer return a non-NULL value to indicate success or a NULL value to indicate an error, and
functions returning an integer return zero to indicate success or nonzero to indicate an error. Note that
“nonzero” means just that. Unless the function description says otherwise, do not test against a value other

than zero:

if (result) /* correct */
. error ...

if (result < 0) /* incorrect */
. error ...

if (result == -1) /* incorrect */

. error ...

When a function returns an error, the Errors subsection of the function description lists the possible types
of errors. You can find out which of these occurred by calling mysqgl _errno() . A string representation of
the error may be obtained by calling nysql _error ().

5.4.1 mysqgl_affected rows()

ui nt 64_t
nmysql _affected_rows(MYSQL *nysql)

Description

nmysqgl _af fected rows() may be called immediately after executing a statement with

nmysqgl _real query() ormysql query(). Itreturns the number of rows changed, deleted, or
inserted by the last statement if it was an UPDATE, DELETE, or | NSERT. For SELECT statements,
nmysql affected rows() works like nysgl _num rows().

For UPDATE statements, the affected-rows value by default is the number of rows actually changed. If you
specify the CLI ENT_FOUND_ROWE flag to nysql _real _connect () when connecting to nysql d, the
affected-rows value is the number of rows “found”; that is, matched by the WHERE clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in this
case, one row was inserted after the duplicate was deleted.

For | NSERT ... ON DUPLI CATE KEY UPDATE statements, the affected-rows value per row is 1 if the
row is inserted as a new row, 2 if an existing row is updated, and O if an existing row is set to its current
values. If you specify the CLI ENT_FOUND_ROWE flag, the affected-rows value is 1 (not 0) if an existing row
is set to its current values.

Following a CALL statement for a stored procedure, nysql _af f ect ed_r ows() returns the value that it
would return for the last statement executed within the procedure, or O if that statement would return - 1.
Within the procedure, you can use ROV COUNT() at the SQL level to obtain the affected-rows value for
individual statements.

nmysql _affected rows() returns a meaningful value for a wide range of statements. For details, see
the description for ROW COUNT() in Information Functions.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records were updated for an UPDATE statement, no rows matched the WHERE clause in the query or that

47

https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/replace.html
https://dev.mysql.com/doc/refman/8.0/en/insert-on-duplicate.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_row-count
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_row-count
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

mysql_autocommit()

no query has yet been executed. -1 indicates that the query returned an error or that, for a SELECT query,
nysqgl _affected rows() was called prior to calling nysql _store result().

Because nysql affected rows() returns an unsigned value, you can check for -1 by comparing the
return value to (ui nt 64 _t)-1 (orto (ui nt 64_t) ~0, which is equivalent).

Errors

None.

Example

char *stnt = "UPDATE products SET cost=cost*1. 25
WHERE gr oup=10";
nmysql _query(&rysql,stnt);
printf("%d products updated”,
(long) nysql _affected_rows(&mysql));

5.4.2 mysql_autocommit()

bool
nmysql _aut oconmi t (MYSQL *nysql ,
bool node)
Description

Sets autocommit mode on if node is 1, off if node is O.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

5.4.3 mysql_bind_param()

bool

nysql _bi nd_paran(M\YSQ. *nysql ,
unsi gned n_par ans,
MYSQL_BI ND *bi nd,
const char **nane)

Description

nmysql _bi nd_par an() , available as of MySQL 8.0.23, enables defining attributes that apply to the next
guery sent to the server. For discussion of the purpose and use of query attributes, see Query Attributes.

Attributes defined with mysql _bi nd_par am() apply to nonprepared statements executed in

blocking fashion with mysqgl _real _query() ormysql _query(), orin nonblocking fashion with
nysqgl _real _query_nonbl ocki ng() . Attributes do not apply to prepared statements executed with
mysql _stnt _execute().

If multiple mysql _bi nd_par an() calls occur prior to query execution, only the last call applies.

Attributes defined with nysql _bi nd_par an() apply only to the next query executed and are cleared
thereafter. The mysqgl reset connection() and mysqgl change_user () functions also clear any
currently defined attributes.

48

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html

mysql_bind_param()

nysqgl _bi nd_par an() is backward compatible. For connections to older servers that do not support
query attributes, no attributes are sent.

Arguments:
* nysgl : The connection handler returned from nysql _init ().
» n_par ans: The number of attributes defined by the bi nd and nane arguments.

» bi nd: The address of an array of MYSQL_BI ND structures. The array should contain n_par ans
elements, one for each attribute.

* name: The address of an array of character pointers, each pointing to a null-terminated string defining
an attribute name. The array should contain n_par ans elements, one for each attribute. Query attribute
names are transmitted using the character set indicated by the char act er _set cl i ent system
variable.

Each attribute has a name, a value, and a data type. The nane argument defines attribute names, and the
bi nd argument defines their values and types. For a description of the members of the MYSQL_ Bl ND data
structure used for the bi nd argument, see Section 6.2, “C API Prepared Statement Data Structures”.

Each attribute type most be one of the MYSQL_TYPE_xxx types listed in Table 6.1, “Permissible Input Data
Types for MYSQL_BIND Structures”, except that MYSQL_TYPE_BLOB and MYSQL_TYPE_TEXT are not
supported. If an unsupported type is specified for an attribute, a CR_UNSUPPORTED PARAM TYPE error
occurs.

Return Values
Zero for success. Nonzero if an error occurred.
Errors
* CR_UNSUPPORTED_ PARAM TYPE
The attribute data type is not supported.
Example

This example uses mysql _bi nd_par an{) to define string and integer query attributes, then retrieves and
displays their values by name using the nysqgl _query_attri bute_string() user-defined function:

MYSQL_BI ND bi nd[2] ;

const char *nanme[2] = { "nanmel", "name2" };
char *char_data = "char val ue";

int int_data = 3;

unsigned long length[2] = { 10, sizeof(int) };
int status;

/* clear and initialize attribute butffers */
menset (bi nd, 0, sizeof (bind));

bi nd[0] . buffer_type = MYSQL_TYPE_STRI NG
bi nd[0] . buffer = char_dat a;

bi nd[0] . | ength = &l engt h[0] ;
bind[0].is_null = 0;

bi nd[1] . buffer_type = MYSQL_TYPE_LONG
bind[1] . buf fer = (char *) & nt_dat a;
bind[1] .l ength = & ength[1];
bind[1].is_null = 0;

49

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#function_mysql-query-attribute-string

mysql_change_user()

/* bind attributes */

status = nysql _bi nd_par am(&mysqgl, 2, bind, nane);
test_error(&mysqgl, status);

const char *query =

"SELECT nysql _query_attribute_string(' nanel'),"

" nmysql _query_attribute_string(' name2')";
status = nysql _real _query(&mysql, query, strlen(query));
test_error(&mysqgl, status);

MYSQL_RES *result = nysqgl _store_result(&ysql);
MYSQL_ROW row = nysql _fetch_rowresult);

unsi gned | ong *l engths = nysql _fetch_l engths(result);
for(int i =0; i < 2; i++)

printf("attribute %d: [%*s]\n", i+1, (int) lengths[i],
rowfi] ? rowfi] : "NULL");
}

nmysql _free_result(result);

When executed, the code produces this result:

attribute 1: [char val ue]
attribute 2: [3]

5.4.4 mysql_change_user()

bool

nmysql _change_user (MYSQL *nysql ,
const char *user,
const char *password,
const char *db)

Description

Changes the user and causes the database specified by db to become the default (current) database on
the connection specified by nysql . In subsequent queries, this database is the default for table references
that include no explicit database specifier.

nysqgl _change_user () fails if the connected user cannot be authenticated or does not have permission
to use the database. In this case, the user and database are not changed.

Pass a db parameter of NULL if you do not want to have a default database.

This function resets the session state as if one had done a new connect and reauthenticated. (See

Section 3.6.8, “Automatic Reconnection Control”.) It always performs a ROLLBACK of any active
transactions, closes and drops all temporary tables, and unlocks all locked tables. It resets session system
variables to the values of the corresponding global system variables, releases prepared statements, closes
HANDLER variables, and releases locks acquired with GET_LOCK() . Clears any current query attributes
defined as a result of calling nysqgl _bi nd_par an{() . These effects occur even if the user did not change.

To reset the connection state in a more lightweight manner without changing the user, use
nysqgl _reset _connection().

Return Values

Errors

Zero for success. Nonzero if an error occurred.

The same that you can get from nysql real connect (), plus:

50

https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/handler.html
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock

mysql_character_set_name()

« CR_COVWWANDS_OUT_OF SYNC
Commands were executed in an improper order.
« CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR_SERVER LOST
The connection to the server was lost during the query.
« CR_UNKNOM ERROR
An unknown error occurred.
« ER_UNKNOAN_ COM ERROR
The MySQL server does not implement this command (probably an old server).
« ER_ACCESS DENI ED ERROR
The user or password was wrong.
« ER_BAD DB _ERRCR
The database did not exist.
« ER_DBACCESS_DENI ED_ERROR
The user did not have access rights to the database.
« ER_WRONG DB_NAME

The database name was too long.

Example

if (nysqgl _change_user (&nysqgl, "user", "password", "new_database"))

fprintf(stderr, "Failed to change user. Error: %\n",
nysql _error (&rysql));
}

5.4.5 mysqgl_character_set_name()

const char *
nysql _charact er _set _name(MYSQL *nysql)

Description

Returns the default character set name for the current connection.

Return Values

Errors

The default character set name

None.

51

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unknown_com_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_access_denied_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_bad_db_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_dbaccess_denied_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_db_name

mysql_close()

5.4.6 mysqgl_close()

voi d
nysqgl _cl ose(MYSQL *nysql)

Description
Closes a previously opened connection. nysql _cl ose() also deallocates the connection handler pointed

to by nysql if the handler was allocated automatically by mysql i nit () ormnmysql connect (). Do not
use the handler after it has been closed.

Return Values
None.
Errors
None.

5.4.7 mysql_commit()

bool
nmysql _conmmi t (MYSQL *nysql)

Description
Commits the current transaction.
The action of this function is subject to the value of the conpl et i on_t ype system variable. In particular,
if the value of conpl et i on_t ype is RELEASE (or 2), the server performs a release after terminating a

transaction and closes the client connection. Call mysql _cl ose() from the client program to close the
connection from the client side.

Return Values

Zero for success. Nonzero if an error occurred.
Errors

None.

5.4.8 mysqgl_connect()

MYSQL *

nysql _connect (MYSQ. *nysql,
const char *host,
const char *user,
const char *passwd)

Description

This function is deprecated. Use nysql real connect () instead.

5.4.9 mysqgl_create_db()

i nt

52

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_completion_type
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_completion_type

mysql_data_seek()

nmysql _create_db(MYSQ *nysql,
const char *db)

Description
Creates the database named by the db parameter.

This function is deprecated. Use nysql real query() ornysqgl query() toissue an SQL CREATE
DATABASE statement instead.

Return Values

Zero for success. Nonzero if an error occurred.
Errors

« CR_COVWANDS_OUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST
The connection to the server was lost during the query.
« CR_UNKNOAN ERROR
An unknown error occurred.
Example

i f(nmysqgl _create_db(&mysqgl, "ny_database"))

fprintf(stderr, "Failed to create new database. Error: %\n",
nysql _error (&ysql));
}

5.4.10 mysql_data_seek()

voi d
nysql _data_seek(MYSQL_RES *resul t,
uint64_t offset)

Description

Seeks to an arbitrary row in a query result set. The of f set value is a row humber. Specify a value in the
range from O to nysql _num rows(result)-1.

This function requires that the result set structure contains the entire result of the query, so
nmysqgl dat a_seek() may be used only in conjunction with nysql _store_resul t (), not with
nysqgl _use result ().

Return Values

None.

53

https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_debug()

Errors

None.
5.4.11 mysql_debug()

voi d

nysql _debug(const char *debug)
Description

Does a DBUG_PUSH with the given string. nysql _debug() uses the Fred Fish debug library. To use this
function, you must compile the client library to support debugging. See The DBUG Package.

Return Values
None.
Errors

None.

Example

The call shown here causes the client library to generate a trace file in/ t np/ cl i ent . t r ace on the client
machine:

nmysql _debug("d:t: O /tnp/client.trace");

5.4.12 mysql _drop_db()

int
nmysql _drop_db(MYSQL *nysql,
const char *db)

Description
Drops the database named by the db parameter.

This function is deprecated. Use nysql _real _query() ornysql _query() toissue an SQL DROP
DATABASE statement instead.

Return Values
Zero for success. Nonzero if an error occurred.
Errors
« CR_COVWANDS OUT_OF SYNC
Commands were executed in an improper order.
« CR_SERVER GONE_ERRCR
The MySQL server has gone away.

« CR_SERVER LOST

54

https://dev.mysql.com/doc/refman/8.0/en/dbug-package.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost

mysql_dump_debug_info()

The connection to the server was lost during the query.
¢ CR_UNKNOMN ERROR
An unknown error occurred.
Example

i f (nysql _drop_db(&nysqgl, "ny_database"))
fprintf(stderr, "Failed to drop the database: Error: %\n",

nmysql _error (&mysql));

5.4.13 mysqgl_dump_debug_info()

i nt
nysql _dunp_debug_i nf o(\YSQL *nysql)

Description

Instructs the server to write debugging information to the error log. The connected user must have the
SUPER privilege.

Return Values

Zero for success. Nonzero if an error occurred.
Errors

« CR_COVWWANDS_OUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER _GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN ERRCR
An unknown error occurred.

5.4.14 mysql_eof()

bool
nmysql _eof (MYSQL_RES *resul t)

Description
This function is deprecated. nysql _errno() ornysql _error () may be used instead.
nysgl _eof () determines whether the last row of a result set has been read.

If you acquire a result set from a successful call to nysql _store_resul t (), the client receives the
entire set in one operation. In this case, a NULL return from mysqgl _fetch_row() always means the

55

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_errno()

end of the result set has been reached and it is unnecessary to call nysql _eof (). When used with
nysqgl store_result(),nysql _eof () always returns true.

On the other hand, if you use mysql use_resul t () to initiate a result set retrieval, the rows of the

set are obtained from the server one by one as you call mnysql _fet ch_row() repeatedly. Because an
error may occur on the connection during this process, a NULL return value from nysql _fetch_row()
does not necessarily mean the end of the result set was reached normally. In this case, you can use

nysql _eof () to determine what happened. nmysql _eof () returns a nonzero value if the end of the result
set was reached and zero if an error occurred.

Historically, mysql _eof () predates the standard MySQL error functions nysql _errno() and

nmysql _error () .Because those error functions provide the same information, their use is preferred over
nmysql _eof (), which is deprecated. (In fact, they provide more information, because nmysql _eof ()
returns only a boolean value whereas the error functions indicate a reason for the error when one occurs.)

Return Values

Zero for success. Nonzero if the end of the result set has been reached.
Errors

None.
Example

The following example shows how you might use nysqgl _eof ():
nysql _query(&nysql, " SELECT * FROM sone_t abl e");
result = nysql _use_result(&mysql);
whi l e((row = nysql _fetch_row(result)))
// do sonething with data

}
if(!nysql _eof(result)) // nysqgl_fetch_row() failed due to an error
{

fprintf(stderr, "Error: 9%\n", nysql _error(&ysql));

However, you can achieve the same effect with the standard MySQL error functions:
nmysql _query(&rysql , " SELECT * FROM sone_t abl e");
result = nmysql _use_result(&mysql);
whi l e((row = nysqgl _fetch_row(result)))
/1 do sonmething with data

i f(nmysqgl _errno(&ysql)) // nysql _fetch_row() failed due to an error

fprintf(stderr, "Error: 9%\n", nysql _error(&ysql));
}

5.4.15 mysql_errno()

unsi gned i nt
nysql _errno(MYSQL *nysql)

Description

For the connection specified by nysql , nysqgl _errno() returns the error code for the most recently
invoked API function that can succeed or fail. A return value of zero means that no error occurred. Client

56

mysql_error()

error message numbers are listed in the MySQL er r nsg. h header file. Server error message numbers
are listed in nysql d_error. h. Errors also are listed at Error Messages and Common Problems.

Note

Some functions such as nysqgl fetch row() donotsetmysqgl errno() if
they succeed. A rule of thumb is that all functions that have to ask the server for
information reset mysql _errno() if they succeed.

MySQL-specific error numbers returned by nysqgl _errno() differ from SQLSTATE values returned by
nysgl _sql st at e() . For example, the nysql client program displays errors using the following format,
where 1146 is the nysql _errno() value and' 42S02"' is the corresponding nysql _sql st ate() value:

$> SELECT * FROM no_such_t abl €;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Return Values

An error code value for the last mysql _xxx() call, if it failed. zero means no error occurred.

Errors

None.

5.4.16 mysql_error()

const char *
nmysql _error (MYSQL *nysql)

Description

For the connection specified by nmysql , mysqgl _error () returns a null-terminated string containing the
error message for the most recently invoked API function that failed. If a function did not fail, the return
value of nysql _error () may be the previous error or an empty string to indicate no error.

A rule of thumb is that all functions that have to ask the server for information reset nysql _error () if
they succeed.

For functions that reset mysql _error (), either of these two tests can be used to check for an error:
i f(*nysql _error(&mysql))
{

/'l an error occurred

}
i f(nmysql _error(&mysql)[0])
{

/'l an error occurred

}

The language of the client error messages may be changed by recompiling the MySQL client library. You
can choose error messages in several different languages. See Setting the Error Message Language.

Return Values
A null-terminated character string that describes the error. An empty string if no error occurred.

Errors

None.

57

https://dev.mysql.com/doc/refman/8.0/en/error-handling.html
https://dev.mysql.com/doc/refman/8.0/en/error-message-language.html

mysql_escape_string()

5.4.17 mysql_escape_string()
Note

Do not use this function. nysqgl escape_string() does not have arguments
that enable it to respect the current character set or the quoting context. Use
nysqgl real escape_string _quote() instead.

5.4.18 mysql_fetch_field()

MYSQL_FI ELD *
nysql _fetch_fiel d(MYSQL_RES *result)

Description

Returns the definition of one column of a result set as a MYSQL_ FI ELD structure. Call this function
repeatedly to retrieve information about all columns in the result set. nysql _fetch_fi el d() returns
NULL when no more fields are left.

For metadata-optional connections, this function returns NULL when the r esul t set _net adat a
system variable is set to NONE. To check whether a result set has metadata, use the

nysql _resul t _nmetadat a() function. For details about managing result set metadata transfer, see
Section 3.6.7, “Optional Result Set Metadata”.

nysql _fetch_field() isresetto return information about the first field each time you execute
a new SELECT query. The field returned by nysql _fetch_fi el d() is also affected by calls to
nysqgl _field seek().

If you've called nmysql _real _query() ornysqgl _query() to perform a SELECT on a table but

have not called nysql _store_result(), MySQL returns the default blob length (8KB) if you call
nysql _fetch_field() toask for the length of a BLOB field. (The 8KB size is chosen because MySQL
does not know the maximum length for the BLOB. This should be made configurable sometime.) Once
you've retrieved the result set, f i el d- >nax_I| engt h contains the length of the largest value for this
column in the specific query.

Return Values

The MYSQL_ FI ELD structure for the current column. NULL if no columns are left or the result set has no
metadata.

Errors
None.

Example
MYSQL_FI ELD *fi el d;

while((field = nysql _fetch_field(result)))
{

printf("field nanme %\n", field->nane);

5.4.19 mysql _fetch_field direct()

MYSQL_FI ELD *

58

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

mysql_fetch_fields()

nmysql _fetch_field_direct(M'SQL_RES *result,
unsi gned int fieldnr)

Description

Given a field number f i el dnr for a column within a result set, returns that column's field definition as a
MYSQL_FI ELD structure. Use this function to retrieve the definition for an arbitrary column. Specify a value
for fi el dnr in the range from O to nysql _num fi el ds(result)- 1.

For metadata-optional connections, this function returns NULL when the r esul t set _net adat a
system variable is set to NONE. To check whether a result set has metadata, use the

nysgl result netadata() function. For details about managing result set metadata transfer, see
Section 3.6.7, “Optional Result Set Metadata”.

Return Values

The MYSQL_ FI ELD structure for the specified column. NULL if the result set has no metadata.
Errors

None.

Example

unsi gned int numfields;
unsigned int i;
MYSQL_FI ELD *fi el d;

num fields = nysql _numfields(result);
for(i = 0; i < numfields; i++)

field = nysql _fetch_field direct(result, i);
printf("Field %u is %\n", i, field->nane);

}
5.4.20 mysql_fetch_fields()

MYSQL_FI ELD *
nysqgl _fetch_fiel ds(MYSQL_RES *resul t)

Description

Returns an array of all MYySQL_FI ELD structures for a result set. Each structure provides the field definition
for one column of the result set.

For metadata-optional connections, this function returns NULL when the r esul t set _net adat a
system variable is set to NONE. To check whether a result set has metadata, use the
nysqgl result netadata() function. For details about managing result set metadata transfer, see
Section 3.6.7, “Optional Result Set Metadata”.
Return Values
An array of MYSQL_FI ELD structures for all columns of a result set. NULL if the result set has no metadata.

Errors

None.

59

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata

mysql_fetch_lengths()

Example

unsi gned int numfi el ds;
unsigned int i;
MYSQL_FI ELD *fi el ds;

num fields = nmysql _numfields(result);
fields = nmysql _fetch_fields(result);
for(i =0; i < numfields; i++)

printf("Field %u is %\n", i, fields[i].nane);

}
5.4.21 mysql_fetch_lengths()

unsi gned | ong *
nmysql _fetch_| engt hs(MYSQL_RES *resul t)

Description

Returns the lengths of the columns of the current row within a result set. If you plan to copy field values,
this length information is also useful for optimization, because you can avoid calling st r | en() . In addition,
if the result set contains binary data, you must use this function to determine the size of the data, because
strlen() returns incorrect results for any field containing null characters.

The length for empty columns and for columns containing NULL values is zero. To see how to distinguish
these two cases, see the description for nysql fetch row().

Return Values

An array of unsigned long integers representing the size of each column (not including any terminating null
bytes). NULL if an error occurred.

Errors

nmysqgl fetch | engths() isvalid only for the current row of the result set. It returns NULL if you call it
before calling nysql fetch row() or after retrieving all rows in the result.

Example

MYSQ._ROW r ow;

unsi gned | ong *I engt hs;
unsi gned int numfields;
unsigned int i;

row = nysql _fetch_row(result);
if (row)

{
num fields = nysql _numfields(result);
I engths = nysql _fetch_|lengths(result);
for(i =0; i < numfields; i++)
printf("Colum % is %u bytes in |length.\n",
i, lengths[i]);
}
}

5.4.22 mysql_fetch_row()

MYSQL_ROW
nmysql _fetch_rowm MYSQL_RES *result)

60

mysql_fetch_row()

Description

Note

nysqgl fetch_row() isa synchronous function. Its asynchronous counterpart
isnmysql _fetch_row nonbl ocki ng(), for use by applications that require
asynchronous communication with the server. See Chapter 7, C APl Asynchronous
Interface.

nysqgl _fetch row() retrieves the next row of a result set:

* When used after nysql _store_result() ornysql _store_result_nonbl ocki ng(),
nysql _fetch _row() returns NULL if there are no more rows to retrieve.

* When used after nysql _use_resul t(),nysql _fetch_row() returns NULL if there are no more
rows to retrieve or an error occurred.

The number of values in the row is given by nysql _num fi el ds(resul t). If r owholds the
return value from a call to nysqgl _fetch _row(), pointers to the values are accessed as r owf 0] to
row nysql _numfields(result)-1].NULL values in the row are indicated by NULL pointers.

The lengths of the field values in the row may be obtained by calling nysql _fetch_| engt hs() . Empty

fields and fields containing NULL both have length 0; you can distinguish these by checking the pointer for

the field value. If the pointer is NULL, the field is NULL; otherwise, the field is empty.

Return Values

A MYSQL_ROWSstructure for the next row, or NULL. The meaning of a NULL return depends on which
function was called preceding nysql _fetch row():

* When used after nysql _store _result() ornysql _store result_nonbl ocki ng(),
nysql _fetch row() returns NULL if there are no more rows to retrieve.

* When used after nysql _use_resul t(),nysql _fetch_row() returns NULL if there are no
more rows to retrieve or an error occurred. To determine whether an error occurred, check whether
nysql _error () returns a nonempty string or nysql _errno() returns nonzero.

Errors
Errors are not reset between calls to nysql _fetch_row()
« CR_SERVER LOST
The connection to the server was lost during the query.
¢ CR_UNKNOMN ERRCR
An unknown error occurred.
Example

MYSQL_ROW r ow,
unsi gned int numfields;
unsigned int i;

num fields = nmysql _numfields(result);
while ((row = nysqgl _fetch_row(result)))
{

unsi gned | ong *I engt hs;

61

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_field_count()

I engths = nysqgl _fetch_|l engths(result)
for(i =0; i < numfields; i++)

printf("[%*s] ", (int) lengths[i],
rowfi] ? rowfi] : "NULL");

}
printf("\'n");
}

5.4.23 mysql_field_count()

unsi gned i nt
nmysql _field_count(MYSQL *nysql)

Description
Returns the number of columns for the most recent query on the connection.

The normal use of this function is when nysql store_resul t () returned NULL (and thus you

have no result set pointer). In this case, you can call nysql _fi el d_count () to determine whether
nysqgl store_result() should have produced a nonempty result. This enables the client program to
take proper action without knowing whether the query was a SELECT (or SELECT-like) statement. The
example shown here illustrates how this may be done.

See Section 3.6.9, “NULL mysql_store_result() Return After mysql_query() Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsi gned int numfields
unsi gned int num.rows;

if (nysqgl _query(&nysql, query_string))
{
/] error

el se // query succeeded, process any data returned by it
{
result = nysqgl _store_result(&nysql)
if (result) // there are rows
{
num fields = nmysql _numfields(result)
Il retrieve rows, then call nysql _free_result(result)

else // nysqgl _store_result() returned nothing; should it have?

{
if(nmysqgl _field_count(&mysqgl) == 0)

/] query does not return data
/[l (it was not a SELECT)
numrows = nysql _affected_rows(&rysql)

el se // nysqgl _store_result() should have returned data

{
fprintf(stderr, "Error: %\n", nysqgl_error(&mysql))

62

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

mysql_field_seek()

}

An alternative is to replace the nysql _fiel d _count (&rysql) call with mysqgl _errno(&rysql).In
this case, you are checking directly for an error from nysql st ore_resul t () rather than inferring from
the value of nysql fi el d _count () whether the statement was a SELECT.

5.4.24 mysql_field_seek()

MYSQL_FI ELD_OFFSET
nysql _field_seek(MYSQL_RES *result,
MYSQL_FI ELD_OFFSET of f set)

Description

Sets the field cursor to the given offset. The next call to mysql _fetch fiel d() retrieves the field
definition of the column associated with that offset.

To seek to the beginning of a row, pass an of f set value of zero.
Return Values

The previous value of the field cursor.
Errors

None.

5.4.25 mysql_field_tell()

MYSQL_FI ELD_OFFSET
nmysql _field_tell (MYSQL_RES *result)

Description

Returns the position of the field cursor used for the last nysql _fetch_fi el d(). This value can be used
as an argument to nysql _fi el d_seek().

Return Values

The current offset of the field cursor.
Errors

None.

5.4.26 mysql_free result()

voi d
nysqgl _free_result (MYSQL_RES *result)

Description
Note

nysqgl _free_ result() isasynchronous function. Its asynchronous counterpart
isnysql _free result _nonbl ocki ng(), for use by applications that require

63

https://dev.mysql.com/doc/refman/8.0/en/select.html

mysql_free_ssl_session_data()

I asynchronous communication with the server. See Chapter 7, C APl Asynchronous
Interface.

nysqgl _free result() frees the memory allocated for a result set by nysql _store result(),
nysqgl use result(),nysql _|ist_dbs(), and so forth. When you are done with a result set, you
must free the memory it uses by calling mysql _free result().

Do not attempt to access a result set after freeing it.
Return Values

None.
Errors

None.

5.4.27 mysql_free_ssl session_data()

bool
nmysql _free_ssl _session_data(MyYSQ. *, void *data)

Description

nysqgl _free_ssl _session_dat a() disposes of a session data handle that was obtained

previously by calling mysqgl get ssl session_dat a() . It frees the memory that was allocated.

Never call this function for any session that is still in use or if the handle was not obtained with

nysqgl get _ssl _session_data(). The call you make to nysql get ssl _sessi on_dat a() should
match exactly the callto nysql _free_ssl session _data().

Do not attempt to use the session data handle after freeing it.
Return Values

FALSE on success. TRUE on failure.
Errors

None.

5.4.28 mysql_get character_set_info()

voi d
nysql _get _character_set _i nfo(MYSQL *nysql,
MY_CHARSET | NFO *cs)

Description

This function provides information about the default client character set. The default character set may be
changed with the nysql _set character _set () function.

Example
This example shows the fields that are available in the MY _CHARSET | NFO structure:
if (!nysqgl _set_character_set(&nysqgl, "utf8"))

MY_CHARSET_| NFO cs;
nmysql _get _character_set _i nfo(&nysqgl, &cs);

64

mysql_get_client_info()

printf("character set information:\n")

printf("character set+collation nunmber: %\ n", cs.nunber)
printf(“collation name: %\n", cs.nane)

printf("character set nane: %\n", cs.csnane)
printf("coment: %\n", cs.comment)

printf("directory: %\n", cs.dir)

printf("multi byte character min. |length: %\ n", cs.nbm nlen)
printf("multi byte character nmax. |ength: %\ n", cs.nbnmaxl en)

}

5.4.29 mysql_get_client_info()

const char *
nmysql _get _client_info(void)

Description
Returns a string that represents the MySQL client library version (for example, " 8. 0. 45™).

The function value is the version of MySQL that provides the client library. For more information, see
Section 3.6.12, “Obtaining the Server Version and Client Library Version”.

Return Values

A character string that represents the MySQL client library version.
Errors

None.

5.4.30 mysql_get_client_version()

unsi gned | ong
nysql _get _client_version(void)

Description

Returns an integer that represents the MySQL client library version. The value has the format XYYZZ,
where X is the major version, YY is the release level (or minor version), and ZZ is the sub-version within the
release level:

maj or _versi on*10000 + rel ease_| evel *100 + sub_version
For example, " 8. 0. 45" is returned as 80045.

The function value is the version of MySQL that provides the client library. For more information, see
Section 3.6.12, “Obtaining the Server Version and Client Library Version”.

Return Values

An integer that represents the MySQL client library version.
Errors

None.

5.4.31 mysql_get_host_info()

const char *
nysql _get _host _i nf o(MYSQL *nysql)

65

mysql_get_option()

Description
Returns a string describing the type of connection in use, including the server host name.
Return Values
A character string representing the server host name and the connection type.
Errors
None.
5.4.32 mysql_get_option()
int
nmysql _get _opti on(MYSQL *nysql ,

enum nysql _option opti on,
const void *arg)

Description

Returns the current value of an option settable using mysql _opti ons() . The value should be treated as
read only.

The opt i on argument is the option for which you want its value. The ar g argument is a pointer to a
variable in which to store the option value. ar g must be a pointer to a variable of the type appropriate for
the opt i on argument. The following table shows which variable type to use for each opt i on value.

For M\vySQL_OPT_NMAX ALLOWED PACKET, it is possible to set a session or global maximum buffer
size, depending on whether the nysql argumentto nysql options() is non-NULL or NULL,
nysqgl _get option() similarly returns the session or global value depending on its mysql argument.

arg Type Applicable opti on Values

unsi gned i nt MYSQL_OPT_CONNECT_TI MEQUT,
MYSQ._OPT_PROTCCOL,
MYSQL_OPT_READ_TI MEQUT,
MYSQL_OPT_RETRY_COUNT,
MYSQL_OPT_SSL_FI PS_MODE,
MYSQ._OPT_SSL_ MODE,

MYSQL_OPT_WRI TE_TI MEQUT,
MYSQL_OPT_ZSTD COMPRESSI ON_LEVEL

unsi gned | ong MYSQL_OPT_NMAX_ALLOWNED PACKET,
MYSQL_OPT_NET_BUFFER_LENGTH
bool MYSQ._ENABLE CLEARTEXT_PLUG N,

MYSQL_OPT_CAN_HANDLE_EXPI RED PASSWORDS,
MYSQL_OPT_GET_SERVER PUBLI C KEY,
MYSQL_OPT_LOCAL_ | NFI LE,

MYSQL_OPT_OPTI ONAL_RESULTSET _METADATA,
MYSQL_OPT_RECONNECT (deprecated as of MySQL
8.0.34), MYySQL_REPORT_DATA TRUNCATI ON

const char * MYSQL_DEFAULT_AUTH, MYSQL_OPT_BI ND,
MYSQL_OPT_COVPRESSI ON_ALGORI THVS,
MYSQL_OPT_LOAD_DATA LOCAL_DI R,
MYSQL_OPT_SSL_CA, MYSQL_OPT_SSL_CAPATH,

66

mysql_get _proto_info()

arg Type

Applicable opti on Values

MYSQL_OPT_SSL_CERT,

MYSQL_OPT_SSL_Cl PHER, MYSQL_OPT_SSL_CRL,
MYSQL_OPT_SSL_CRLPATH,
MYSQL_OPT_SSL_KEY,

MYSQL_OPT_TLS_Cl PHERSUI TES,
MYSQL_OPT_TLS_VERSI ON, M'SQL_PLUG N DI R,
MYSQL_READ DEFAULT_FI LE,

MYSQL_READ DEFAULT_GROUP,

MYSQL_SERVER PUBLI C_KEY,
MYSQL_SET_CHARSET DI R,
MYSQL_SET_CHARSET_NAME,

MYSQL_SHARED MEMORY_BASE_NANE

voi d

MYSQL_OPT_SSL_SESSI ON_DATA

argument not used

MYSQL_OPT_COVPRESS

cannot be queried (error is returned)

MYSQL_| NI T_COVVAND,
MYSQL_OPT_CONNECT _ATTR_DELETE,
MYSQL_OPT_CONNECT _ATTR_RESET,
MYSQL_OPT_NAMED_PI PE

Return Values

Zero for success. Nonzero if an error occurred; this occurs for opt i on values that cannot be queried.

Example

The following call tests the MYSQL_OPT_LOCAL | NFI LE option. After the call returns successfully, the
value of i nfi | e is true or false to indicate whether local_infile is enabled.

bool infile;

if (nysql _get_option(nysqgl, MYSQ._OPT LOCAL_| NFILE, & nfile))

fprintf(stderr, "nysql _get_option() failed\n");

5.4.33 mysql_get_proto_info()

unsi gned i nt
nysql _get_proto_i nfo(MYSQ. *nysql)

Description

Returns the protocol version used by current connection.

Return Values

An unsigned integer representing the protocol version used by the current connection.

Errors
None.

5.4.34 mysql_get_server_info()

const char *
nysql _get _server _i nfo(MYSQL *nysql)

67

mysql_get_server_version()

Description

Returns a string that represents the MySQL server version (for example, " 8. 0. 45").
Return Values

A character string that represents the MySQL server version.
Errors

None.

5.4.35 mysql_get_server_version()

unsi gned | ong
nysql _get _server_versi on(MYSQ *nysql)

Description

Returns an integer that represents the MySQL server version. The value has the format XYYZZ, where X
is the major version, YY is the release level (or minor version), and ZZ is the sub-version within the release
level:

maj or _ver si on*10000 + rel ease_| evel *100 + sub_versi on
For example, " 8. 0. 45" is returned as 80045.

This function is useful in client programs for determining whether some version-specific server capability
exists.

Return Values

An integer that represents the MySQL server version.
Errors

None.

5.4.36 mysql_get_ssl_cipher()

const char *
nysql _get _ssl _ci pher (MYSQL *nysql)

Description

nysql _get _ssl _ci pher () returns the encryption cipher used for the given connection to the server.
nysql is the connection handler returned from mysql _ini t ().

Return Values
A string naming the encryption cipher used for the connection, or NULL if the connection is not encrypted.

5.4.37 mysql_get_ssl session_data()

void *

nysql _get _ssl _sessi on_dat a(MYSQL *,
unsigned int n_ticket,
unsi gned int *out_| en)

68

mysql_get_ssl_session_reused()

Description

nmysqgl _get ssl _session_dat a() permits SSL session reuse by extracting a ticket from an established
session and submitting that ticket when connecting, provided the server still has the session in its runtime
cache. This function returns a session data string and provides the length of the string in out _I en (if
non-NULL). Otherwise, it returns nul | pt r to indicate the expected session data is not possible or the
connection is not in the right state. To prevent leaks, you must release the session data handle by calling
nmysqgl _free_ssl _session_dat a() when your application is finished with the pointer.

The format of the data is PEM serialization of the session. A session can be reused only if it was fetched
from a prior session to the same nysql d server on the same port. In addition, the SSL version of the new
session must match the SSL version of the original session.

n_ticket specifies which ticket or tickets to returned. For TLS 1.3, the server generates two session
tickets by default for new sessions and one when a session is reused. For TLS 1.2, the server generates
one session ticket by default. This should be considered when deciding on the size of the SSL session
cache on the server.

Note

Currently, only the last transmitted session is returned. Specifically, anything
other than O for n_t i cket causes an error. OpenSSL version 1.0.2 imposes this
limitation.

Avoid reusing SSL sessions more than one time.

Return Values

Errors

None.

None.

5.4.38 mysql_get_ssl session_reused()

bool
nysql _get _ssl _sessi on_reused(M\YSQL *nysql)

Description

Indicates whether the currently connected session is reusing a prior session.

Return Values

Errors

TRUE if a session was reused when establishing the TLS connection. FALSE if the session is not
connected, is not a TLS session, or there is insufficient memory.

None.

5.4.39 mysql_hex_string()

unsi gned | ong
nysql _hex_string(char *to

69

mysql_info()

const char *from
unsi gned | ong | engt h)

Description

This function creates a legal SQL string for use in an SQL statement. See String Literals.

The string in the f r omargument is encoded in hexadecimal format, with each character encoded as two
hexadecimal digits. The result is placed in the t o argument, followed by a terminating null byte.

The string pointed to by f r ommust be | engt h bytes long. You must allocate the t o buffer to be at least
| engt h*2+1 bytes long. When nysql _hex_string() returns, the contents of t o is a null-terminated
string. The return value is the length of the encoded string, not including the terminating null byte.

The return value can be placed into an SQL statement using either X' val ue' or Oxval ue format.
However, the return value does not include the X' . . . ' or 0x. The caller must supply whichever of those is
desired.

Example

char query[1000], *end;

end = strnov(query, "I NSERT I NTO test _table val ues(")
end = strnov(end, "X ")

end += nysqgl _hex_string(end, "Wat is this", 12)

end = strnov(end, "', X ")

end += nysqgl _hex_string(end, "binary data: \0\r\n", 16)
end = strnov(end,""')");

if (nysqgl _real query(&mysqgl, query, (unsigned int) (end - query)))
{

fprintf(stderr, "Failed to insert row, Error: %\n"
nmysql _error (&mysql))
}

The st rnov() function used in the example is included in the | i brysql cl i ent library and works like
strcpy() butreturns a pointer to the terminating null of the first parameter.

Return Values

Errors

The length of the encoded string that is placed into t 0, not including the terminating null character.

None.

5.4.40 mysql_info()

const char *
nysql _i nfo(MYSQL *nysql)

Description

Retrieves a string providing information about the most recently executed statement, but only for the
statements listed here. For other statements, nysql _i nf o() returns NULL. The format of the string
varies depending on the type of statement, as described here. The numbers are illustrative only; the string
contains values appropriate for the statement.

* INSERT INTO ... SELECT ...

70

https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html

mysql_init()

String format: Records: 100 Duplicates: 0 Warnings: O
« INSERT INTO ... VALUES (...),(...),(...)...

String format: Records: 3 Duplicates: 0 Warnings: O
« LOAD DATA

String format: Records: 1 Del eted: 0 Skipped: 0 VWarnings: O
* ALTER TABLE

String format: Records: 3 Duplicates: 0 WAarnings: O
 UPDATE

String format: Rows nmat ched: 40 Changed: 40 Warnings: 0O

nysql _i nfo() returns a non-NULL value for | NSERT ... VALUES only for the multiple-row form of the
statement (that is, only if multiple value lists are specified).

Return Values

A character string representing additional information about the most recently executed statement. NULL if
no information is available for the statement.

Errors

None.
5.4.41 mysql_init()

MYSQL *

nysql _i ni t (MSQ *nysql)
Description

Allocates or initializes a MYSQL object suitable for mysql real connect (). If nysql isa NULL
pointer, the function allocates, initializes, and returns a new object. Otherwise, the object is initialized
and the address of the object is returned. If mysql i ni t () allocates a new object, it is freed when
nysqgl cl ose() is called to close the connection.

In a nonmultithreaded environment, nysqgl i ni t () invokes nysql |ibrary init() automatically as
necessary. However, mysql |ibrary_init() is notthread-safe in a multithreaded environment, and
thus neither is mysql _i ni t () . Before calling nysql _init (), eithercall mysqgl _li brary_init() prior
to spawning any threads, or use a mutex to protect the mysqgl |i brary_init() call. This should be
done prior to any other client library call.

Return Values
An initialized MYSQL* handler. NULL if there was insufficient memory to allocate a new object.

Errors

In case of insufficient memory, NULL is returned.

5.4.42 mysql_insert_id()

71

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

mysql_insert_id()

ui nt 64_t
nysql _insert_i d(MYSQL *nysql)

Description

Returns the value generated for an AUTO | NCREMENT column by the previous | NSERT or UPDATE
statement. Use this function after you have performed an | NSERT statement into a table that
contains an AUTO | NCREMENT field, or have used | NSERT or UPDATE to set a column value with
LAST | NSERT_| D(expr) .

The return value of nysql _i nsert i d() is always zero unless explicitly updated under one of the
following conditions:

e | NSERT statements that store a value into an AUTO | NCREMENT column. This is true whether the value
is automatically generated by storing the special values NULL or O into the column, or is an explicit
nonspecial value.

* In the case of a multiple-row | NSERT statement, nysql _i nsert _i d() returns the first automatically
generated AUTO | NCREMENT value that was successfully inserted.

If no rows are successfully inserted, nysql i nsert _id() returnsO.

e Ifan | NSERT ... SELECT statement is executed, and no automatically generated value is successfully
inserted, nysql _i nsert _i d() returns the ID of the last inserted row.

e Ifan | NSERT ... SELECT statement uses LAST | NSERT | D(expr),nysql _insert _id() returns
expr.

e | NSERT statements that generate an AUTO_| NCREMENT value by inserting LAST | NSERT _| D(expr)
into any column or by updating any column to LAST | NSERT | D(expr) .

« If the previous statement returned an error, the value of nysql i nsert i d() isundefined.
The return value of nysql i nsert i d() can be simplified to the following sequence:

1. Ifthereis an AUTO | NCREMENT column, and an automatically generated value was successfully
inserted, return the first such value.

2. If LAST_I NSERT | D(expr) occurred in the statement, return expr , even if there was an
AUTO | NCREMENT column in the affected table.

3. The return value varies depending on the statement used. When called after an | NSERT statement:

« If there is an AUTO_| NCREMENT column in the table, and there were some explicit values for this
column that were successfully inserted into the table, return the last of the explicit values.

When called after an | NSERT ... ON DUPLI CATE KEY UPDATE statement:

« If there is an AUTO | NCREMENT column in the table and there were some explicit successfully
inserted values or some updated values, return the last of the inserted or updated values.

nysqgl i nsert _id() returns O if the previous statement does not use an AUTO | NCREMENT value. If you
must save the value for later, be sure to call nysql i nsert i d() immediately after the statement that
generates the value.

The value of nysqgl _i nsert i d() is affected only by statements issued within the current client
connection. It is not affected by statements issued by other clients.

72

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert-on-duplicate.html

mysql_kill()

The LAST | NSERT | D() SQL function will contain the value of the first automatically generated value
that was successfully inserted. LAST | NSERT | D() is not reset between statements because the
value of that function is maintained in the server. Another difference from nysql i nsert i d() isthat
LAST | NSERT _| D() is not updated if you set an AUTO | NCREMENT column to a specific nonspecial
value. See Information Functions.

nmysqgl insert _id() returns O following a CALL statement for a stored procedure that generates

an AUTO | NCREMENT value because in this case mysqgl i nsert i d() appliesto CALL and not the
statement within the procedure. Within the procedure, you can use LAST_| NSERT_I D() at the SQL level
to obtain the AUTO | NCREMVENT value.

The reason for the differences between LAST_| NSERT_I D() and nysql _i nsert _i d() is that
LAST_I NSERT_I IX() is made easy to use in scripts while nysql _i nsert _i d() tries to provide more
exact information about what happens to the AUTO_| NCREMENT column.
Note
The OK packet used in the client/server protocol holds information such as is used
for session state tracking. When clients read the OK packet to know whether there
is a session state change, this resets values such as the last insert ID and the
number of affected rows. Such changes cause nysql i nsert _id() toreturn0

after execution of commands including but not necessarily limited to COM Pl NG,
COM_REFRESH, and COM_| NI T_DB.

Return Values

Described in the preceding discussion.
Errors

« ER_AUTO | NCREMENT _CONFLI CT

A user-specified AUTO | NCREMENT value in a multi | NSERT statement falls within the range between
the current AUTO | NCREMENT value and the sum of the current and number of rows affected values.

5.4.43 mysql_kill()
i nt

nysql _ki |l (MYSQ *nysql
unsi gned | ong pid)

Description
Note
nysgl _kill () is deprecated and is subject to removal in a future version of
MySQL. Instead, use nysql real query() ornysql _query() toexecute a
Kl LL statement.

Asks the server to kill the thread specified by pi d.

nysql _ki I'l () cannot handle values larger than 32 bits, but to guard against killing the wrong thread
returns an error in these cases:

« If given an ID larger than 32 bits, mnysql _ki || () returns a CR_| NVALI D_CONN_HANDLE error.

73

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_auto_increment_conflict
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_conn_handle

mysql_library_end()

 After the server's internal thread ID counter reaches a value larger than 32 bits, it returns an
ER DATA OUT_OF RANGE error for any mysql kil | () invocation and nysql ki ll () fails.

Return Values
Zero for success. Nonzero if an error occurred.
Errors
» CR_COMVANDS_QUT_OF_SYNC
Commands were executed in an improper order.
« CR_I NVALI D_CONN_HANDLE
The pi d was larger than 32 bits.
« CR_SERVER _GONE_ERROR
The MySQL server has gone away.
« CR_SERVER LOST
The connection to the server was lost during the query.
« CR_UNKNOAN ERROR
An unknown error occurred.
« ER_DATA OUT_OF RANGE

The server's internal thread ID counter has reached a value larger than 32 bits, at which point it rejects
all nysgl _kill () invocations.

5.4.44 mysql_library_end()

voi d
nysql _|li brary_end(voi d)

Description

This function finalizes the MySQL client library. Call it when you are done using the library (for example,
after disconnecting from the server).

Note

To avoid memory leaks after the application is done using the library (for example,
after closing the connection to the server), be sure to call nysql _Ii brary_end()
explicitly. This enables memory managment to be performed to clean up and free
resources used by the library.

For usage information, see Chapter 4, C API Function Reference, and Section 5.4.45,
“mysql_library_init()".

5.4.45 mysql_library_init()

i nt

74

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_conn_handle
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_out_of_range

mysq|l_list_dbs()

nmysql _library_init(int argc,
char **argv,
char **groups)

Description
Call this function to initialize the MySQL client library before you call any other MySQL function.
Note

To avoid memory leaks after the application is done using the library (for example,
after closing the connection to the server), be sure to call mysql _|ibrary_end()
explicitly. This enables memory managment to be performed to clean up and free
resources used by the library. See Section 5.4.44, “mysql_library_end()".

In a nonmultithreaded environment, the call to nysql _|i brary_init() may be omitted, because

mysql _i nit() invokes it automatically as necessary. However, mysql library init() is

not thread-safe in a multithreaded environment, and thus neither is mysql _i ni t (), which calls

nmysqgl _library_init().Youmusteithercallnysql _|ibrary_init() priorto spawning any threads,
or else use a mutex to protect the call, whether you invoke nysql _Ii brary_init () orindirectly through
nmysql _i nit (). Do this prior to any other client library call.

The ar gc, ar gv, and gr oups arguments are unused. In older MySQL versions, they were used for
applications linked against the embedded server, which is no longer supported. The call now should be
writtenas nysql _library init(0, NULL, NULL).

#i ncl ude <nysql . h>
#i ncl ude <stdlib. h>

int main(void) {
if (mysqgl _library_init(0, NULL, NULL)) {
fprintf(stderr, "could not initialize M/SQL client library\n");
exit(1);
}

/* Use any MySQ. APl functions here */
nmysql _|library_end();

return EXI T_SUCCESS;
}

Return Values
Zero for success. Nonzero if an error occurred.

5.4.46 mysql_list_dbs()

MYSQL_RES *
nysql _|ist_dbs(MYSQ *nysql,
const char *w | d)

Description

Returns a result set consisting of database names on the server that match the simple regular expression
specified by the wi | d parameter. wi | d may contain the wildcard characters %or _, or may be a NULL
pointer to match all databases. Calling mysql _I i st _dbs() is similar to executing the query SHOW
DATABASES [LI KE wi | d].

75

mysql_list_fields()

You must free the result set with nysql _free result().
Return Values
A MYSQL_RES result set for success. NULL if an error occurred.
Errors
« CR_COWANDS OUT_OF SYNC
Commands were executed in an improper order.
» CR_QUT_OF_MEMORY
Out of memory.
« CR_SERVER GONE_ERROR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.47 mysql_list_fields()

MYSQL_RES *

nmysql _Iist_fields(MYSQL *nysql,
const char *table,
const char *w | d)

Description
Note

nysqgl |ist_fields() isdeprecated and is subject to removal in a future
version of MySQL. Instead, use nysql _real query() ornysqgl query() to
execute a SHOWN COLUMNS statement.

Returns an empty result set for which the metadata provides information about the columns in the given
table that match the simple regular expression specified by the wi | d parameter. wi | d may contain the
wildcard characters %or _, or may be a NULL pointer to match all fields. Calling nysql _l i st _fi el ds()
is similar to executing the query SHOW COLUWNS FROM t bl _nane [LIKE wi | d].

The information obtained is roughly equivalent to that produced by executing the statement shown here
using the mysql client, like this:

$> nysql test --column-type-info -e "SELECT * FROMt LIMT 0"
Field 1: “cl°

Cat al og: def”
Dat abase: “test®
Tabl e: i
Og_table: °t°
Type: LONG

Col lation: binary (63)

76

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html

mysql_list_processes()

Lengt h: 11
Max_l ength: O

Deci nal s: 0

Fl ags: NUM
Field 2: “c2
Cat al og: T def”
Dat abase: “test®
Tabl e: e
Og_table: °“t°
Type: LONG
Col | ation: binary (63)
Lengt h: 11
Max_l ength: O

Deci nal s: 0

Fl ags: NUM
$>

It is preferable to use SHONV COLUVNS FROM t bl _nane instead of mysqgl |ist fields().
You must free the result set with mysql _free_result().
Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors
» CR_COMVANDS_QUT_OF_SYNC
Commands were executed in an improper order.
« CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR_SERVER LOST
The connection to the server was lost during the query.
¢ CR_UNKNOAN ERROR
An unknown error occurred.
Example
int i;
MYSQL_RES *tbl _cols = nysql _list_fields(nysqgl, "nmythl", "f%);

unsigned int field_cnt = nysql _numfields(tbl_cols);
printf("Nunber of columms: %\n", field_cnt);

for (i=0; i < field_ cnt; ++i)

/* col describes i-th colum of the table */
MYSQL_FI ELD *col = nysql _fetch_field direct(thl_cols, i);
printf ("Colum %: %\n", i, col->nane);

}

nysql _free_result(tbl_cols);

5.4.48 mysql_list_processes|()

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_list_tables()

MYSQL_RES *
nmysql _|ist_processes(MYSQ *mysql)

Description
Note
nysgl |ist_processes() is deprecated and is subject to removal in a future
version of MySQL. Instead, use nysqgl _real query() ornysqgl query() to
execute a SHOWN PROCESSLI ST statement.

Returns a result set describing the current server threads. This is the same kind of information as that
reported by nysql admi n processli st or a SHOWV PROCESSLI ST query.

You must free the result set with mysql _free result().
Return Values

A MYSQL_RES result set for success. NULL if an error occurred.
Errors

« CR_COWANDS_OUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.49 mysql_list_tables()

MYSQL_RES *
nmysql _|ist_tabl es(MYSQL *nysql,
const char *wi | d)

Description
Returns a result set consisting of table names in the current database that match the simple regular
expression specified by the wi | d parameter. wi | d may contain the wildcard characters %or _, or may be
a NULL pointer to match all tables. Calling mysql _| i st _t abl es() is similar to executing the query SHOW
TABLES [LIKE wild].

You must free the result set with nysql _free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

78

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysqgl_more_results()

Errors
« CR_COMVANDS OQUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

5.4.50 mysql_more_results()

bool
nmysql _nore_resul t s(MYSQL *nysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or when
you execute CALL statements, which can return multiple result sets.

nmysqgl _nore_resul ts() true if more results exist from the currently executed statement, in which case
the application must call nysql _next resul t () to fetch the results.

Return Values
TRUE (2) if more results exist. FALSE (0) if no more results exist.

In most cases, you can call nysql _next resul t () instead to test whether more results exist and initiate
retrieval if so.

See Section 3.6.3, “Multiple Statement Execution Support”, and Section 5.4.51, “mysql_next_result()”.
Errors
None.

5.4.51 mysql_next_result()

i nt
nysql _next _result (MYSQL *nysql)

Description
Note

nysqgl _next _result() isasynchronous function. Its asynchronous counterpart
isnysql _next _result _nonbl ocki ng(), for use by applications that require
asynchronous communication with the server. See Chapter 7, C APl Asynchronous
Interface.

79

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/call.html

mysql_next_result()

nysgl next result() isused when you execute multiple statements specified as a single statement
string, or when you use CALL statements to execute stored procedures, which can return multiple result
sets.

nysgl _next _resul t () reads the next statement result and returns a status to indicate whether more
results exist. If nysqgl _next resul t () returns an error, there are no more results.

Before each call to mysqgl _next result(),youmustcall nysql free result() forthe current
statement if it is a statement that returned a result set (rather than just a result status).

After calling nysql next resul t () the state of the connection is as if you had called
nysqgl real query() ornysqgl query() forthe next statement. This means that you can call
nysqgl _store_result(),nysql _warning_count(),nysql_affected rows(), and so forth.

If your program uses CALL statements to execute stored procedures, the CLI ENT_MJLTI _RESULTS flag
must be enabled. This is because each CALL returns a result to indicate the call status, in addition to any
result sets that might be returned by statements executed within the procedure. Because CALL can return
multiple results, process them using a loop that calls nysgl _next resul t () to determine whether there
are more results.

CLI ENT_MULTI _RESULTS can be enabled when you call nysql _real connect (), either explicitly by
passing the CLI ENT_MJLTI _RESULTS flag itself, or implicitly by passing CLI ENT_MJLTI _STATEMENTS
(which also enables CLI ENT_MULTI _RESULTS). CLI ENT_MJLTI _RESULTS is enabled by default.

It is also possible to test whether there are more results by calling nysql _nore _resul ts().
However, this function does not change the connection state, so if it returns true, you must still call
nysqgl next result() toadvance to the next result.

For an example that shows how to use nysqgl next result (), see Section 3.6.3, “Multiple Statement
Execution Support”.

Return Values

Errors

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results
>0 An error occurred

« CR_COVWWANDS_OUT_OF_SYNC

Commands were executed in an improper order. For example, if you did not call nysql _use resul t()
for a previous result set.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST
The connection to the server was lost during the query.

« CR_UNKNOWN_ERROR

80

https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_num_fields()

An unknown error occurred.

5.4.52 mysqgl_num_fields()

unsi gned i nt
nmysql _num fi el ds(MYSQL_RES *resul t)

To pass a MYSQL* argument instead, use unsi gned int nysqgl _field_count(MYSQL *nysql).

Description

Returns the number of columns in a result set.

You can get the number of columns either from a pointer to a result set or to a connection handler. You
would use the connection handler if nysql _store_result () ornysql _use_resul t() returned
NULL (and thus you have no result set pointer). In this case, you can call mysql fi el d _count() to

determine whether mysql store resul t () should have produced a nonempty result. This enables the

client program to take proper action without knowing whether the query was a SELECT (or SELECT-like)

statement. The example shown here illustrates how this may be done.

See Section 3.6.9, “NULL mysql_store_result() Return After mysql_query() Success”.

Return Values

An unsigned integer representing the number of columns in a result set.
Errors

None.

Example

MYSQL_RES *resul t;
unsigned int numfields
unsi gned i nt num.rows;

if (nysql _query(&nmysql, query_string))
{
/1 error

el se // query succeeded, process any data returned by it
{
result = nysqgl _store_result(&nysql)
if (result) // there are rows
{
num fields = nysql _numfields(result)
Il retrieve rows, then call nysql _free_result(result)

else // nysql _store_result() returned nothing; should it have?

{
if (nmysql _errno(&nrysql))
{
fprintf(stderr, "Error: %\n", nysql_error(&mysql))
else if (nysqgl _field_count(&mwysqgl) == 0)
{
/'l query does not return data
/1 (it was not a SELECT)
numrows = nysql _affected_rows(&rysql)
}
}

81

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

mysqgl_num_rows()

}

An alternative (if you know that your query should have returned a result set) is to replace the
nysqgl _errno(&ysqgl) call with a check whether mysql fi el d_count (&ysql) returns 0. This
happens only if something went wrong.

5.4.53 mysql_num_rows()

ui nt 64 _t
nysqgl _num rows(MYSQL_RES *resul t)

Description

Returns the number of rows in the result set.

The use of nysqgl _num rows() depends on whether you use nysql store resul t()
ornysql _use_resul t() toreturn the result set. If you use nysqgl store result(),

nmysqgl _num rows() may be called immediately. If you use nysql use result(),

nmysqgl _num rows() does not return the correct value until all the rows in the result set have been
retrieved.

nysql _num rows() is intended for use with statements that return a result set, such as SELECT. For
statements such as | NSERT, UPDATE, or DELETE, the number of affected rows can be obtained with
nysqgl _affected rows().

Return Values

Errors

The number of rows in the result set.

None.

5.4.54 mysql_options()

i nt

nysql _opti ons(MYSQ *nysql,
enum nmysql _opti on option,
const void *arg)

Description

Can be used to set extra connect options and affect behavior for a connection. This function may be called
multiple times to set several options. To retrieve option values, use nysql _get option().

Call nysql _options() afternmysql _init() and before nysql connect() or
mysql _real connect ().

The opt i on argument is the option that you want to set; the ar g argument is the value for the option. If
the option is an integer, specify a pointer to the value of the integer as the ar g argument.

Options for information such as SSL certificate and key files are used to establish an encrypted connection
if such connections are available, but do not enforce any requirement that the connection obtained be
encrypted. To require an encrypted connection, use the technique described in Section 3.6.1, “Support for
Encrypted Connections”.

The following list describes the possible options, their effect, and how ar g is used for each option. For
option descriptions that indicate ar g is unused, its value is irrelevant; it is conventional to pass 0.

82

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

mysql_options()

MYSQL_DEFAULT_AUTH (argument type: char *)
The name of the authentication plugin to use.
MYSQL_ENABLE_CLEARTEXT_PLUG N (argument type: bool *)

Enable the nysql _cl ear _passwor d cleartext authentication plugin. See Client-Side Cleartext
Pluggable Authentication.

MYSQL_| NI T_COWVAND (argument type: char *)

SQL statement to execute when connecting to the MySQL server. Automatically re-executed if
reconnection occurs.

MYSQL_OPT_BI ND (argument: char *)

The network interface from which to connect to the server. This is used when the client host has multiple
network interfaces. The argument is a host name or IP address (specified as a string).

MYSQL_OPT_CAN HANDLE EXPI RED PASSWORDS (argument type: bool *)
Indicate whether the client can handle expired passwords. See Server Handling of Expired Passwords.
MYSQL_OPT_COVPRESS (argument: not used)

Compress all information sent between the client and the server if possible. See Connection
Compression Control.

As of MySQL 8.0.18, M\YySQL_OPT_COVPRESS becomes a legacy option, due to the introduction of the
MYSQL_OPT_COVPRESSI ON_ALGORI THVES option for more control over connection compression (see
Configuring Connection Compression). The meaning of MYSQL_OPT_ COVPRESS depends on whether
MYSQL_OPT_COVPRESSI ON_ALGORI THVS is specified:

« When MYSQL_OPT_COVPRESSI ON_ALGORI THVS is not specified, enabling MYySQL_OPT_COVPRESS is
equivalent to specifying a client-side algorithm set of zI| i b, unconpr essed.

e When MYSQL_OPT_COVPRESSI ON_ALGORI THVES is specified, enabling MYySQL_ OPT_COVPRESS
is equivalent to specifying an algorithm set of zI i b and the full client-side algorithm set is the
union of zI i b plus the algorithms specified by MYSQL_OPT_COVPRESSI ON_ALGORI THVS. For
example, with MYSQL_OPT_COVPRESS enabled and MySQL_ OPT_COVPRESSI ON_ALGORI THVS
setto zl i b, zst d, the permitted-algorithm set is zI i b plus zI i b, zst d; that is, zI i b, zst d.
With MYSQL_OPT_COVPRESS enabled and MYSQL_OPT_COVPRESSI ON_ALGORI THVS set to
zst d, unconpr essed, the permitted-algorithm set is zI i b plus zst d, unconpr essed; that is,
zli b, zstd, unconpressed.

As of MySQL 8.0.18, M\YySQL_OPT_COVPRESS is deprecated. It is subject to removal in a future MySQL
version. See Configuring Legacy Connection Compression.

MYSQL_OPT_COVPRESSI ON_ALGORI THVS (argument type: const char *)

The permitted compression algorithms for connections to the server. The available algorithms are the
same as for the pr ot ocol _conpressi on_al gorit hns system variable. If this option is not specified,
the default value is unconpr essed.

For more information, see Connection Compression Control.

This option was added in MySQL 8.0.18. For asynchronous operations, the option has no effect until
MySQL 8.0.21.

83

https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/expired-password-handling.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html#connection-compression-configuration
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html#connection-compression-legacy-configuration
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_protocol_compression_algorithms
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html

mysql_options()

e MYSQL_OPT_CONNECT ATTR _DELETE (argument type: char *)

Given a key name, this option deletes a key-value pair from the current set of connection attributes to
pass to the server at connect time. The argument is a pointer to a null-terminated string naming the key.
Comparison of the key name with existing keys is case-sensitive.

See also the description for the MYSQL_OPT_CONNECT _ATTR_RESET option, as well as the description
for the MYSQL_OPT_CONNECT_ATTR_ADD option in the description of the nysql _opti ons4() function.
That function description also includes a usage example.

The Performance Schema exposes connection attributes through the sessi on_connect _attrs and
session_account _connect attrs tables. See Performance Schema Connection Attribute Tables.

MYSQL_OPT_CONNECT _ATTR_RESET (argument not used)
This option resets (clears) the current set of connection attributes to pass to the server at connect time.

See also the description for the MYSQL_OPT_CONNECT _ATTR _DELETE option, as well as the description
for the MYSQL_OPT_CONNECT_ATTR_ADD option in the description of the mysql _opt i ons4() function.
That function description also includes a usage example.

The Performance Schema exposes connection attributes through the sessi on_connect _attrs and
session_account _connect _attrs tables. See Performance Schema Connection Attribute Tables.

MYSQL_OPT_CONNECT _TI MEQUT (argument type: unsi gned i nt *)
The connect timeout in seconds.
MYSQL_OPT_GET_SERVER PUBLI C _KEY (argument type: bool *)

Enables the client to request from the server the public key required for RSA key pair-based password
exchange. This option applies to clients that authenticate with the cachi ng_sha2_ password
authentication plugin. For that plugin, the server does not send the public key unless requested. This
option is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If MYSQL_SERVER PUBLI C_KEY is given and specifies a valid public key file, it takes precedence over
MYSQ._OPT_GET_SERVER _PUBLI C_KEY.

For information about the cachi ng_sha2 passwor d plugin, see Caching SHA-2 Pluggable
Authentication.

MYSQL_OPT_LOAD DATA LOCAL_DI R (argument type: char *)

This option affects the client-side LOCAL capability for LOAD DATA operations. It specifies the
directory in which files named in LOAD DATA LOCAL statements must be located. The effect of
MYSQL_OPT_LOAD_DATA LOCAL_DI Rdepends on whether LOCAL data loading is enabled or disabled:

« If LOCAL data loading is enabled, either by default in the MySQL client library or by explicitly enabling
MYSQL_OPT_LOCAL_I NFI LE, the MYSQL_OPT_LOAD DATA LOCAL_DI R option has no effect.

« If LOCAL data loading is disabled, either by default in the MySQL client library or by explicitly
disabling MYSQL_OPT_LOCAL_| NFI LE, the MySQL_OPT_LOAD DATA LOCAL_DI Roption
can be used to designate a permitted directory for locally loaded files. In this case, LOCAL data
loading is permitted but restricted to files located in the designated directory. Interpretation of the
MYSQL_OPT_LOAD _DATA LOCAL_DI Rvalue is as follows:

84

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-account-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-account-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

mysql_options()

« If the value is the null pointer (the default), it names no directory, with the result that no files are
permitted for LOCAL data loading.

« If the value is a directory path name, LOCAL data loading is permitted but restricted to files located in
the named directory. Comparison of the directory path name and the path name of files to be loaded
is case-sensitive regardless of the case-sensitivity of the underlying file system.

For example, to explicitly disable local data loading except for files located in the / my/ | ocal / dat a
directory, invoke nysql _options() like this:

unsigned int i = 0;

nysql _options(&ysqgl , MYSQL_OPT_LOCAL_I NFI LE, &);

nysql _opti ons(&ysqgl , MYSQL_OPT_LOAD DATA LOCAL_DI R "/ ny/| ocal / data");

The MYSQL_OPT_LOAD DATA LOCAL_DI R option can be set any time during the life of the nmysq|l
connection handler. Once set, the value applies to all subsequent LOCAL load operations until such time
as the value is changed.

The ENABLED_LCOCAL_I NFI LE Cvake option controls the client library default for local data loading (see
MySQL Source-Configuration Options).

Successful use of LOCAL load operations by a client also requires that the server permits local loading;
see Security Considerations for LOAD DATA LOCAL

The MYSQL_OPT_LOAD_DATA LOCAL_DI Roption was added in MySQL 8.0.21.
e MYSQL_OPT_LOCAL_I NFI LE (argument type: optional pointer to unsi gned i nt)

This option affects client-side LOCAL capability for LOAD DATA operations. By default, LOCAL capability
is determined by the default compiled into the MySQL client library. To control this capability explicitly,
invoke nysql _opti ons() to enable or disable the MYySQL_OPT_LOCAL | NFI LE option:

e To enable LOCAL data loading, set the pointer to point to an unsi gned i nt that has a nonzero value,
or omit the pointer argument.

« To disable LOCAL data loading, set the pointer to point to an unsi gned i nt that has a zero value.

If LOCAL capability is disabled, the MYSQL_OPT_LOAD DATA LOCAL_DI R option can be used to permit
restricted local loading of files located in a designated directory.

The ENABLED LOCAL | NFI LE Cvake option controls the client library default for local data loading (see
MySQL Source-Configuration Options).

Successful use of LOCAL load operations by a client also requires that the server permits local loading;
see Security Considerations for LOAD DATA LOCAL

o MYSQL_OPT_NMAX_ALLOVWED_ PACKET (argument: unsi gned | ong *)

This option sets the client-side maximum size of the buffer for client/server communication. If the nysq|l
argument is non-NULL, the call sets the option value for that session. If nysql is NULL, the call sets the
option value globally for all subsequent sessions for which a session-specific value is not specified.

Because it is possible to set a session or global maximum buffer size, depending on whether the nysql
argument is non-NULL or NULL, nysql _get option() similarly returns the session or global value
depending on its mysql argument.

e MYSQ._OPT_NAMED PI PE (argument: not used)

85

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/load-data-local-security.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/load-data-local-security.html

mysql_options()

Use a named pipe to connect to the MySQL server on Windows, if the server permits named-pipe
connections.

MYSQL_OPT_NET_BUFFER_LENGTH (argument: unsi gned | ong *)
This option sets the client-side buffer size for TCP/IP and socket communication.
MYSQL_OPT_OPTI ONAL_RESULTSET_METADATA (argument type: bool *)

This flag makes result set metadata optional. It is an alternative to setting the

CLI ENT_OPTI ONAL_RESULTSET_METADATA connection flag for the nysql _real _connect ()
function. For details about managing result set metadata transfer, see Section 3.6.7, “Optional Result
Set Metadata”.

MYSQL_OPT_PROTOCOL (argument type: unsi gned int *)

Transport protocol to use for connection. Specify one of the enum values of nysql _pr ot ocol _type
defined in nysql . h.

MYSQL_OPT_READ_TI MEQUT (argument type: unsi gned i nt *)

The timeout in seconds for each attempt to read from the server. There are retries if necessary, so
the total effective timeout value is three times the option value. You can set the value so that a lost
connection can be detected earlier than the TCP/IP Cl ose_ Wit _Ti neout value of 10 minutes.

MYSQL_OPT_RECONNECT (argument type: bool *)
Note

The MYSQL_OPT_RECONNECT option is still available but is deprecated; expect it
to be removed in a future version of MySQL.

Enable or disable automatic reconnection to the server if the connection is found to have been lost.
Reconnect is off by default; this option provides a way to set reconnection behavior explicitly. See
Section 3.6.8, “Automatic Reconnection Control”.

MYSQL_OPT_RETRY_COUNT (argument type: unsi gned i nt *)

The retry count for 1/O-related system calls that are interrupted while connecting to the server or
communicating with it. If this option is not specified, the default value is 1 (1 retry if the initial call is
interrupted for 2 tries total).

This option can be used only by clients that link against a C client library compiled with NDB Cluster
support.

MYSQL_OPT_SSL_CA (argument type: char *)

The path name of the Certificate Authority (CA) certificate file. This option, if used, must specify the
same certificate used by the server.

MYSQL_OPT_SSL_CAPATH (argument type: char *)
The path name of the directory that contains trusted SSL CA certificate files.
MYSQL_OPT_SSL_CERT (argument type: char *)

The path name of the client public key certificate file.

86

mysql_options()

MYSQL_OPT_SSL_ClI PHER (argument type: char *)

The list of permissible ciphers for SSL encryption.

MYSQL_OPT_SSL_CRL (argument type: char *)

The path name of the file containing certificate revocation lists.
MYSQL_OPT_SSL_CRLPATH (argument type: char *)

The path name of the directory that contains files containing certificate revocation lists.
MYSQL_OPT_SSL_FI PS_MODE (argument type: unsi gned int *)

The MYSQL_OPT_SSL_FI PS_MODE option is deprecated as of MySQL 8.0.34 and is subject to removal
in a future version of MySQL.

Controls whether to enable FIPS mode on the client side. The MYSQL_OPT_SSL_FI PS_MODE option
differs from other M\YSQL_OPT_SSL_xxx options in that it is not used to establish encrypted connections,
but rather to affect which cryptographic operations to permit. See FIPS Support.

Permitted option values are SSL_FI PS_MODE_OFF, SSL_FI PS_MODE_QN, and
SSL_FI PS_MODE_STRI CT.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted

value for MYSQL_OPT_SSL_FI PS_MODE is SSL_FI PS_MODE_OFF. In this

case, setting M\YySQL_OPT_SSL_FI PS MODE to SSL_FI PS_MODE_ON or

SSL_FI PS_MODE_STRI CT causes the client to produce a warning at startup and
to operate in non-FIPS mode.

MYSQL_OPT_SSL_KEY (argument type: char *)
The path name of the client private key file.
MYSQL_OPT_SSL_MODE (argument type: unsi gned int *)

The security state to use for the connection to the server: SSL_MODE DI SABLED,
SSL_MODE_PREFERRED, SSL_MODE_REQUI RED, SSL_MODE_VERI FY_CA,

SSL_MODE_VERI FY_| DENTI TY. If this option is not specified, the default is SSL_MODE PREFERRED.
These modes are the permitted values of the mysql _ssl _node enumeration defined in nysql . h. For
more information about the security states, see the description of - - ssl - node in Command Options for
Encrypted Connections.

MYSQL_OPT_SSL_SESSI ON_DATA (argument type: voi d *)

The session data to use for session reuse when establishing the next encrypted connection. It should
be set before mysqgl _real connect () and after nysqgl _i nit (). It expects the PEM session data
as returned by nysql get ssl _sessi on_dat a() and copies the result into the MYSQL handle. It is
reset to nul | pt r (the default) after mysqgl _real connect (), unless specified otherwise through the
CLI ENT_REMEMBER_OPTI ONS flag.

If specified, an attempt is made to reuse the session at TLS establishment time. mysqgl _get _opti on()
returns the handle set by nysqgl opti ons(), if any, and it does not increase the number reference
counts.

This option was added in MySQL 8.0.29.

87

https://dev.mysql.com/doc/refman/8.0/en/fips-mode.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options

mysql_options()

MYSQL_OPT_TLS Cl PHERSUI TES (argument type: char *)

Which ciphersuites the client permits for encrypted connections that use TLSv1.3. The value is a

list of one or more colon-separated ciphersuite names. The ciphersuites that can be named for this
option depend on the SSL library used to compile MySQL. For details, see Encrypted Connection TLS
Protocols and Ciphers.

This option was added in MySQL 8.0.16.
MYSQL_OPT_TLS_VERSI ON (argument type: char *)

Which protocols the client permits for encrypted connections. The value is a list of one or more comma-
separated protocol versions. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Encrypted Connection TLS Protocols and Ciphers.

MYSQL_OPT_USE_RESULT (argument: not used)
This option is unused.
MYSQL_OPT_WRI TE_TI MEQUT (argument type: unsi gned int *)

The timeout in seconds for each attempt to write to the server. There is a retry if necessary, so the total
effective timeout value is two times the option value.

MYSQL_OPT_ZSTD COVPRESSI ON_LEVEL (argument type: unsi gned int *)

The compression level to use for connections to the server that use the zst d compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression. If
this option is not specified, the default zst d compression level is 3. The compression level setting has
no effect on connections that do not use zst d compression.

For more information, see Connection Compression Control.

This option was added in MySQL 8.0.18. For asynchronous operations, the option has no effect until
MySQL 8.0.21.

MYSQL_PLUG N DI R (argument type: char *)

The directory in which to look for client plugins.

MYSQL_READ DEFAULT_FI LE (argument type: char *)

Read options from the named option file instead of from ny. cnf .
MYSQL_READ DEFAULT_ GROUP (argument type: char *)

Read options from the named group from my. cnf or the file specified with
MYSQL_READ DEFAULT FI LE.

MYSQL_REPORT_DATA_TRUNCATI ON (argument type: bool *)

Enable or disable reporting of data truncation errors for prepared statements using the er r or member
of MYSQL_BI ND structures. (Default: enabled.)

MYSQL_SERVER _PUBLI C_KEY (argument type: char *)

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate with

88

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html

mysql_options()

the sha256 passwor d or cachi ng_sha2_ passwor d authentication plugin. This option is ignored for
accounts that do not authenticate with one of those plugins. It is also ignored if RSA-based password
exchange is not used, as is the case when the client connects to the server using a secure connection.

If MYSQL_SERVER PUBLI C_KEY is given and specifies a valid public key file, it takes precedence over
MYSQ._OPT_GET_SERVER PUBLI C_KEY.

For information about the sha256_passwor d and cachi ng_sha2_passwor d plugins, see SHA-256
Pluggable Authentication, and Caching SHA-2 Pluggable Authentication.

MYSQL_SET_CHARSET_DI R (argument type: char *)

The path name of the directory that contains character set definition files.

o MYSQL_SET_CHARSET_NAME (argument type: char *)

The name of the character set to use as the default character set. The argument can be
MYSQL_AUTODETECT _CHARSET _NAME to cause the character set to be autodetected based on the
operating system setting (see Connection Character Sets and Collations).

e MYSQL_SHARED NMEMORY_BASE NAME (argument type: char *)

The name of the shared-memory object for communication to the server on Windows, if
the server supports shared-memory connections. Specify the same value as used for the
shared_nenory_base_nane system variable. of the mysql d server you want to connect to.

The cl i ent group is always read if you use MYSQL_READ DEFAULT_FI LE or

MYSQL_READ DEFAULT_GROUP.

The specified group in the option file may contain the following options.

Option

Description

charact er-sets-dir=dir_nane

The directory where character sets are installed.

conpress

Use the compressed client/server protocol.

connect -t i neout =seconds

The connect timeout in seconds. On Linux this
timeout is also used for waiting for the first answer
from the server.

dat abase=db_nane

Connect to this database if no database was
specified in the connect command.

debug

Debug options.

def aul t - char act er - set =char set _nane

The default character set to use.

di sabl e-local -infile

Disable use of LOAD DATA LOCAL.

enabl e-cl eartext-plugin

Enable the mysql cl ear _passwor d cleartext
authentication plugin.

host =host _nane

Default host name.

i ni t-conmand=st nt

Statement to execute when connecting to MySQL
server. Automatically re-executed if reconnection
occurs.

interacti ve-ti neout =seconds

Same as specifying CLI ENT_| NTERACTI VE to
nysql _real _connect (). See Section 5.4.58,
“mysql_real_connect()".

89

https://dev.mysql.com/doc/refman/8.0/en/sha256-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/sha256-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/charset-connection.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_shared_memory_base_name
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

mysql_options()

Option Description

| ocal -infile[={0]1}] If no argument or nonzero argument, enable use of
LOAD DATA LOCAL; otherwise disable.

max_al | oned_packet =byt es Maximum size of packet that client can read from
server.

mul ti-queries,nulti-results Enable multiple result sets from multiple-statement
executions or stored procedures.

mul ti-statements Enable the client to send multiple statements in a
single string (separated by ; characters).

passwor d=passwor d Default password.

pi pe Use named pipes to connect to a MySQL server on
Windows.

port=port_num Default port number.

pr ot ocol ={ TCP| SOCKET| PI PE| MEMORY} The protocol to use when connecting to the server.

return-found-rows Tell mysql _i nfo() to return found rows instead of
updated rows when using UPDATE.

shar ed- nenor y- base- nane=nane Shared-memory name to use to connect to server.

socket ={fi |l e_namne| pi pe_nane} Default socket file.

ssl-ca=fil e_nane Certificate Authority file.

ssl - capat h=di r _nane Certificate Authority directory.

ssl-cert=file_nane Certificate file.

ssl - ci pher=ci pher _|i st Permissible SSL ciphers.

ssl -key=fil e_name Key file.

ti meout =seconds Like connect - ti meout .

user Default user.

t i meout has been replaced by connect -t i neout, butti neout is still supported for backward
compatibility.

For more information about option files used by MySQL programs, see Using Option Files.
Return Values

Zero for success. Nonzero if you specify an unknown option.
Example

The following nysqgl _opti ons() calls request the use of compression in the client/server protocol, cause
options to be read from the [odbc] group in option files, and disable transaction autocommit mode:

MYSQL nysql ;

nmysql _i nit (&ysql);

nmysql _opti ons(&rysql , MYSQL_OPT_COVPRESS, 0) ;

nmysql _opti ons(&mysql , MYSQL_READ DEFAULT_GROUP, " odbc") ;

nmysql _opti ons(&mrysql, MYSQL_I NI T_COMVAND, " SET aut oconmi t =0") ;

if (!'nysqgl _real _connect (&nysql, "host", "user", "passwd", "dat abase", 0, NULL, 0))
{

fprintf(stderr, "Failed to connect to database: Error: %\n",
nmysql _error (&rysql));

90

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html

mysql_options4()

}

5.4.55 mysql_options4()
int
nmysql _opti ons4(MYSQL *nysql ,
enum nysql _opti on option,
const void *argl,
const void *arg2)

Description

nysqgl _options4() issimilarto mysql options() but has an extra fourth argument so that two values
can be passed for the option specified in the second argument.

The following list describes the permitted options, their effect, and how ar g1 and ar g2 are used.
o MYSQL_OPT_CONNECT_ATTR_ADD (argument types: char *, char *)

This option adds an attribute key-value pair to the current set of connection attributes to pass to the
server at connect time. Both arguments are pointers to null-terminated strings. The first and second
strings indicate the key and value, respectively. If the key is empty or already exists in the current set of
connection attributes, an error occurs. Comparison of the key name with existing keys is case-sensitive.

Key names that begin with an underscore (_) are reserved for internal use and should not be created
by application programs. This convention permits new attributes to be introduced by MySQL without
colliding with application attributes.

nysql _options4() imposes a limit of 64KB on the aggregate size of connection attribute data

it accepts. For calls that cause this limit to be exceeded, a CR_| NVALI D_PARAVETER _NOerror
occurs. Attribute size-limit checks also occur on the server side. For details, see Performance Schema
Connection Attribute Tables, which also describes how the Performance Schema exposes connection
attributes through the sessi on_connect _attrs and sessi on_account _connect attrs tables.

See also the descriptions for the MYSQL_OPT_CONNECT _ATTR_RESET and
MYSQL_OPT_CONNECT _ATTR _DELETE options in the description of the mysqgl _opti ons() function.

e MYSQL_OPT_USER PASSWORD (argument types: unsi gned int *, char *)
This option specifies the password for a multifactor authentication factor (see Multifactor Authentication).

The first argument points to an unsi gned i nt variable that should have a value of 1, 2, or 3 to indicate
the factor for which the password is being specified. The second argument points to a character string
that provides the password value.

This option was added in MySQL 8.0.27.
Return Values
Zero for success. Nonzero if you specify an unknown option.
Errors
« CR_DUPLI CATE_CONNECTI ON_ATTR
A duplicate attribute name was specified.

 CR_I NVALI D_PARAMETER_NO

91

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_parameter_no
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-account-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/multifactor-authentication.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_duplicate_connection_attr
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_parameter_no

mysql_ping()

A key name was empty or the amount of key-value connection attribute data exceeds 64KB limit.
* CR_QUT_OF_MEMORY
Out of memory.

Example

This example demonstrates the calls that specify connection attributes:
MYSQL nysql ;

nmysql _i nit (&ysql);

nmysql _opti ons(&rysql , MYSQL_OPT_CONNECT_ATTR_RESET, 0);

nmysql _opti ons4(&mysqgl , MYSQL_OPT_CONNECT_ATTR_ADD, "keyl", "val uel");

nmysql _opti ons4(&mysqgl , MYSQL_OPT_CONNECT_ATTR_ADD, "key2", "val ue2");

nmysql _opti ons4(&mysqgl , MYSQL_OPT_CONNECT_ATTR_ADD, "key3", "val ue3");

nmysql _opti ons(&rysql , MYSQL_OPT_CONNECT_ATTR _DELETE, "keyl");

if (!'nysqgl _real _connect (&nysql, "host", "user", "passwd", "dat abase", 0, NULL, 0))
{

fprintf(stderr, "Failed to connect to database: Error: %\n",
nysql _error (&rysql));
}

5.4.56 mysql_ping()

i nt
nysql _pi ng(MYSQL *nysql)

Description

Checks whether the connection to the server is working. If the connection has gone down and auto-
reconnect is enabled an attempt to reconnect is made. If the connection is down and auto-reconnect is
disabled, nysql _pi ng() returns an error.

Auto-reconnect is disabled by default. To enable it, call mysql _opti ons() with the
MYSQL_OPT_RECONNECT option (deprecated as of MySQL 8.0.34). For details, see Section 5.4.54,
“mysql_options()”.

nysql _pi ng() can be used by clients that remain idle for a long while, to check whether the server has
closed the connection and reconnect if necessary.

If mysqgl _pi ng()) does cause a reconnect, there is no explicit indication of it. To determine whether
a reconnect occurs, call nysql _thread_i d() to getthe original connection identifier before calling
nysql _ping(),thencall mysqgl _t hread_i d() again to see whether the identifier has changed.

If reconnect occurs, some characteristics of the connection will have been reset. For details about these
characteristics, see Section 3.6.8, “Automatic Reconnection Control”.

Return Values

Zero if the connection to the server is active. Nonzero if an error occurred. A nonzero return does not
indicate whether the MySQL server itself is down; the connection might be broken for other reasons such
as network problems.

Errors

*+ CR_COVMANDS_QUT_OF_SYNC

92

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync

mysql_query()

Commands were executed in an improper order.
« CR_SERVER GONE_ERROR

The MySQL server has gone away.
« CR_UNKNOAN_ERROR

An unknown error occurred.

5.4.57 mysql_query()

i nt
nysql _query(MYSQ *nysql,
const char *stnt_str)

Description

Executes the SQL statement pointed to by the null-terminated string st nt _st r . Normally, the string
must consist of a single SQL statement without a terminating semicolon (;) or \ g. If multiple-statement
execution has been enabled, the string can contain several statements separated by semicolons. See
Section 3.6.3, “Multiple Statement Execution Support”.

nysqgl _query() cannot be used for statements that contain binary data; you must use
nysqgl real query() instead. (Binary data may contain the \ O character, which nysql _query()
interprets as the end of the statement string.)

To determine whether a statement returns a result set, call nysql _fi el d_count (). See Section 5.4.23,
“mysql_field_count()”.

Return Values

Zero for success. Nonzero if an error occurred.
Errors

« CR_COVWANDS OUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR_SERVER LOST

The connection to the server was lost during the query.
« CR_UNKNOAN ERROR

An unknown error occurred.

5.4.58 mysql_real_connect()

MYSQL *
nmysql _real _connect (MYSQL *nysql ,
const char *host,

93

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_real_connect()

const char *user,

const char *passwd,

const char *db,

unsi gned int port,

const char *uni x_socket,
unsi gned | ong client_flag)

Description

Note

nysqgl _real _connect () is a synchronous function. Its asynchronous counterpart
isnmysql _real _connect _nonbl ocki ng() , for use by applications that require
asynchronous communication with the server. See Chapter 7, C APl Asynchronous
Interface.

To connect using a DNS SRV record, use nysql _real connect_dns_srv().
See Section 5.4.59, “mysql_real_connect_dns_srv()”.

nysql _real _connect () attempts to establish a connection to a MySQL server running on host . Client
programs must successfully connect to a server before executing any other API functions that require a
valid MYSQL connection handler structure.

Specify the arguments as follows:

» For the first argument, specify the address of an existing MYSQL structure. Before calling
nysql _real _connect (), callmysqgl _i ni t() to initialize the MYSQL structure. You can change a lot
of connect options with the mysql _opti ons() call. See Section 5.4.54, “mysql_options()”.

» The value of host may be either a host name or an IP address. The client attempts to connect as
follows:

e Ifhost is NULL or the string " | ocal host ", a connection to the local host is assumed:

* On Windows, the client connects using a shared-memory connection, if the server has shared-
memory connections enabled.

< On Unix, the client connects using a Unix socket file. The uni x_socket argument or the
MYSQL_UNI X PORT environment variable may be used to specify the socket name.

« On Windows, if host is".", or TCP/IP is not enabled and no uni x_socket is specified or the host
is empty, the client connects using a named pipe, if the server has named-pipe connections enabled. If
named-pipe connections are not enabled, an error occurs.

* Otherwise, TCP/IP is used.

You can also influence the type of connection to use with the M\YSQL_OPT_PROTOCOL or
MYSQL_OPT_NANMED_ PI PE options to nysql _opti ons() . The type of connection must be supported
by the server.

e The user argument contains the user's MySQL login ID. If user is NULL or the empty string " ", the
current user is assumed. Under Unix, this is the current login name. Under Windows ODBC, the current
user name must be specified explicitly. See the Connector/ODBC section of Connectors and APlIs.

» The passwd argument contains the password for user . If passwd is NULL, only entries in the user
table for the user that have a blank (empty) password field are checked for a match. This enables the
database administrator to set up the MySQL privilege system in such a way that users get different
privileges depending on whether they have specified a password.

94

https://dev.mysql.com/doc/refman/8.0/en/connectors-apis.html

mysql_real_connect()

Note

Do not attempt to encrypt the password before calling
mysqgl real connect () ; password encryption is handled automatically by the
client API.

The user and passwd arguments use whatever character set has been configured for the MYSQL
object. By default, this is ut f 8nb4, but can be changed by calling mnysql _opti ons(nysql,
MYSQL_SET CHARSET NAME, "charset nane") prior to connecting.

db is the database name. If db is not NULL, the connection sets the default database to this value.

If port is not 0, the value is used as the port number for the TCP/IP connection. Note that the host
argument determines the type of the connection.

If uni x_socket is not NULL, the string specifies the socket or named pipe to use. Note that the host
argument determines the type of the connection.

The value of cl i ent _f | ag is usually 0, but can be set to a combination of the following flags to enable
certain features:

CAN_HANDLE_EXPI RED_PASSWORDS: The client can handle expired passwords. For more
information, see Server Handling of Expired Passwords.

CLI ENT_COVPRESS: Use compression in the client/server protocol.
CLI ENT_FOUND_ROWS: Return the number of found (matched) rows, not the number of changed rows.

CLI ENT_I GNORE_SI GPI PE: Prevents the client library from installing a SI GPI PE signal handler. This
can be used to avoid conflicts with a handler that the application has already installed.

CLI ENT_| GNORE_SPACE: Permit spaces after function names. Makes all functions names reserved
words.

CLI ENT_I NTERACTI VE: Permiti nteracti ve_ti meout seconds of inactivity (rather than
wai t _ti nmeout seconds) before closing the connection. The client's session wai t _t i neout variable
is set to the value of the sessioni nteractive ti neout variable.

CLI ENT_LOCAL_FI LES: Enable LOAD DATA LOCAL handling.

CLI ENT_MULTI _RESULTS: Tell the server that the client can handle multiple result sets

from multiple-statement executions or stored procedures. This flag is automatically enabled if

CLI ENT_MULTI _STATEMENTS is enabled. See the note following this table for more information about
this flag.

CLI ENT_MULTI _STATEMENTS: Tell the server that the client may send multiple statements in a single
string (separated by ; characters). If this flag is not set, multiple-statement execution is disabled. See
the note following this table for more information about this flag.

CLI ENT_NO SCHEMA: Do not permit db_nan®e. t bl _nane. col _nane syntax. This is for ODBC. It
causes the parser to generate an error if you use that syntax, which is useful for trapping bugs in some
ODBC programs.

From MySQL 8.0.32, the CLI ENT_NO_SCHENA flag is deprecated. Client programs can omit this
flag and the db argument to have the connection set the database value to the current (or default)
database.

95

https://dev.mysql.com/doc/refman/8.0/en/expired-password-handling.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_interactive_timeout
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_wait_timeout
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_wait_timeout
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_interactive_timeout
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

mysql_real_connect()

» CLI ENT_ODBC: Unused.

e CLI ENT_OPTI ONAL_RESULTSET_ METADATA: This flag makes result set metadata optional.
Suppression of metadata transfer can improve performance, particularly for sessions that execute
many queries that return few rows each. For details about managing result set metadata transfer, see
Section 3.6.7, “Optional Result Set Metadata”.

e CLI ENT_SSL: Use SSL (encrypted protocol). Do not set this option within an application
program; it is set internally in the client library. Instead, use nysql _opti ons() before calling
mysqgl _real connect ().

e CLI ENT_REMEMBER_OPTI ONS: Remember options specified by calls to nysql _opti ons() . Without
this option, if mysqgl _real connect () fails, you must repeat the nysql _opti ons() calls before
trying to connect again. With this option, the nysql _opti ons() calls need not be repeated.

If your program uses CALL statements to execute stored procedures, the CLI ENT_MJLTI _RESULTS flag
must be enabled. This is because each CALL returns a result to indicate the call status, in addition to any
result sets that might be returned by statements executed within the procedure. Because CALL can return
multiple results, process them using a loop that calls nysqgl _next resul t () to determine whether there
are more results.

CLI ENT_MULTI _RESULTS can be enabled when you call nysql _real connect (), either explicitly by
passing the CLI ENT_MJLTI _RESULTS flag itself, or implicitly by passing CLI ENT_MJLTI _STATEMENTS
(which also enables CLI ENT_MULTI _RESULTS). CLI ENT_MJLTI _RESULTS is enabled by default.

If you enable CLI ENT_MULTI _STATEMENTS or CLI ENT_MULTI _RESULTS, process the result for every
calltomysql _real _query() ornysql _query() by using aloop that calls nysql _next _result ()
to determine whether there are more results. For an example, see Section 3.6.3, “Multiple Statement
Execution Support”.

For some arguments, it is possible to have the value taken from an option file rather than from

an explicit value in the nysql _real connect () call. To do this, call nysql _opti ons() with

the MYSQL_READ DEFAULT FI LE or MYSQL_READ DEFAULT GROUP option before calling

nysqgl real connect (). Then,inthe nysql real connect () call, specify the “no-value” value for
each argument to be read from an option file:

» For host , specify a value of NULL or the empty string (" ").
» For user, specify a value of NULL or the empty string.

» For passwd, specify a value of NULL. (For the password, a value of the empty string in the
nmysql real connect () call cannot be overridden in an option file, because the empty string
indicates explicitly that the MySQL account must have an empty password.)

» For db, specify a value of NULL or the empty string.
e For port, specify a value of 0.
» Foruni x_socket , specify a value of NULL.

If no value is found in an option file for an argument, its default value is used as indicated in the
descriptions given earlier in this section.

Return Values

A MYSQL* connection handler if the connection was successful, NULL if the connection was unsuccessful.
For a successful connection, the return value is the same as the value of the first argument.

96

https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html

mysql_real_connect()

Errors

Example

CR_CONN_HOST_ERROR

Failed to connect to the MySQL server.
CR_CONNECTI ON_ERROR

Failed to connect to the local MySQL server.
CR_| PSOCK_ERROR

Failed to create an IP socket.

CR_OUT_OF _MEMORY

Out of memory.
CR_SOCKET_CREATE_ERROR

Failed to create a Unix socket.
CR_UNKNOWN_HOST

Failed to find the IP address for the host name.
CR_VERSI ON_ERROR

A protocol mismatch resulted from attempting to connect to a server with a client library that uses a
different protocol version.

CR_NAMEDPI PEOPEN_ERROR

Failed to create a named pipe on Windows.
CR_NAMEDPI PEWAI T_ERROR

Failed to wait for a named pipe on Windows.
CR_NAMEDPI PESETSTATE_ERRCR

Failed to get a pipe handler on Windows.
CR_SERVER LOST

If connect tineout >0 and it took longer than connect ti nmeout seconds to connect to the server
or if the server died while executing the i ni t - cormand.

CR_ALREADY_CONNECTED

The MYSQL connection handler is already connected.

MYSQL nysql ;

nysql _init(&ysql);
nysql _opti ons(&ysql , MYSQL_READ DEFAULT_GROUP, "your _prog_nane");
if (!nysql _real _connect (&ysql, "host", "user", "passwd", "dat abase", 0, NULL, 0))

97

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_conn_host_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_connection_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_ipsock_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_socket_create_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_host
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_version_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_namedpipeopen_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_namedpipewait_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_namedpipesetstate_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_connect_timeout
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_connect_timeout
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_already_connected

mysql_real_connect_dns_srv()

fprintf(stderr, "Failed to connect to database: Error: %\n"
nysql _error (&ysql));
}

By using nysql _opti ons() the MySQL client library reads the [cl i ent] and [your _prog_nane]
sections in the my. cnf file. This enables you to add options to the [your _pr og_nane] section to ensure
that your program works, even if someone has set up MySQL in some nonstandard way.

5.4.59 mysql_real_connect_dns_srv()

MYSQL *
nmysql _real connect _dns_srv(MYSQ. *nysql
const char *dns_srv_nane,
const char *user
const char *passwd,
const char *db
unsi gned long client_flag)

Description
Note

nysql real connect dns_srv() is asynchronous function. Unlike
nysql real connect (), it has no asynchronous counterpart.

nysqgl real connect _dns_srv() issimilartonysql real connect (), exceptthat the argument
list does not specify the particular host of the MySQL server to connect to. Instead, it names a DNS
SRV record that specifies a group of servers. For information about DNS SRV support in MySQL, see
Connecting to the Server Using DNS SRV Records.

The dns_srv_nane argument for nysql _real connect dns_srv() takes the place of the host ,
port,and uni x_socket arguments for nysql real connect().The dns_srv_nane argument
names a DNS SRV record that determines the candidate hosts to use for establishing a connection to a
MySQL server.

The nysql , user, passwd, db, and cl i ent _f| ag argumentsto nysql real connect _dns_srv()
have the same meanings as for mysql real connect (). For descriptions of their meanings, see
Section 5.4.58, “mysql_real_connect()”.

Suppose that DNS is configured with this SRV information for the exanpl e. comdomain:

Name TTL Cl ass Priority Weight Port Target

_nysql . _tcp. exanpl e.com 86400 IN SRV 0 5 3306 host 1. exanpl e. com
_nysql . _tcp. exanpl e.com 86400 IN SRV 0 10 3306 host 2. exanpl e. com
_nysql . _tcp. exanpl e.com 86400 IN SRV 10 5 3306 host 3. exanpl e. com
_nysql . _tcp. exanpl e.com 86400 IN SRV 20 5 3306 host 4. exanpl e. com

To use that DNS SRV record, pass " _mysql . _tcp. exanpl e. cont' as the dns_srv_nane argument to
nmysqgl _real _connect _dns_srv(), which then attempts a connection to each server in the group until a
successful connection is established. A failure to connect occurs only if a connection cannot be established
to any of the servers. The priority and weight values in the DNS SRV record determine the order in which
servers should be tried.

nmysqgl _real connect _dns_srv() attempts to establish TCP connections only.

The client library performs a DNS SRV lookup for each call to nysql _real connect _dns_srv(). The
client library does no caching of lookup results.

98

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html

mysql_real_escape_string()

Return Values

A MYSQL* connection handler if the connection was successful, NULL if the connection was unsuccessful.
For a successful connection, the return value is the same as the value of the first argument.

Errors
The same that you can get from nysql _real _connect (), plus:
« CR_DNS_SRV_LOOKUP_FAI LED
DNS SRV lookup failed.
Example

The following example uses the name of the DNS SRV record shown previously as the source of candidate
servers for establishing a connection.

MYSQL nysql ;
const char *dns_srv_nane = "_nysql._tcp. exanpl e. conl';

nmysql _i nit (&ysql);
if (!nysqgl _real _connect_dns_srv(&mysql, dns_srv_nane, "user", "passwd", "dat abase", 0))
{

fprintf(stderr, "Failed to connect to database: Error: %\n"
nmysql _error (&rysql));
}

5.4.60 mysql_real escape_string()

unsi gned | ong
nysql _real _escape_string(MYSQ *nysql
char *to,
const char *from
unsi gned | ong | engt h)

Description

This function creates a legal SQL string for use in an SQL statement. See String Literals.
Note

nysqgl real escape_string() fails and produces an CR_| NSECURE APl ERR
error if the NO BACKSLASH ESCAPES SQL mode is enabled. In this case, the
function cannot escape quote characters except by doubling them, and to do this
properly, it must know more information about the quoting context than is available.
Instead, use nysql real escape_string_quote(), which takes an extra
argument for specifying the quoting context.

The nysql argument must be a valid, open connection because character escaping depends on the
character set in use by the server.

The string in the f r omargument is encoded to produce an escaped SQL string, taking into account the
current character set of the connection. The result is placed in the t o argument, followed by a terminating
null byte.

Characters encoded are \ , ' , ", NUL (ASCII 0), \ n,\ r, and Control+Z. Strictly speaking, MySQL
requires only that backslash and the quote character used to quote the string in the query be escaped.
nysqgl _real _escape_string() quotes the other characters to make them easier to read in log files.

99

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_dns_srv_lookup_failed
https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_insecure_api_err
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_backslash_escapes

mysql_real_escape_string_quote()

For comparison, see the quoting rules for literal strings and the QUOTE() SQL function in String Literals,
and String Functions and Operators.

The string pointed to by f r ommust be | engt h bytes long. You must allocate the t o buffer to be at least
| engt h*2+1 bytes long. (In the worst case, each character may need to be encoded as using two bytes,
and there must be room for the terminating null byte.) When nysql _real _escape_string() returns,
the contents of t o is a null-terminated string. The return value is the length of the encoded string, not
including the terminating null byte.

If you must change the character set of the connection, use the nysql _set _character_set ()
function rather than executing a SET NAMES (or SET CHARACTER SET) statement.

nysql _set _character_set () works like SET NAMNES but also affects the character set used by
nysql _real _escape_string(), which SET NAMES does not.

Example

The following example inserts two escaped strings into an | NSERT statement, each within single quote
characters:

char query[1000], *end;

end = nmy_stpcpy(query, "I NSERT | NTO test_table VALUES('");

end += nysql _real _escape_string(&mysql, end, "What is this", 12);

end = ny_stpcpy(end,"',"'");

end += nysql _real _escape_string(&mwysql, end, "binary data: \0\r\n", 16);
end = ny_stpcpy(end, "')");

if (nysql _real _query(&nysql, query, (unsigned int) (end - query)))

fprintf(stderr, "Failed to insert row, Error: %\n",
nysql _error (&ysql));
}

The ny_st pcpy() function used in the example is included in the | i bnysql cl i ent library and works
like st rcpy() butreturns a pointer to the terminating null of the first parameter.

Return Values

The length of the encoded string that is placed into the t o argument, not including the terminating null byte,
or -1 if an error occurs.

Because nysql real escape_string() returns an unsigned value, you can check for -1 by comparing
the return value to (unsi gned | ong) -1 (orto (unsi gned | ong) ~0, which is equivalent).

Errors
* CR_I NSECURE_API ERR

This error occurs if the NO BACKSLASH ESCAPES SQL mode is enabled because, in that case,
nysql _real _escape_string() cannot be guaranteed to produce a properly encoded result. To
avoid this error, use nysql _real _escape_string_quot e() instead.

5.4.61 mysql_real_escape_string_quote()

unsi gned | ong

nmysql _real _escape_string_quote(MYSQL *nysql,
char *to,
const char *from
unsi gned | ong | engt h,
char quote)

100

https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_quote
https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_insecure_api_err
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_backslash_escapes

mysql_real_escape_string_quote()

Description
This function creates a legal SQL string for use in an SQL statement. See String Literals.

The nysql argument must be a valid, open connection because character escaping depends on the
character set in use by the server.

The string in the f r omargument is encoded to produce an escaped SQL string, taking into account the
current character set of the connection. The result is placed in the t o argument, followed by a terminating
null byte.

Characters encoded are \ , ' , ", NUL (ASCII 0), \ n,\ r, Control+Z, and " . Strictly speaking, MySQL
requires only that backslash and the quote character used to quote the string in the query be escaped.
nysql _real _escape_string_quot e() quotes the other characters to make them easier to read in
log files. For comparison, see the quoting rules for literal strings and the QUOTE() SQL function in String
Literals, and String Functions and Operators.

Note

If the ANSI _ QUOTES SQL mode is enabled,

nysqgl real escape_string quote() cannot be used to escape double quote
characters for use within double-quoted identifiers. (The function cannot tell whether
the mode is enabled to determine the proper escaping character.)

The string pointed to by f r ommust be | engt h bytes long. You must allocate the t o buffer to be at least
| engt h*2+1 bytes long. (In the worst case, each character may need to be encoded as using two bytes,
and there must be room for the terminating null byte.) When nysql _real _escape_string_quote()
returns, the contents of t o is a null-terminated string. The return value is the length of the encoded string,
not including the terminating null byte.

The quot e argument indicates the context in which the escaped string is to be placed. Suppose that you
intend to escape the f r omargument and insert the escaped string (designated here by st r) into one of
the following statements:

1) SELECT * FROM t abl e WHERE nane "str'
2) SELECT * FROM t abl e WHERE nane "str"
3) SELECT * FROM “str° WHERE id = 103

To perform escaping properly for each statement, call mysql real escape_string quote() as
follows, where the final argument indicates the quoting context:

1) len = nysql _real _escape_string_quote(&mysqgl,to,fromfromlen,'\"'");
2) len = nysql _real escape_string_quote(&mysqgl,to,fromfromlen,'"");
3) len = nysqgl _real _escape_string_quote(&mysqgl,to,fromfromlen,' ");

If you must change the character set of the connection, use the nysql set character_set ()
function rather than executing a SET NANES (or SET CHARACTER SET) statement.

nmysqgl set character _set () works like SET NAMES but also affects the character set used by
nysqgl real escape_string quote(),which SET NAMES does not.

Example

The following example inserts two escaped strings into an | NSERT statement, each within single quote
characters:

char query[1000], *end;

end = nmy_stpcpy(query, "I NSERT | NTO test_table VALUES('");
end += nysql _real _escape_string_quot e(&rysql, end, "What is this",12,'\"'");

101

https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_quote
https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_ansi_quotes
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html

mysql_real_query()

end = nmy_stpcpy(end, "' ,"");
end += nysql _real _escape_string_quot e(&rysqgl, end, "binary data: \0\r\n",16,'\"'");
end = nmy_stpcpy(end, "')");
if (nysql _real _query(&mysqgl, query, (unsigned int) (end - query)))
{
fprintf(stderr, "Failed to insert row, Error: %\n",

nmysql _error (&rysql));
}

The ny_st pcpy() function used in the example is included in the | i bnysql cl i ent library and works
like st rcpy() butreturns a pointer to the terminating null of the first parameter.

Return Values
The length of the encoded string that is placed into the t o argument, not including the terminating null byte.
Errors

None.

5.4.62 mysql_real _query()

i nt

nysql _real _query(MYSQ *nysql,
const char *stnt_str,
unsi gned | ong | ength)

Description

Note

nysql _real _query() is asynchronous function. Its asynchronous counterpart
ismysql _real _query_nonbl ocki ng(), for use by applications that require
asynchronous communication with the server. See Chapter 7, C APl Asynchronous
Interface.

nmysqgl _real _query() executes the SQL statement pointed to by st nt _st r, a string | engt h bytes
long. Normally, the string must consist of a single SQL statement without a terminating semicolon (;) or

\ g. If multiple-statement execution has been enabled, the string can contain several statements separated
by semicolons. See Section 3.6.3, “Multiple Statement Execution Support”.

nmysqgl _query() cannot be used for statements that contain binary data; you must use

nmysqgl _real _query() instead. (Binary data may contain the \ O character, which nysql _query()
interprets as the end of the statement string.) In addition, nysql _real _query() is faster than
nysqgl _query() because it does not call st rl en() on the statement string.

To determine whether a statement returns a result set, call nysql _fi el d_count (). See Section 5.4.23,
“mysql_field_count()”.

Return Values

Zero for success. Nonzero if an error occurred.
Errors

« CR_COVWWANDS OUT_OF SYNC

Commands were executed in an improper order.

102

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync

mysql_refresh()

« CR_SERVER _GONE_ERROR
The MySQL server has gone away.
« CR_SERVER LOST
The connection to the server was lost during the query.
« CR_UNKNOM_ERROR

An unknown error occurred.

5.4.63 mysql_refresh()

int
nysql _refresh(MYSQ *nysql,
unsi gned int options)

Description
Note

nysql _refresh() is deprecated and is subject to removal in a future version of
MySQL. Instead, use nmysql real query() ornysql _query() toexecute a
FLUSH statement.

This function flushes tables or caches, or resets replication server information. The connected user must
have the RELOAD privilege.

The opt i ons argument is a bitmask composed from any combination of the following values. Multiple
values can be OR'ed together to perform multiple operations with a single call.

* REFRESH_GRANT

Refresh the grant tables, like FLUSH PRI VI LEGES.
* REFRESH_LOG

Flush the logs, like FLUSH LOGS.
» REFRESH TABLES

Flush the table cache, like FLUSH TABLES.
* REFRESH_HOSTS

Flush the host cache, like FLUSH HOSTS.
» REFRESH STATUS

Reset status variables, like FLUSH STATUS.
* REFRESH_THREADS

Flush the thread cache.
« REFRESH_SLAVE

On a replica server, reset the source server information and restart the replica, like RESET SLAVE.

103

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/flush.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-hosts
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-status
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html

mysql_reload()

* REFRESH_MASTER

On a source server, remove the binary log files listed in the binary log index and truncate the index file,
like RESET MASTER.

Return Values

Zero for success. Nonzero if an error occurred.

Errors
« CR_COWANDS OUT_OF SYNC
Commands were executed in an improper order.
« CR_SERVER GONE_ERRCR
The MySQL server has gone away.
« CR_SERVER LOST
The connection to the server was lost during the query.
« CR_UNKNOMN_ERROR

An unknown error occurred.

5.4.64 mysql_reload()

i nt
nysql _rel oad(M\YSQL *nysql)

Description
Asks the MySQL server to reload the grant tables. The connected user must have the RELOAD privilege.

This function is deprecated. Use nysql real query() ornysql query() toissue an SQL FLUSH
PRI VI LECGES statement instead.

Return Values

Zero for success. Nonzero if an error occurred.
Errors

« CR_COVWANDS_OUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

104

https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_reset_connection()

5.4.65 mysql_reset_connection()

i nt
nmysql _reset _connecti on(MYSQL *nysql)

Description

Resets the connection to clear the session state.

nysqgl reset connecti on() has effects similar to nysql _change_user () or an auto-reconnect
except that the connection is not closed and reopened, and reauthentication is not done. The write
set session history is reset. See Section 5.4.4, “mysql_change_user()”, and Section 3.6.8, “Automatic
Reconnection Control”.

nmysqgl reset connection() affects the connection-related state as follows:
* Rolls back any active transactions and resets autocommit mode.

* Releases all table locks.

» Closes (and drops) all TEMPORARY tables.

» Reinitializes session system variables to the values of the corresponding global system variables,
including system variables that are set implicitly by statements such as SET NANMES.

» Loses user-defined variable settings.

» Releases prepared statements.

+ Closes HANDLER variables.

* Resets the value of LAST | NSERT | () to 0.
* Releases locks acquired with GET_LOCK() .

» Clears any current query attributes defined as a result of calling nysql _bi nd_parant() .
Return Values

Zero for success. Nonzero if an error occurred.

5.4.66 mysql_reset_server_public_key()

voi d
nysql _reset_server_public_key(void)

Description

Clears from the client library any cached copy of the public key required by the server for RSA

key pair-based password exchange. This might be necessary when the server has been restarted

with a different RSA key pair after the client program had called nysql _opti ons() with the
MYSQL_SERVER PUBLI C KEY option to specify the RSA public key. In such cases, connection failure can
occur due to key mismatch. To fix this problem, the client can use either of the following approaches:

» The client can call nysqgl _reset _server_public_key() to clear the cached key and try again, after
the public key file on the client side has been replaced with a file containing the new public key.

e Theclientcan call nysqgl reset server public_key() to clear the cached key, then
call mysql options() withthe MYySQL_OPT_CET_SERVER PUBLI C_KEY option (instead of

105

https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/handler.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock

mysql_result_metadata()

MYSQL_SERVER PUBLI C_KEY) to request the required public key from the server Do not use both
MYSQL_OPT_GET_SERVER PUBLI C_KEY and MYSQL_SERVER_PUBLI C_KEY because in that case,
MYSQL_SERVER PUBLI C_KEY takes precedence.

Return Values
None.
Errors

None.

5.4.67 mysql_result_metadata()

enum enum r esul t set _met adat a
nysql _result_met adat a(MYSQL_RES *resul t)

Description

nmysqgl _result_netadata() returns a value that indicates whether a result set has metadata. It

can be useful for metadata-optional connections when the client does not know in advance whether
particular result sets have metadata. For example, if a client executes a stored procedure that returns
multiple result sets and might change the r esul t set _net adat a system variable, the client can invoke
nmysqgl _result_netadata() for each result set to determine whether it has metadata.

For details about managing result set metadata transfer, see Section 3.6.7, “Optional Result Set
Metadata”.

Return Values

mysql result _netadata() returns one of these values:

enum enum resul t set _netadata {
RESULTSET_METADATA NONE= 0,

RESULTSET_METADATA FULL= 1

b

5.4.68 mysql_rollback()

bool
nmysql _rol | back(MYSQL *mysql)

Description
Rolls back the current transaction.

The action of this function is subject to the value of the conpl eti on_t ype system variable. In particular,
if the value of conpl et i on_t ype is RELEASE (or 2), the server performs a release after terminating a
transaction and closes the client connection. Call nysql _cl ose() from the client program to close the
connection from the client side.

Return Values
Zero for success. Nonzero if an error occurred.
Errors

None.

106

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_completion_type
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_completion_type

mysql_row_seek()

5.4.69 mysql_row_seek()

MYSQL_ROW OFFSET
nmysql _row _seek(MYSQL_RES *resul t,
MYSQL_ROW OFFSET of f set)

Description
Sets the row cursor to an arbitrary row in a query result set. The of f set value is a row offset, typically a
value returned from nysql _row tel | () or fromnysqgl _r ow _seek() . This value is not a row number;

to seek to a row within a result set by number, use nysql _dat a_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
nmysqgl _row seek() may be used only in conjunction with nysql _store_resul t (), not with
mysql _use result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql _row seek().

Errors
None.

5.4.70 mysql_row_tell()

MYSQL_ROW OFFSET
nysqgl _row tel | (MYSQL_RES *result)

Description

Returns the current position of the row cursor for the last mysql _fetch_row() . This value can be used
as an argument to nysql _row_seek().

Use nysql _row tell () onlyafter nysql _store_result(), notaftermysqgl use result().
Return Values

The current offset of the row cursor.
Errors

None.

5.4.71 mysql_select_db()

int
nmysql _sel ect _db(MYSQ. *nysql,
const char *db)

Description
Causes the database specified by db to become the default (current) database on the connection specified

by mysql . In subsequent queries, this database is the default for table references that include no explicit
database specifier.

107

mysql_server_end()

nysql sel ect _db() fails unless the connected user can be authenticated as having permission to use
the database or some object within it.

Return Values

Zero for success. Nonzero if an error occurred.
Errors

» CR_COMVANDS_QUT_OF_SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.72 mysql_server_end()

voi d
nysql _server _end(voi d)

Description

This function finalizes the MySQL client library, which should be done when you are done using the library.
However, nysql _server _end() is deprecated and nysql |ibrary end() should be used instead.
See Section 5.4.44, “mysql_library _end()".

Note

To avoid memory leaks after the application is done using the library (for example,
after closing the connection to the server), be sure to call mysql _server _end()
(ormysqgl _l'i brary_end()) explicitly. This enables memory managment to be
performed to clean up and free resources used by the library.

Return Values

None.

5.4.73 mysql_server_init()

int

nmysql _server _init(int argc,
char **argyv,
char **groups)

Description

This function initializes the MySQL client library, which must be done before you call any other MySQL
function. However, nysql server _init () is deprecated and you should call nysql library init()
instead. See Section 5.4.45, “mysql_library_init()".

108

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_session_track_get_first()

Note

To avoid memory leaks after the application is done using the library (for example,
after closing the connection to the server), be sure to call mysql _server _end()
(ormysqgl _l'i brary_end()) explicitly. This enables memory managment to be
performed to clean up and free resources used by the library. See Section 5.4.44,
“mysql_library_end()”.

Return Values

Zero for success. Nonzero if an error occurred.

5.4.74 mysql_session_track_get first()

i nt

nysql _session_track_get_first(MSQ *nysql,
enum enum sessi on_st ate_type type,
const char **data,
size_t *length)

Description

MySQL implements a session tracker mechanism whereby the server returns information

about session state changes to clients. To control which notifications the server provides

about state changes, client applications set system variables having names of the form

sessi on_track xxx, such as sessi on_track_state_change, sessi on_track_schens, and
session_track _system vari abl es. See Server Tracking of Client Session State.

Change natification occurs in the MySQL client/server protocol, which includes tracker information in OK
packets so that session state changes can be detected. To enable client applications to extract state-
change information from OK packets, the MySQL C API provides a pair of functions:

e nysql _session_track get first() fetches the first part of the state-change information received
from the server.

* nysql _session_track_get next () fetches any remaining state-change information received from
the server. Following a successful call to nysqgl _session_track _get first(), callthis function
repeatedly as long as it returns success.

The nysql _session_track get first() parameters are used as follows. These descriptions also
apply tonysql _session_track _get next (), which takes the same parameters.

e nysql : The connection handler.

» type: The tracker type indicating what kind of information to retrieve. Permitted tracker values are the
members of the enum sessi on_st at e_t ype enumeration defined in mysgl _com h:

enum enum sessi on_state_t ype

{

SESSI ON_TRACK_SYSTEM VARI ABLES, /* Session system variabl es */
SESSI ON_TRACK_SCHEMA, /* Current schema */

SESSI ON_TRACK_STATE_CHANGE, /* Session state changes */

SESSI ON_TRACK_GTI DS, [* GTIDs */

SESSI ON_TRACK_TRANSACTI ON_CHARACTERI STI CS, /* Transacti on characteristics */
SESSI ON_TRACK_TRANSACTI ON_STATE /* Transaction state */

}s

The members of that enumeration may change over time as MySQL implements additional session-
information trackers. To make it easy for applications to loop over all possible tracker types regardless
of the number of members, the SESSI ON_ TRACK_BEG Nand SESSI ON_TRACK_END symbols are

109

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_state_change
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_schema
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_system_variables
https://dev.mysql.com/doc/refman/8.0/en/session-state-tracking.html

mysql_session_track_get_first()

defined to be equal to the first and last members of the enum sessi on_st at e_t ype enumeration. The
example code shown later in this section demonstrates this technique. (Of course, if the enumeration
members change, you must recompile your application to enable it to take account of new trackers.)

dat a: The address of aconst char * variable. Following a successful call, this variable points to the
returned data, which should be considered read only.

| engt h: The address of a si ze_t variable. Following a successful call, this variable contains the length
of the data pointed to by the dat a parameter.

The following discussion describes how to interpret the dat a and | engt h values according to the t ype
value. It also indicates which system variable enables notifications for each tracker type.

» SESSI ON_TRACK_SCHEMA: This tracker type indicates that the default schema has been set. dat a is a

string containing the new default schema name. | engt h is the string length.
To enable notifications for this tracker type, enable the sessi on_t rack_schena system variable.

SESSI ON_TRACK_SYSTEM VARI ABLES: This tracker type indicates that one or more tracked session
system variables have been assigned a value. When a session system variable is assigned, two values
per variable are returned (in separate calls). For the first call, dat a is a string containing the variable
name and | engt h is the string length. For the second call, dat a is a string containing the variable value
and | engt h is the string length.

By default, notification is enabled for these session system variables:
e aut ocommi t

e character_set _client

e« character_set _connection

e character_set _results

e tinme_zone

To change the default notification for this tracker type, set the sessi on_track schena

system variable to a list of comma-separated variables for which to track changes, or * to

track changes for all variables. To disable notification of session variable assignments, set
session_track_system vari abl es to the empty string.

SESSI ON_ TRACK STATE CHANGE: This tracker type indicates a change to some tracked attribute of
session state. dat a is a byte containing a boolean flag that indicates whether session state changes
occurred. | engt h should be 1. The flag is represented as an ASCII value, not a binary (for example,
"1', not 0x01).

To enable natifications for this tracker type, enable the sessi on_track_st at e _change system
variable.

This tracker reports changes for these attributes of session state:

The default schema (database).
» Session-specific values for system variables.
» User-defined variables.

e Temporary tables.

110

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_schema
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_schema
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_system_variables
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_state_change

mysql_session_track_get_first()

+ Prepared statements.

e SESSI ON_TRACK GTI DS: This tracker type indicates that GTIDs are available. dat a contains the GTID
string. | engt h is the string length. The GTID string is in the standard format for specifying a set of GTID
values; see GTID Sets.

To enable natifications for this tracker type, set the sessi on_track_gti ds system variable.

e SESSI ON_TRACK TRANSACTI ON_CHARACTERI STI CS: This tracker type indicates that transaction
characteristics are available. dat a is a string containing the characteristics data. | engt h is the string
length. The characteristics tracker data string may be empty, or it may contain one or more SQL
statements, each terminated by a semicolon:

« If no characteristics apply, the string is empty. The session defaults apply. (For isolation level and
access mode, these defaults are given by the session values of the t ransacti on_i sol ati on and
transacti on_read_onl y system variables.)

« If a transaction was explicitly started, the string contains the statement or statements required to
restart the transaction with the same characteristics. As a general rule, this is a START TRANSACTI ON
statement (possibly with one or more of READ ONLY, READ WRI TE, and W TH CONSI STENT
SNAPSHQOT). If any characteristics apply that cannot be passed to START TRANSACTI ON, such as
| SOLATI ON LEVEL, a suitable SET TRANSACTI ON statement is prepended (for example, SET
TRANSACTI ON | SOLATI ON LEVEL SERI ALI ZABLE; START TRANSACTI ON READ WRI TE;).

« If a transaction was not explicitly started, but one-shot characteristics that apply only to the next
transaction were set up, a SET TRANSACTI ON statement suitable for replicating that setup is
generated (for example, SET TRANSACTI ON READ ONLY;).

Next-transaction characteristics can be set using SET TRANSACTI ON without any GLOBAL or
SESSI ON keyword, or by setting the t ransacti on_i sol ati onandtransacti on_read_only
system variables using the syntax that applies only to the next transaction:

val ue;
val ue;

SET @@ransaction_isol ation
SET @@ransaction_read_only

For more information about transaction characteristic scope levels and how they are set, see
Transaction Characteristic Scope.

To enable notifications for this tracker type, set the sessi on_track_transacti on_i nf o system
variable to CHARACTERI STI CS (which also enables the SESSI ON_ TRACK _TRANSACTI ON_STATE
tracker type).

Transaction characteristics tracking enables the client to determine how to restart a transaction in
another session so it has the same characteristics as in the original session.

Because characteristics may be set using SET TRANSACTI ON before a transaction is started, it is not
safe for the client to assume that there are no transaction characteristics if no transaction is active.

It is therefore unsafe not to track transaction characteristics and just switch the connection when

no transaction is active (whether this is detected by the transaction state tracker or the traditional
SERVER _STATUS | N_TRANS flag). A client must subscribe to the transaction characteristics tracker if it
may wish to switch its session to another connection at some point and transactions may be used.

The characteristics tracker tracks changes to the one-shot characteristics that apply only to the next

transaction. It does not track changes to the session variables. Therefore, the client additionally must
track thetransaction_i sol ati onandtransacti on_read_only system variables to correctly
determine the session defaults that apply when next-transaction characteristic values are empty. (To

111

https://dev.mysql.com/doc/refman/8.0/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_gtids
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_isolation
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_read_only
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_isolation
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_read_only
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html#set-transaction-scope
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_transaction_info
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_isolation
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_read_only

mysql_session_track_get_first()

track these variables, list them in the value of the sessi on_track _system vari abl es system
variable.)

112

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_system_variables

mysql_session_track_get_first()

e SESSI ON_TRACK TRANSACTI ON_STATE: This tracker type indicates that transaction state information
is available. dat a is a string containing ASCII characters, each of which indicates some aspect of the
transaction state. | engt h is the string length (always 8).

To enable natifications for this tracker type, set the sessi on_track transacti on_i nf o system
variable to STATE.

Transaction state tracking enables the client to determine whether a transaction is in progress and
whether it could be moved to a different session without being rolled back.

The scope of the tracker item is the transaction. All state-indicating flags persist until the transaction
is committed or rolled back. As statements are added to the transaction, additional flags may be set in
successive tracker data values. However, no flags are cleared until the transaction ends.

Transaction state is reported as a string containing a sequence of ASCII characters. Each active state
has a unique character assigned to it as well as a fixed position in the sequence. The following list
describes the permitted values for positions 1 through 8 of the sequence:

» Position 1: Whether an active transaction is ongoing.
e T: An explicitly started transaction is ongoing.
« | : An implicitly started transaction (aut oconmi t =0) is ongoing.
e _:There is no active transaction.
« Position 2: Whether nontransactional tables were read in the context of the current transaction.
 r: One or more nontransactional tables were read.
« _: No nontransactional tables were read so far.
« Position 3: Whether transactional tables were read in the context of the current transaction.
* R: One or more transactional tables were read.
« _: No transactional tables were read so far.

« Position 4: Whether unsafe writes (writes to nontransactional tables) were performed in the context of
the current transaction.

» w: One or more nontransactional tables were written.
< _: No nontransactional tables were written so far.
« Position 5: Whether any transactional tables were written in the context of the current transaction.
» W One or more transactional tables were written.
e . No transactional tables were written so far.

¢ Position 6: Whether any unsafe statements were executed in the context of the current transaction.
Statements containing nondeterministic constructs such as RAND() or UUl () are unsafe for
statement-based replication.

« s: One or more unsafe statements were executed.

113

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_transaction_info
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_rand
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid

mysql_session_track_get_first()

« _: No unsafe statements were executed so far.
< Position 7: Whether a result set was sent to the client during the current transaction.
e S: Aresult set was sent.
e _: No result sets were sent so far.
¢ Position 8: Whether a LOCK TABLES statement is in effect.
e L: Tables are explicitly locked with LOCK TABLES.

e« :LOCK TABLES s not active in the session.

Consider a session consisting of the following statements, including one to enable the transaction state

tracker:

1. SET @OBESSI ON. session_track_transaction_i nf o=" STATE' ;
2. START TRANSACTI ON\;

3. SELECT 1,

4. INSERT INTOt1 () VALUES();

5. INSERT INTO t1 () VALUES(1, RAND());

6. COW T;

With transaction state tracking enabled, the following dat a values result from those statements:

1.

2. T

3. T S
4. T__WS_
5. T___\S_
6.

Return Values

Zero for success. Nonzero if an error occurred.
Errors

None.
Example

The following example shows how to call nysql _session_track get first() and

nysqgl session_track get next () to retrieve and display all available session state-change
information following successful execution of an SQL statement string (represented by st nt _str). It
is assumed that the application has set the sessi on_t rack_xxx system variables that enable the
notifications it wishes to receive.

printf("Execute: %\n", stnt_str);

if (nysql _query(nysqgl, stnt_str) != 0)
{

fprintf(stderr, "Error %: 9%\n",

nysql _errno(nysql), nysql _error(nysql));
return;

}

MYSQL_RES *result = nysql _store_result(nysql);

114

https://dev.mysql.com/doc/refman/8.0/en/lock-tables.html
https://dev.mysql.com/doc/refman/8.0/en/lock-tables.html
https://dev.mysql.com/doc/refman/8.0/en/lock-tables.html

mysql_session_track_get next()

if (result) /* there is a result set to fetch */
{
[* ... process rows here ... */
printf("Nunber of rows returned: % u\n",
(unsi gned | ong) nysgl _numrows(result));
nmysql _free_result(result);

}
el se /* there is no result set */
{
if (nysqgl _field_count(mysqgl) == 0)
printf("Nunber of rows affected: % u\n",
(unsi gned | ong) nysql _affected_rows(nysql));
}
el se /* an error occurred */
fprintf(stderr, "Error %: %\n",
nmysql _errno(nysql), mnysql _error(nysql));
}
}

/* extract any avail abl e session state-change information */
enum enum sessi on_state_type type;
for (type = SESSI ON TRACK BEGA N; type <= SESSI ON TRACK END; type++)

const char *dat a;
size_t |ength;

if (nysqgl _session_track_get_first(mysql, type, &data, & ength) == 0)

/* print info type and initial data */

printf("Type=%l:\n", type);

printf("mysql _session_track_get _first(): |ength=%; data=%.*s\n",
(int) length, (int) length, (int) length, data);

/* check for nore data */
whi | e (nysqgl _session_track_get_next (mysql, type, &data, & ength) == 0)

printf("mysql _session_track_get_next(): |ength=%l; data=%.*s\n",
(int) length, (int) length, (int) length, data);

5.4.75 mysql_session_track _get_next()

i nt

nysql _session_track_get _next (MYSQ. *nysql,
enum enum sessi on_state_type type,
const char **data,
size_t *|ength)

Description

This function fetches additional session state-change information received from the server,
following that retrieved by nmysql _sessi on_track_get _first (). The parameters for
nysql _sessi on_track_get _next () arethe same as for nysql _sessi on_track_get _first().

Following a successful call to mysql session_track get first(),call

nysqgl session_track get next () repeatedly until it returns nonzero to indicate no more information
is available. The calling sequence for mysql sessi on_track _get next () is similar to that for

nysqgl session_track get first().Formore information and an example that demonstrates both
functions, see Section 5.4.74, “mysql_session_track get_first()".

115

mysql_set_character_set()

Return Values
Zero for success. Nonzero if an error occurred.
Errors

None.

5.4.76 mysql_set_character_set()
int
nysql _set _character_set (MYSQL *nysql,
const char *csnane)

Description

This function is used to set the default character set for the current connection. The string csnane
specifies a valid character set name. The connection collation becomes the default collation of the
character set. This function works like the SET NANES statement, but also sets the value of nysql -
>char set, and thus affects the character set used by nysql _real _escape_string()

Return Values
Zero for success. Nonzero if an error occurred.

Example
MYSQL nysql ;
nysql _i nit (&ysql);

if (!nysql _real _connect (&ysql, "host", "user", "passwd", "dat abase", 0, NULL, 0))
{

fprintf(stderr, "Failed to connect to database: Error: %\n",
nysql _error (&ysql));
}

if (!nysqgl_set_character_set (&mysql, "utf8"))

printf("New client character set: %\n",
nysql _charact er_set_nanme(&nysql));
}

5.4.77 mysql_set_local_infile_default()

voi d
nysql _set | ocal _infile_defaul t(MYSQL *nysql);

Description

Sets the LOAD DATA LOCAL callback functions to the defaults used internally by the C client library. The
library calls this function automatically if mysql set | ocal infile_handl er () has not been called or
does not supply valid functions for each of its callbacks.

Return Values
None.
Errors

None.

116

https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

mysql_set_local_infile_handler()

5.4.78 mysql_set_local_infile_handler()

voi d

nmysql _set _| ocal _i nfil e_handl er (MYSQL *nysql ,
int (*local _infile_init)(void **, const char *, void *),
int (*local _infile_read)(void *, char *, unsigned int),
void (*local _infile_end)(void *),
int (*local _infile_error)(void *, char*, unsigned int),
voi d *userdata);

Description

This function installs callbacks to be used during the execution of LOAD DATA LOCAL statements. It
enables application programs to exert control over local (client-side) data file reading. The arguments
are the connection handler, a set of pointers to callback functions, and a pointer to a data area that the
callbacks can use to share information.

Touse nysql set | ocal infile_handl er(), you mustwrite the following callback functions:

i nt
local _infile_init(void **ptr, const char *filenane, void *userdata);

The initialization function. This is called once to do any setup necessary, open the data file, allocate data
structures, and so forth. The first voi d** argument is a pointer to a pointer. You can set the pointer (that
is, * pt r) to a value that will be passed to each of the other callbacks (as a voi d*). The callbacks can
use this pointed-to value to maintain state information. The user dat a argument is the same value that is
passed to mysqgl set local _infile handler().

Make the initialization function return zero for success, nonzero for an error.

int
local _infile_read(void *ptr, char *buf, unsigned int buf_Ilen);

The data-reading function. This is called repeatedly to read the data file. buf points to the buffer where the
read data is stored, and buf _| en is the maximum number of bytes that the callback can read and store in
the buffer. (It can read fewer bytes, but should not read more.)

The return value is the number of bytes read, or zero when no more data could be read (this indicates
EOF). Return a value less than zero if an error occurs.

voi d
local _infile_end(void *ptr)

The termination function. This is called once after | ocal i nfile_read() has returned zero (EOF) or an
error. Within this function, deallocate any memory allocated by | ocal i nfile_init() and perform any
other cleanup necessary. It is invoked even if the initialization function returns an error.

int

local _infile_error(void *ptr,

char *error_nsg,
unsigned int error_nsg_| en);

The error-handling function. This is called to get a textual error message to return to the user in case any
of your other functions returns an error. er r or _nsg points to the buffer into which the message is written,
and error _nsg_| en is the length of the buffer. Write the message as a null-terminated string, at most
error_mnsg_| en-1 bytes long.

The return value is the error number.

117

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

mysql_set_server_option()

Typically, the other callbacks store the error message in the data structure pointed to by pt r, so that
local infile error() can copy the message from there into error _nsg.

After calling nysql set | ocal infile_handl er() inyour C code and passing pointers to

your callback functions, you can then issue a LOAD DATA LOCAL statement (for example, by using
nysqgl real query() ornysqgl query()). The client library automatically invokes your callbacks.
The file name specified in LOAD DATA LOCAL will be passed as the second parameter to the

local infile_ init() callback.

Return Values

Errors

None.

None.

5.4.79 mysql_set_server_option()

i nt
nysqgl _set_server_opti on(MYSQ *nysqgl, enum
enum nysql _set_option option)

Description

Enables or disables an option for the connection. opt i on can have one of the following values.

Option Description
MYSQL_OPTI ON_MULTI _STATEMENTS_ON Enable multiple-statement support
MYSQL_OPTI ON_MULTI _STATEMENTS_OFF Disable multiple-statement support

If you enable multiple-statement support, you should retrieve results from calls to mysqgl _real query()
ornysql _query() by using a loop that calls nysgl _next result () todetermine whether there are
more results. For an example, see Section 3.6.3, “Multiple Statement Execution Support”.

Enabling multiple-statement support with MYSQL_OPTI ON_MJULTI _ STATEMENTS ON does not

have quite the same effect as enabling it by passing the CLI ENT_MJULTI _STATENMENTS flag to

nmysqgl _real _connect (): CLI ENT_MJLTI _STATEMENTS also enables CLI ENT_MULTI _RESULTS. If
you are using the CALL SQL statement in your programs, multiple-result support must be enabled; this
means that MYSQL_OPTI ON_MJULTI _STATEMENTS_ON by itself is insufficient to permit the use of CALL.

Return Values

Errors

Zero for success. Nonzero if an error occurred.

+ CR_COVMANDS_OUT_OF_SYNC
Commands were executed in an improper order.
« CR_SERVER GONE_ERROR

The MySQL server has gone away.

118

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error

mysql_shutdown()

* CR_SERVER LOST
The connection to the server was lost during the query.
¢ ER_UNKNOWN_COM ERROR

The server did not support nysql _set _server _opti on() (which is the case that the server is older
than 4.1.1) or the server did not support the option one tried to set.

5.4.80 mysql_shutdown()

i nt
nmysql _shut down(MYSQL *nysql ,
enum nysql _enum shut down_| evel shut down_| evel)

Description
Note

nysql _shut down() is deprecated and will be removed in a future version of
MySQL. Instead, use nmysql _real query() ornysql _query() to execute a
SHUTDOWN statement.

Asks the database server to shut down. The connected user must have the SHUTDOWN privilege. MySQL
servers support only one type of shutdown; shut down_| evel must be equal to SHUTDOAN DEFAULT.
Dynamically linked executables that have been compiled with older versions of the | i brmysql cl i ent
headers and call nysqgl _shut down() must be used with the old | i bnysql cl i ent dynamic library.
An alternative to nysql _shut down() is to use the SHUTDOWN SQL statement.

The shutdown process is described in The Server Shutdown Process.
Return Values

Zero for success. Nonzero if an error occurred.
Errors

» CR_COMVANDS_QUT_OF_SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN ERRCR
An unknown error occurred.

5.4.81 mysql_sqlstate()

const char *

119

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unknown_com_error
https://dev.mysql.com/doc/refman/8.0/en/shutdown.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_shutdown
https://dev.mysql.com/doc/refman/8.0/en/shutdown.html
https://dev.mysql.com/doc/refman/8.0/en/server-shutdown.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_ssl_set()

nmysql _sql state(MYSQL *mysql)

Description

Returns a null-terminated string containing the SQLSTATE error code for the most recently executed SQL
statement. The error code consists of five characters. ' 00000' means “no error.” The values are specified
by ANSI SQL and ODBC. For a list of possible values, see Error Messages and Common Problems.

SQLSTATE values returned by nysql _sql st at e() differ from MySQL-specific error numbers returned
by nysql _errno() . For example, the nysql client program displays errors using the following format,
where 1146 is the nysql _errno() value and ' 42S02' is the corresponding nysql _sql st at e() value:

$> SELECT * FROM no_such_t abl €;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Not all MySQL error numbers are mapped to SQLSTATE error codes. The value ' HY000' (general error)
is used for unmapped error numbers.

If you call nysql _sql state() afternmysqgl _real connect () fails, mysql _sql st at e() might not
return a useful value. For example, this happens if a host is blocked by the server and the connection is
closed without any SQLSTATE value being sent to the client.

Return Values

A null-terminated character string containing the SQLSTATE error code.

See Also

See Section 5.4.15, “mysql_errno()”, Section 5.4.16, “mysql_error()”, and Section 6.4.27,
“mysql_stmt_sqlstate()".

5.4.82 mysql_ssl _set()

bool

nmysql _ssl _set (MYSQL *nysql,
const char *key,
const char *cert,
const char *ca,
const char *capat h,
const char *ci pher)

Description

Note

As of MySQL 8.0.35, nysql _ssl set () is deprecated and subject to removal in a
future MySQL release. There are equivalent mysql _opti ons() TLS options for all
nysql _ssl _set () parameters.

nysql _ssl _set () is used for establishing encrypted connections using SSL. The nysql argument must
be a valid connection handler. Any unused SSL arguments may be given as NULL.

If used, nysqgl ssl set () must be called before nysql real connect().nysqgl ssl _set() does
nothing unless SSL support is enabled in the client library.

It is optional to call mysqgl _ssl _set () to obtain an encrypted connection because by default, MySQL
programs attempt to connect using encryption if the server supports encrypted connections, falling back
to an unencrypted connection if an encrypted connection cannot be established (see Configuring MySQL

120

https://dev.mysql.com/doc/refman/8.0/en/error-handling.html
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html

mysql_stat()

to Use Encrypted Connections). nysql _ssl _set () may be useful to applications that must specify
particular certificate and key files, encryption ciphers, and so forth.

nysql _ssl _set () specifies SSL information such as certificate and key files for establishing an
encrypted connection if such connections are available, but does not enforce any requirement that the
connection obtained be encrypted. To require an encrypted connection, use the technique described in
Section 3.6.1, “Support for Encrypted Connections”.

For additional security relative to that provided by the default encryption, clients can supply a CA certificate
matching the one used by the server and enable host name identity verification. In this way, the server and
client place their trust in the same CA certificate and the client verifies that the host to which it connected is
the one intended. For details, see Section 3.6.1, “Support for Encrypted Connections”.

nysql _ssl _set () is a convenience function that is essentially equivalent to this set of
nysql _options() calls:

nmysql _options(nysqgl, MYSQ._OPT_SSL_KEY, key);
nmysql _options(nmysql, MySQL_OPT_SSL_CERT, cert);
nmysql _options(nysqgl, MYSQ._OPT_SSL_CA, ca);

nmysql _options(nmysql, MYSQL_OPT_SSL_CAPATH, capath);
nysql _options(nysqgl, MYSQ._OPT_SSL_Cl PHER, ci pher);

Because of that equivalence, applications can, instead of calling nysql _ssl _set (), call

nysqgl _options() directly, omitting calls for those options for which the option value is NULL. Moreover,

nysqgl _options() offers encrypted-connection options not available using mysql _ssl _set (), such as
MYSQL_OPT_SSL_MODE to specify the security state of the connection, and MYSQL_OPT_TLS VERSI ONto
specify the protocols the client permits for encrypted connections.

Arguments:

e nysql : The connection handler returned from nysql _init().
» key: The path name of the client private key file.

e cert: The path name of the client public key certificate file.

» ca: The path name of the Certificate Authority (CA) certificate file. This option, if used, must specify the
same certificate used by the server.

« capat h: The path name of the directory that contains trusted SSL CA certificate files.
» ci pher: The list of permissible ciphers for SSL encryption.
Return Values

This function returns 0 if the operation is successful, else it returns f al se. If SSL setup is incorrect, a
subsequent nysql real connect () call returns an error when you attempt to connect.

5.4.83 mysql_stat()

const char *
nysql _stat (MYSQL *nysql)

Description

Returns a character string containing information similar to that provided by the nysql adm n st at us
command. This includes uptime in seconds and the number of running threads, questions, reloads, and
open tables.

121

https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html

mysql_store_result()

Return Values

Errors

A character string describing the server status. NULL if an error occurred.

+ CR_COVMANDS_QUT_OF_SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERRCR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.84 mysql_store_result()

MYSQL_RES *
nysql _store_result (MYSQL *nysql)

Description

Note

nysql _store_result() isasynchronous function. Its asynchronous counterpart
ismysql _store_result_nonbl ocki ng(), for use by applications that require
asynchronous communication with the server. See Chapter 7, C APl Asynchronous
Interface.

After invoking mysql real query() ormnysql _query(),youmustcall mysql store result()
ornysql use_result() forevery statement that successfully produces a result set (SELECT, SHOW
DESCRI BE, EXPLAI N, CHECK TABLE, and so forth). You must also call mysql _free result() afteryou
are done with the result set.

You need not call nysql _store result() ornysql use_result() for other statements, but it does
not do any harm or cause any notable performance degradation if you call nysql _store result()

in all cases. You can detect whether the statement has a result set by checking whether

nysqgl store_result() returns a nonzero value (more about this later).

If you enable multiple-statement support, you should retrieve results from calls to mysqgl _real query()
ornysql _query() by using a loop that calls nysgl _next resul t () to determine whether there are
more results. For an example, see Section 3.6.3, “Multiple Statement Execution Support”.

To determine whether a statement returns a result set, call nysql _fi el d_count (). See Section 5.4.23,
“mysql_field_count()”.

nysql _store_result() reads the entire result of a query to the client, allocates a MYSQL_RES
structure, and places the result into this structure.

nmysqgl store_result() returns NULL if the statement did not return a result set (for example, if it was
an | NSERT statement), or an error occurred and reading of the result set failed.

122

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/describe.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/check-table.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

mysql_thread_id()

An empty result set is returned if there are no rows returned. (An empty result set differs from a null pointer
as a return value.)

After you have called mysqgl store_resul t() and gotten back a result that is not a null pointer, you can
call mysgl _num rows() to find out how many rows are in the result set.

You can call nysql _fetch row() to fetch rows from the result set, or nysql _row seek() and
nysqgl _row tell () toobtain or set the current row position within the result set.

See Section 3.6.9, “NULL mysql_store_result() Return After mysql_query() Success”.

Return Values

Errors

A pointer to a MYSQL_RES result structure with the results. NULL if the statement did not return a result set
or an error occurred. To determine whether an error occurred, check whether nysql _error () returns a
nonempty string, nysql _errno() returns nonzero, or nysql fi el d count () returns zero.

nysqgl store result() resetsnysql _error() and nmysqgl errno() ifit succeeds.
« CR_COVMANDS_OUT_OF SYNC
Commands were executed in an improper order.
¢ CR_OQUT_OF_MEMORY
Out of memory.
« CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOAN_ERROR

An unknown error occurred.

5.4.85 mysql_thread id()

unsi gned | ong
nysql _thread_i d(MYSQL *nysql)

Description

Returns the thread ID of the current connection. This value can be used as an argument to
nysqgl kil () to kill the thread.

If the connection is lost and you reconnect with mysql _pi ng() , the thread ID changes. This means you
should not get the thread ID and store it for later. You should get it when you need it.

Note

This function does not work correctly if thread IDs become larger than 32 bits, which
can occur on some systems. To avoid problems with mysqgl thread_i d(), do not

123

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_use_result()

use it. To get the connection ID, execute a SELECT CONNECTI ON_| D() query and
retrieve the result.

Return Values

Errors

The thread ID of the current connection.

None.

5.4.86 mysql _use_result()

MYSQL_RES *
nysqgl _use_result (MYSQL *nysql)

Description

After invoking mysql _real query() ornysql _query(),youmustcall mysql _store result()
ornysql _use_result() for every statement that successfully produces a result set (SELECT, SHOWN
DESCRI BE, EXPLAI N, CHECK TABLE, and so forth). You must also call nysql _free_resul t() afteryou
are done with the result set.

nysqgl _use_resul t () initiates a result set retrieval but does not actually read the result set into the
client like nysqgl store_resul t() does. Instead, each row must be retrieved individually by making
callstonysql fetch _row(). This reads the result of a query directly from the server without storing
it in a temporary table or local buffer, which is somewhat faster and uses much less memory than
nysqgl store_result (). The client allocates memory only for the current row and a communication
buffer that may grow up to max_al | owed_packet bytes.

On the other hand, you should not use mysql _use resul t () forlocking reads if you are doing a lot of
processing for each row on the client side, or if the output is sent to a screen on which the user may type a
AS (stop scroll). This ties up the server and prevent other threads from updating any tables from which the
data is being fetched.

When using nysql _use_resul t (), you must execute nysqgl _fetch_row() untila NULL value is
returned, otherwise, the unfetched rows are returned as part of the result set for your next query. The C
API gives the error Commands out of sync; you can't run this command nowif you forget to
do this!

You may not use nysql _data_seek(),nmysql _row seek(), nysqgl _row tell (),

nysgl _numrows(),ornysql _affected rows() with aresult returned from nysqgl _use result (),
nor may you issue other queries until nysql _use_resul t () has finished. (However, after you have
fetched all the rows, mysgl _num r ows() accurately returns the number of rows fetched.)

You must call mysql _free result() once you are done with the result set.

Return Values

Errors

A MYSQL_RES result structure. NULL if an error occurred.

nmysqgl _use_resul t() resetsnysql _error() and nmysql _errno() ifitsucceeds.

« CR_COVWWANDS_OUT_OF_SYNC

124

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/describe.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/check-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync

mysql_warning_count()

Commands were executed in an improper order.
» CR_QUT_OF_MEMORY

Out of memory.
« CR_SERVER _GONE_ERROR

The MySQL server has gone away.
« CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR
An unknown error occurred.

5.4.87 mysql_warning_count()

unsi gned i nt
nmysql _war ni ng_count (MYSQL *nysql)

Description

Returns the number of errors, warnings, and notes generated during execution of the previous SQL
statement.

Return Values

The warning count.

Errors

None.

125

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

126

Chapter 6 C API Prepared Statement Interface

Table of Contents

6.1 Overview of the C API Prepared Statement INterfacecooiiiiiiiiiiiiiii e 128
6.2 C API Prepared Statement Data StrUCIUIESiiiiiiiiiiiiiii et e et e eeaa e eees 129
6.2.1 C API Prepared Statement TYPE COUEScciiiiuiiiiiiiieeiei et 133
6.2.2 C API Prepared Statement Type CONVEISIONScccuuuieiiiiiiieiiiiie et e e e e e 135
6.3 C API Prepared Statement FUNCLION REEIENCEcovvieiiiiiii e 136
6.4 C API Prepared Statement FUNCtION DESCIPLIONSiieiiiiiiiiiiiieeeeii e 137
6.4.1 MySql_StME_affeCted_TOWS()ceeerueiiiiiie ittt ettt et enaas 138
6.4.2 MYSOI_SIME_AEr_GET() «oevvrneeeirtiee ettt e et e e et e e e e e e 138
6.4.3 MYSOI_SIME_AEr_SET() ..uneieeiiieeei et 138
6.4.4 mysql_StME_DINA_PAramI()uoeeeeeii e e e eens 140
6.4.5 MySgl_StME_DINA_TESUIL() .. .ceeereieeiiiie e 140
6.4.6 MYSOI_SIME_CIOSE() evvuneiiiiie ettt ettt et e s 141
6.4.7 MySql_SIME_dAtA SEEK() - eeuuieernieii it 142
O S 001 VAo | IS (0 A= 1 Lo) P PTRUPRRN 142
6.4.9 MYSOI_SIME_EITOI() .. eeeiti ettt ettt ettt e et et e e e e et e e e eete e e eenta e eeenes 143
6.4.20 MYSQOI_SIMI_EXECULE() . ervrueiiiii ettt ettt et ettt e et e e et e e e 143
6.4.11 MYSOl_SIME_FEICN() - oeen e e e 147
6.4.12 mysql_stmt_fetch_COIUMN() ... e e 152
6.4.13 mysqgl_stmt_field _COUNT() ...coouumiiiiii e 153
6.4.14 MySQl_StME_FrE@_TESUIL() .. ceeerieeeeii et 153
6.4.15 MYSOI_STME_INIT() oeeerrneeeiiie e et 153
6.4.16 MYSQl_SIME NSO IA() 1 eerneeeiiei e e e e 154
6.4.17 MySQI_StME_NEXE TESUI() ...uneiietneeiii et e 154
6.4.18 MYSOI_StME_NUM_TOWS() ... eeeereneieiii ettt ettt et et e e e e e e e b 155
6.4.19 Mysqgl_StME_Param_COUNT()oeeerunieiiei ettt e e e e e e s 156
6.4.20 mysql_stmt_param_metadata()cccuuuierirmiieeiii e 156
6.4.21 MYSOI_StME_PIEPAIE() «.vu i eeeeetieeeiit et ettt e et ettt e et e e e e e e e eee 156
6.4.22 MYSOl_SIME_TESEL() «.nieenieit et ettt e e e et e e e e e e anans 157
6.4.23 mysql_stmt_result_metadata()couuieiimriiei e 158
6.4.24 MySOI_StME_TOW_SEEK() . eevvniiiiiii ettt 159
6.4.25 MYSOl_SIME_TOW_TEII() «enneeen e e e e e e 160
6.4.26 Mysql_stmt_Send_loNg_data()ueeeemmeiiiie e 160
6.4.27 MYSQI_StME_SISTALE() +.vneeeertieeeeit e et 162
6.4.28 MySl_StME_STOre_reSUIT() ...ceeveneieiiii e 162

The MySQL client/server protocol provides for the use of prepared statements. This capability uses

the MYSQL_ STMT statement handler data structure returned by the nysql _stnt _init () initialization

function. Prepared execution is an efficient way to execute a statement more than once. The statement
is first parsed to prepare it for execution. Then it is executed one or more times at a later time, using the
statement handler returned by the initialization function.

Prepared execution is faster than direct execution for statements executed more than once, primarily
because the query is parsed only once. In the case of direct execution, the query is parsed every time it is
executed. Prepared execution also can provide a reduction of network traffic because for each execution of
the prepared statement, it is necessary only to send the data for the parameters.

127

Overview of the C API Prepared Statement Interface

Prepared statements might not provide a performance increase in some situations. For best results,
test your application both with prepared and nonprepared statements and choose whichever yields best
performance.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer
between client and server more efficient.

For a list of SQL statements that can be used as prepared statements, see Prepared Statements.

Metadata changes to tables or views referred to by prepared statements are detected and cause automatic
repreparation of the statement when it is next executed. For more information, see Caching of Prepared
Statements and Stored Programs.

6.1 Overview of the C API Prepared Statement Interface

To prepare and execute a statement, an application follows these steps:

1. Create a prepared statement handler with mysql stnt _init (). To prepare the statement on the
server, callnysql _stnt_prepare() and pass it a string containing the SQL statement.

2. Set the values of any parameters using nysql _stnt _bi nd_par ant() . All parameters must be set.
Otherwise, statement execution returns an error or produces unexpected results.

If there are large text or binary data values to be sent, you can send them in chunks to the server using
nmysql _stmt _send_| ong_data().

3. Callnysqgl st execute() to execute the statement.

4. |If the statement is a SELECT or any other statement that produces a result set, call
nysql _stnt _result netadata() ifitis desired to obtain the result set metadata. This metadata
is itself in the form of a MYSQL_ RES result set, albeit a separate one from the one that contains the
rows returned by the query. The metadata result set indicates the number of columns in the result and
contains information about each one.

5. If the statement produces a result set, bind the data buffers to use for retrieving the row values by
calling nysql _stnt_bind result().

6. Fetch the data into the buffers row by row by calling mysql _stnt _fetch() repeatedly until no more
rows are found.

7. Repeat steps 3 through 6 as necessary. You can repeat the mysqgl _stnt _execut e() to re-
execute the statement by changing parameter values in the respective buffers supplied through
nysql _stnt_bi nd_paran().

8. When statement execution has been completed, close the statement handler using
nysql stnt_cl ose() so that all resources associated with it can be freed. At that point the handler
becomes invalid and should no longer be used.

9. If you obtained a SELECT statement's result set metadata by calling
nysqgl _stnt _result netadata(), you should also free the metadata using
nmysql _free result().

When nysql _stnmt _prepare() is called, the MySQL client/server protocol performs these actions:

» The server parses the statement and sends the okay status back to the client by assigning a statement
ID. It also sends total number of parameters, a column count, and its metadata if it is a result set oriented
statement. All syntax and semantics of the statement are checked by the server during this call.

128

https://dev.mysql.com/doc/refman/8.0/en/sql-prepared-statements.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Prepared Statement Logging

» The client uses this statement ID for the further operations, so that the server can identify the statement
from among its pool of statements.

When nysql _stnt _execut e() is called, the MySQL client/server protocol performs these actions:
e The client uses the statement handler and sends the parameter data to the server.

» The server identifies the statement using the ID provided by the client, replaces the parameter markers
with the newly supplied data, and executes the statement. If the statement produces a result set, the
server sends the data back to the client. Otherwise, it sends an okay status and the number of rows
changed, deleted, or inserted.

When nysql _stnt_fetch() is called, the MySQL client/server protocol performs these actions:

» The client reads the data from the current row of the result set and places it into the application data
buffers by doing the necessary conversions. If the application buffer type is same as that of the field type
returned from the server, the conversions are straightforward.

If an error occurs, you can get the statement error number, error message, and SQLSTATE code using
nysqgl _stnt_errno(),nysql _stnt_error(),andnysql stnt _sql state(), respectively.

Prepared Statement Logging

For prepared statements that are executed with the nysql _stnt _prepare() and
mysql _stnt _execute() C API functions, the server writes Pr epar e and Execut e lines to the general
query log so that you can tell when statements are prepared and executed.

Suppose that you prepare and execute a statement as follows:

1. Callmysqgl _stnt_prepare() to prepare the statement string " SELECT ?".

2. Callnysql stmt bind paran() to bind the value 3 to the parameter in the prepared statement.
3. Callnysqgl st _execute() to execute the prepared statement.

As a result of the preceding calls, the server writes the following lines to the general query log:

Prepare [1] SELECT ?
Execute [1] SELECT 3

Each Pr epar e and Execut e line in the log is tagged with a [N] statement identifier so that you can keep
track of which prepared statement is being logged. Nis a positive integer. If there are multiple prepared
statements active simultaneously for the client, N may be greater than 1. Each Execut e lines shows a
prepared statement after substitution of data values for ? parameters.

6.2 C API Prepared Statement Data Structures

Prepared statements use several data structures:

» To obtain a statement handler, pass a MYSQL connection handler to nysql _stnt _i ni t (), which
returns a pointer to a MYSQL_ STMT data structure. This structure is used for further operations with the
statement. To specify the statement to prepare, pass the MYSQL_STMT pointer and the statement string
to mysql _stnt _prepare().

» To provide input parameters for a prepared statement, set up MYSQL_BI ND structures and pass them to
nysqgl _stnt_bind_paran(). To receive output column values, set up MYSQL_BI ND structures and
pass themto nysqgl _stnt_bind result().

129

C API Prepared Statement Data Structures

MYSQL_BI ND structures are also used with mysqgl _bi nd_par an{() , which enables defining attributes
that apply to the next query sent to the server.

The MYSQL_TI IVE structure is used to transfer temporal data in both directions.

The following discussion describes the prepared statement data types in detail. For examples that show
how to use them, see Section 6.4.10, “mysql_stmt_execute()”, and Section 6.4.11, “mysql_stmt_fetch()”.

MYSQL_STMI

This structure is a handler for a prepared statement. A handler is created by calling

nysql _stnt _init (), which returns a pointer to a MYSQL_STMT. The handler is used for all
subsequent operations with the statement until you close it with nysql _stnt _cl ose(), at which point
the handler becomes invalid and should no longer be used.

The MYSQL_STM structure has no members intended for application use. Applications should not try to
copy a MYSQL_ STM structure. There is no guarantee that such a copy will be usable.

Multiple statement handlers can be associated with a single connection. The limit on the number of
handlers depends on the available system resources.

MYSQL_BI ND

This structure is used both for statement input (data values sent to the server) and output (result values
returned from the server):

e Forinput, use MYSQL_BI ND structures with mysql _bi nd_par an() to define attributes for a query.
(In the following discussion, treat any mention of statement parameters for prepared statements as
also applying to query attributes.)

e For output, use MYSQL_BI ND structures with nysql _stnt _bi nd_resul t () to bind buffers to result
set columns, for use in fetching rows with mysql _stnt _fetch().

To use a MYSQL_ Bl ND structure, zero its contents to initialize it, then set its members appropriately. For
example, to declare and initialize an array of three MYSQL_ Bl ND structures, use this code:

MYSQL_BI ND bi nd[3] ;
menset (bi nd, 0, sizeof(bind));

The MYSQL_ Bl ND structure contains the following members for use by application programs. For several
of the members, the manner of use depends on whether the structure is used for input or output.

« enumenum field types buffer _type

The type of the buffer. This member indicates the data type of the C language variable bound to a
statement parameter or result set column. For input, buf f er _t ype indicates the type of the variable
containing the value to be sent to the server. For output, it indicates the type of the variable into
which a value received from the server should be stored. For permissible buf f er _t ype values, see
Section 6.2.1, “C API Prepared Statement Type Codes”.

e void *buffer
A pointer to the buffer to be used for data transfer. This is the address of a C language variable.

For input, buf f er is a pointer to the variable in which you store the data value for a statement
parameter. When you call mysql _st mt _execut e(), MySQL use the value stored in the variable

130

C API Prepared Statement Data Structures

in place of the corresponding parameter marker in the statement (specified with ? in the statement
string).

For output, buf f er is a pointer to the variable in which to return a result set column value. When you
callnysql _stnt_fetch(), MySQL stores a column value from the current row of the result set in
this variable. You can access the value when the call returns.

To minimize the need for MySQL to perform type conversions between C language values on the
client side and SQL values on the server side, use C variables that have types similar to those of the
corresponding SQL values:

» For numeric data types, buf f er should point to a variable of the proper numeric C type. For integer
variables (which can be char for single-byte values or an integer type for larger values), you
should also indicate whether the variable has the unsi gned attribute by setting the i s_unsi gned
member, described later.

» For character (nonbinary) and binary string data types, buf f er should point to a character buffer.

« For date and time data types, buf f er should point to a MYSQL_TI VE structure.

For guidelines about mapping between C types and SQL types and notes about type conversions,
see Section 6.2.1, “C API Prepared Statement Type Codes”, and Section 6.2.2, “C API Prepared
Statement Type Conversions”.

unsi gned | ong buffer_length

The actual size of * buf f er in bytes. This indicates the maximum amount of data that can be
stored in the buffer. For character and binary C data, the buf f er | engt h value specifies the
length of * buf f er when used with nysql stnt _bi nd_paran() to specify input values, or

131

C API Prepared Statement Data Structures

the maximum number of output data bytes that can be fetched into the buffer when used with
mysql _stmt_bind result().

unsigned |l ong *length

A pointer to an unsi gned | ong variable that indicates the actual number of bytes of data stored in
*puf f er.| engt h is used for character or binary C data.

For input parameter data binding, set *| engt h to indicate the actual length of the parameter value
stored in * buf f er. This is used by nysql _st nt _execute().

For output value binding, MySQL sets *| engt h when you call nysql _stnt _fetch(). The
mysqgl stnt _fetch() return value determines how to interpret the length:

« If the return value is 0, *| engt h indicates the actual length of the parameter value.

« If the return value is MYSQL_DATA TRUNCATED, * | engt h indicates the nontruncated length of the
parameter value. In this case, the minimum of *| engt h and buf f er _| engt h indicates the actual
length of the value.

| engt h is ignored for numeric and temporal data types because the buf f er _t ype value determines
the length of the data value.

If you must determine the length of a returned value before fetching it, see Section 6.4.11,
“mysgl_stmt_fetch()”, for some strategies.

bool *is_null

This member points to a bool variable that is true if a value is NULL, false if it is not NULL. For input,
set*i s_nul | to true to indicate that you are passing a NULL value as a statement parameter.

i s_nul | is a pointer to a boolean scalar, not a boolean scalar, to provide flexibility in how you specify
NULL values:

« If your data values are always NULL, use MYSQL_TYPE_NULL as the buf f er _t ype value when
you bind the column. The other MYSQL_BI ND members, including i s_nul | , do not matter.

« If your data values are always NOT NULL, setis _null = (bool *) 0, and setthe other members
appropriately for the variable you are binding.

« In all other cases, set the other members appropriately and seti s_nul | to the address of a bool
variable. Set that variable's value to true or false appropriately between executions to indicate
whether the corresponding data value is NULL or NOT NULL, respectively.

For output, when you fetch a row, MySQL sets the value pointed to by i s_nul | to true or false
according to whether the result set column value returned from the statement is or is not NULL.

bool is_unsigned

This member applies for C variables with data types that can be unsi gned (char, short int,int,
I ong long int).Setis_unsigned to true if the variable pointed to by buf f er is unsi gned and
false otherwise. For example, if you bind a si gned char variable to buf f er, specify a type code of
MYSQL_TYPE_TI NY and seti s_unsi gned to false. If you bind an unsi gned char instead, the type

132

C API Prepared Statement Type Codes

code is the same buti s_unsi gned should be true. (For char , it is not defined whether it is signed or
unsigned, so it is best to be explicit about signedness by using si gned char orunsi gned char.)

i s_unsi gned applies only to the C language variable on the client side. It indicates nothing about
the signedness of the corresponding SQL value on the server side. For example, if you use an i nt
variable to supply a value for a Bl G NT UNSI GNED column, i s_unsi gned should be false because
i nt is a signed type. If you use an unsi gned i nt variable to supply a value for a Bl G NT column,

i s_unsi gned should be true because unsi gned i nt is an unsigned type. MySQL performs the
proper conversion between signed and unsigned values in both directions, although a warning occurs
if truncation results.

bool *error

For output, set this member to point to a bool variable to have truncation information for the
parameter stored there after a row fetching operation. When truncation reporting is enabled,

mysqgl _stnt _fetch() returns M\YSQL_DATA TRUNCATED and *er r or is true in the MYSQL_BI ND
structures for parameters in which truncation occurred. Truncation indicates loss of sign or significant
digits, or that a string was too long to fit in a column. Truncation reporting is enabled by default, but
can be controlled by calling nysql _opti ons() with the MYSQL_REPORT_DATA_ TRUNCATI ON

option.

e MYSQL_TIME

This structure is used to send and receive DATE, Tl Mg, DATETI ME, and Tl MESTANMP data directly

to and from the server. Set the buf f er member to point to a MYSQL_ Tl ME structure, and set the

buf f er _t ype member of a MYSQL_BI ND structure to one of the temporal types (MYSQL_TYPE_TI VE,
MYSQL_TYPE_DATE, MYSQL_TYPE_DATETI ME, MYSQL_TYPE_TI MESTAMP).

The MYSQL_TI IVE structure contains the members listed in the following table.

Member

Description

unsi gned int year

The year

unsi gned int nonth

The month of the year

unsi gned int day

The day of the month

unsi gned i nt hour

The hour of the day

unsi gned int mnute

The minute of the hour

unsi gned int second

The second of the minute

bool neg

A boolean flag indicating whether the time is
negative

unsi gned | ong second_part

The fractional part of the second in microseconds

Only those parts of a MYSQL_ Tl ME structure that apply to a given type of temporal value are used.
The year, nont h, and day elements are used for DATE, DATETI ME, and TI MESTANP values. The
hour, m nut e, and second elements are used for Tl MVE, DATETI ME, and TI MESTAMP values. See
Section 3.6.4, “Prepared Statement Handling of Date and Time Values”.

6.2.1 C API Prepared Statement Type Codes

The buf f er _t ype member of MYSQL_ Bl ND structures indicates the data type of the C language variable
bound to a statement parameter or result set column. For input, buf f er _t ype indicates the type of the
variable containing the value to be sent to the server. For output, it indicates the type of the variable into
which a value received from the server should be stored.

133

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

C API Prepared Statement Type Codes

The following table shows the permissible values for the buf f er _t ype member of MYSQL_BI ND
structures for input values sent to the server. The table shows the C variable types that you can use, the
corresponding type codes, and the SQL data types for which the supplied value can be used without
conversion. Choose the buf f er _t ype value according to the data type of the C language variable that
you are binding. For the integer types, you should also set the i s_unsi gned member to indicate whether

the variable is signed or unsigned.

Table 6.1 Permissible Input Data Types for MYSQL_BIND Structures

Input Variable C Type

buf f er _type Value

SQL Type of Destination Value

si gned char

MYSQL_TYPE_TI NY

TI NYI NT

short int MYSQ._TYPE_SHORT SVALLI NT

i nt MYSQL_TYPE_LONG I NT

I ong I ong int MYSQL_TYPE LONGLONG Bl G NT

fl oat MYSQL_TYPE_FLOAT FLOAT

doubl e MYSQ._TYPE_DOUBLE DOUBLE

MYSQL_TI MVE MYSQ._TYPE_TI MVE TI VE

MYSQL_TI ME MYSQL_TYPE _DATE DATE

MYSQL_TI ME MYSQL_TYPE_DATETI ME DATETI ME

MYSQL_TI VE MYSQL_TYPE_TI VESTAWVP TI MESTAMP

char[] MYSQL_TYPE_STRI NG TEXT, CHAR, VARCHAR
char[] MYSQL_TYPE BLOB BLOB, Bl NARY, VARBI NARY

MYSQL_TYPE_NULL

NULL

Use MYSQL_TYPE_NULL as indicated in the description for the i s_nul | member in Section 6.2, “C API
Prepared Statement Data Structures”.

For input string data, use MYSQL_TYPE_STRI NGor MYSQL_TYPE_BLOB depending on whether the value
is a character (nonbinary) or binary string:

* MYSQL_TYPE_STRI NGindicates character input string data. The value is assumed to be in the character
set indicated by the char act er _set _cl i ent system variable. If the server stores the value into a
column with a different character set, it converts the value to that character set.

« MYSQL_TYPE_ BLOB indicates binary input string data. The value is treated as having the bi nary
character set. That is, it is treated as a byte string and no conversion occurs.

The following table shows the permissible values for the buf f er _t ype member of MYSQL_BI ND
structures for output values received from the server. The table shows the SQL types of received values,
the corresponding type codes that such values have in result set metadata, and the recommended C
language data types to bind to the MYSQL_BI ND structure to receive the SQL values without conversion.
Choose the buf f er _t ype value according to the data type of the C language variable that you are
binding. For the integer types, you should also set the i s_unsi gned member to indicate whether the

variable is signed or unsigned.

Table 6.2 Permissible Output Data Types for MYSQL_BIND Structures

SQL Type of Received Value

buf fer type Value

Output Variable C Type

TI NYI NT

MYSQL_TYPE_TI NY

si gned char

134

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

C API Prepared Statement Type Conversions

SQL Type of Received Value buf fer_type Value Output Variable C Type
SMVALLI NT MYSQL_TYPE_SHORT short int
MEDI UM NT MYSQL_TYPE_| NT24 i nt

I NT MYSQL_TYPE_LONG i nt

Bl G NT MYSQL_TYPE LONGLONG [ong I ong int
FLOAT MYSQL_TYPE_FLOAT f1 oat

DOUBLE MYSQL_TYPE_DOUBLE doubl e

DECI MAL MYSQL_TYPE_NEWDEC! VAL char[]

YEAR MYSQ._TYPE_SHORT short int

TI ME MYSQL_TYPE_TI ME MYSQL_TI ME
DATE MYSQL_TYPE_DATE MYSQL_TI ME
DATETI ME MYSQL_TYPE_DATETI ME MYSQL_TI ME

TI MESTAMP MYSQL_TYPE_TI MESTAMP MYSQL_TI ME
CHAR, Bl NARY MYSQL_TYPE_STRI NG char[]
VARCHAR, VARBI NARY MYSQL_TYPE_VAR_STRI NG char[]

TI NYBLOB, TI NYTEXT MYSQL_TYPE_TI NY_BLOB char[]

BLOB, TEXT MYSQ._TYPE_BLOB char[]

MEDI UVBLOB, MEDI UMTEXT MYSQ._TYPE_MEDI UM BLOB char[]
LONGBLOB, LONGTEXT MYSQL_TYPE_LONG BLOB char[]

BIT MYSQL_TYPE BI T char[]

6.2.2 C API Prepared Statement Type Conversions

Prepared statements transmit data between the client and server using C language variables on the client
side that correspond to SQL values on the server side. If there is a mismatch between the C variable type
on the client side and the corresponding SQL value type on the server side, MySQL performs implicit type
conversions in both directions.

MySQL knows the type code for the SQL value on the server side. The buf f er _t ype value in the
MYSQL_ BI ND structure indicates the type code of the C variable that holds the value on the client side. The
two codes together tell MySQL what conversion must be performed, if any. Here are some examples:

 If you use MYSQL_TYPE_LONGwith an i nt variable to pass an integer value to the server that is to be
stored into a FLOAT column, MySQL converts the value to floating-point format before storing it.

* If you fetch an SQL VEDI UM NT column value, but specify a buf f er _t ype value of
MYSQL_TYPE_LONGLONGand use a C variable of type | ong | ong i nt as the destination buffer,
MySQL converts the MEDI UM NT value (which requires less than 8 bytes) for storage into the | ong
| ong i nt (an 8-byte variable).

* If you fetch a numeric column with a value of 255 into a char [4] character array and specify a
buf f er _t ype value of \YSQL_TYPE_STRI NG, the resulting value in the array is a 4-byte string
' 255\ 0'.

» MySQL returns DECI MAL values as the string representation of the original server-side value, which is
why the corresponding C type is char [] . For example, 12. 345 is returned to the clientas ' 12. 345" .
If you specify M\YSQL_TYPE_NEWDEC! MAL and bind a string buffer to the MYySQL_BI ND structure,
nysql stnt fetch() stores the value in the buffer as a string without conversion. If instead you

135

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/bit-type.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html

C API Prepared Statement Function Reference

specify a numeric variable and type code, nysqgl _stnt fetch() converts the string-format DECI MAL
value to numeric form.

» Forthe MYSQL_TYPE_BI T type code, Bl T values are returned into a string buffer, which is why the
corresponding C type is char [] . The value represents a bit string that requires interpretation on the
client side. To return the value as a type that is easier to deal with, you can cause the value to be cast to
integer using either of the following types of expressions:

SELECT bit_col + 0 FROM t
SELECT CAST(bit_col AS UNSI GNED) FROM t

To retrieve the value, bind an integer variable large enough to hold the value and specify the appropriate
corresponding integer type code.

Before binding variables to the MYSQL_ Bl ND structures that are to be used for fetching column values,
you can check the type codes for each column of the result set. This might be desirable if you want to
determine which variable types would be best to use to avoid type conversions. To get the type codes,
call mysqgl _stnt _result_netadata() after executing the statement with nysql _stnt _execute().
The metadata provides access to the type codes for the result set as described in Section 6.4.23,
“mysql_stmt_result_metadata()”, and Section 5.2, “C API Basic Data Structures”.

To determine whether output string values in a result set returned from the server contain binary or
nonbinary data, check whether the char set nr value of the result set metadata is 63 (see Section 5.2,
“C API Basic Data Structures”). If so, the character set is bi nar y, which indicates binary rather than
nonbinary data. This enables you to distinguish Bl NARY from CHAR, VARBI NARY from VARCHAR, and the
BLOB types from the TEXT types.

If you cause the max_| engt h member of the MYSQL_FI ELD column metadata structures to be set

(by calling nysql _stnt_attr_set()), be aware that the max_| engt h values for the result set
indicate the lengths of the longest string representation of the result values, not the lengths of the binary
representation. That is, max_| engt h does not necessarily correspond to the size of the buffers needed
to fetch the values with the binary protocol used for prepared statements. Choose the size of the buffers
according to the types of the variables into which you fetch the values. For example, a TI NYI NT column
containing the value -128 might have a nax_| engt h value of 4. But the binary representation of any

TI NYI NT value requires only 1 byte for storage, so you can supply a si gned char variable in which to
store the value and seti s_unsi gned to indicate that values are signed.

Metadata changes to tables or views referred to by prepared statements are detected and cause automatic
repreparation of the statement when it is next executed. For more information, see Caching of Prepared
Statements and Stored Programs.

6.3 C API Prepared Statement Function Reference

The following table summarizes the functions available for prepared statement processing. For greater
detail, see the descriptions in Section 6.4, “C API Prepared Statement Function Descriptions”.

Table 6.3 C API Prepared Statement Functions

Name Description

mysqgl _stmt _affected rows() Number of rows changed/deleted/inserted by last
prepared UPDATE, DELETE, or | NSERT statement

mysqgl _stnt_attr_get() Get attribute value for prepared statement

mysqgl _stnt_attr_set() Set attribute value for prepared statement

mysqgl _stnt_bind_param) Associate application data buffers with parameter
markers in prepared statement

136

https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/bit-type.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

C API Prepared Statement Function Descriptions

Name

Description

mysql _stmt _bind_result()

Associate application data buffers with columns in
result set

mysqgl _stmt _cl ose()

Free memory used by prepared statement

mysqgl _stnt _data_seek()

Seek to arbitrary row number in prepared statement
result set

mysqgl _stmt _errno()

Error number for most recently invoked MySQL
prepared-statement function

mysql _stmt _error()

Error message for most recently invoked MySQL
prepared-statement function

mysqgl _stnt _execute()

Execute prepared statement

mysqgl _stmt _fetch()

Fetch next result set row and return data for all
bound columns

mysqgl _stmt _fetch_col um()

Fetches data for one column of current result set
row

mysql _stmt _field _count()

Number of result columns for most recent prepared
statement

mysqgl _stnt _free result()

Free resources allocated to statement handler

nysql _stnt_init()

Allocate and initialize memory for M\YSQL_ STMT
structure

mysqgl _stnt_insert _id()

ID generated for an AUTO_| NCREMENT column by
previous prepared statement

mysql _stmt _next _result()

Return/initiate next result in multiple-result prepared
statement execution

mysqgl _stnmt_num rows()

Row count from buffered statement result set

mysqgl _stnt _param count ()

Number of parameters in prepared statement

mysqgl _stnt _param net adat a()

Return parameter metadata as result set

mysql _stmt _prepare()

Prepare statement for execution

mysqgl _stnmt _reset ()

Reset statement buffers on server side

mysqgl _stmt _result _netadata()

Return prepared statement metadata as result set

mysqgl _stnt _row seek()

Seek to row offset in prepared statement result set

mysql _stm _row tell ()

Current position within prepared statement result set
row

mysqgl _stnt _send_| ong_dat a()

Send long data in chunks to server

mysqgl _stnt _sql state()

SQLSTATE value for most recently invoked MySQL
prepared-statement function

mysqgl _stmt _store_result()

Retrieve and store entire result set

6.4 C API Prepared Statement Function Descriptions

To prepare and execute queries, use the functions described in detail in the following sections.

All functions that operate with a MYSQL_ STMT structure begin with the prefix mysqgl _stnt _.

To create a MYSQL_STMT handler, use the nysql stnt _init() function.

137

mysql_stmt_affected rows()

6.4.1 mysql_stmt_affected_rows()

ui nt 64_t
nmysql _stnt_affected_rows(MYSQL_STMI *stnt)

Description

Errors

nysqgl stnt_affected rows() may be called immediately after executing a statement with
nysqgl _stnt _execute().Itislike nysqgl affected rows() butfor prepared statements. For
a description of what the affected-rows value returned by this function means, See Section 5.4.1,
“mysql_affected_rows()”.

None.

Example

See the Example in Section 6.4.10, “mysql_stmt_execute()".

6.4.2 mysql_stmt_attr_get()

bool

nysqgl _stnt_attr_get (MYSQL_STMI *stnt,
enum enum stnt _attr_type option,
void *arg)

Description

Can be used to get the current value for a statement attribute.

The opt i on argument is the option that you want to get; the ar g should point to a variable that should
contain the option value. If the option is an integer, ar g should point to the value of the integer.

See Section 6.4.3, “mysqgl_stmt_attr_set()”, for a list of options and option types.

Return Values

Errors

Zero for success. Nonzero if opt i on is unknown.

None.

6.4.3 mysqgl_stmt_attr_set()

bool

mysql _stmt_attr_set (MYSQL_STMI *stnt,
enum enum stnt_attr_type option,
const void *arg)

Description

Can be used to affect behavior for a prepared statement. This function may be called multiple times to set
several options.

138

mysql_stmt_attr_set()

The opt i on argument is the option that you want to set. The ar g argument is the value for the option. ar g
should point to a variable that is set to the desired attribute value. The variable type is as indicated in the

following table.

The following table shows the possible opt i on values.

Option

Argument Type

Function

STMI_ATTR_UPDATE_MAX_LENGT[Hool *

If set to 1, causes

nysqgl _stnt _store_result()
to update the metadata
MYSQL_FI ELD- >nax_| engt h
value.

STMI_ATTR_CURSOR TYPE

unsi gned | ong *

Type of cursor to open

for statement when

nmysqgl _stnt_execute()

is invoked. *ar g can be
CURSOR_TYPE_NO CURSOR
(the default) or
CURSOR_TYPE_READ ONLY.

STMI_ATTR_PREFETCH_ROWS

unsi gned | ong *

Number of rows to fetch from
server at a time when using a
cursor. *ar g can be in the range
from 1 to the maximum value of
unsi gned | ong. The default is
1.

If you use the STMI_ ATTR_CURSCR_TYPE option with CURSOR_TYPE_READ_ONLY, a cursor is
opened for the statement when you invoke mysql _st mt _execut e() . If there is already an open
cursor from a previous nysql _stnt _execut e() call, it closes the cursor before opening a new one.
mysql _stmt _reset () also closes any open cursor before preparing the statement for re-execution.

mysql _stmt _free_result() closes any open cursor.

If you open a cursor for a prepared statement, mysqgl _stnt _store_resul t () is unnecessary, because

that function causes the result set to be buffered on the client side.

Return Values

Errors

Zero for success. Nonzero if opt i on is unknown.

None.

Example

The following example opens a cursor for a prepared statement and sets the number of rows to fetch at a

time to 5:

MYSQL_STMI *st nt ;

int rc;

unsi gned | ong type;

unsi gned | ong prefetch_rows = 5;

st
type

nysqgl _stnt_init(nysql);

(unsi gned | ong) CURSOR TYPE READ ONLY;

139

mysql_stmt_bind_param()

rc nmysql _stmt_attr_set(stm, STMI_ATTR CURSOR TYPE, (void*) &type);
/* ... check return value ... */
rc = nysql _stnt_attr_set(stnt, STMI_ATTR_PREFETCH_ ROAS,
(voi d*) &prefetch_rows);
/* ... check return value ... */

6.4.4 mysqgl_stmt_bind_param()

bool
nmysql _stmt _bi nd_par am(MYSQL_STMTI *st nt
MYSQL_BI ND *bi nd)

Description

nysql _stnt _bi nd_paran() is used to bind input data for the parameter markers in the SQL statement
that was passed to mysql _stnt _prepare() . Ituses MYSQL_BI ND structures to supply the data. bi nd
is the address of an array of MYSQL_BI ND structures. The client library expects the array to contain one
element for each ? parameter marker that is present in the query.

Suppose that you prepare the following statement:
I NSERT | NTO nytbl VALUES(?, ?, ?)

When you bind the parameters, the array of MYSQL_BI ND structures must contain three elements, and can
be declared like this:

MYSQL_BI ND bi nd[3] ;

For a description of the members of the MYSQL_ Bl ND structure and how they should be set to provide
input values, see Section 6.2, “C API Prepared Statement Data Structures”.

Return Values

Errors

Zero for success. Nonzero if an error occurred.

* CR_UNSUPPORTED_PARAM TYPE

The conversion is not supported. Possibly the buf f er _t ype value is invalid or is not one of the
supported types.

+ CR_QUT_OF_MEMORY
Out of memory.
¢ CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 6.4.10, “mysql_stmt_execute()".

6.4.5 mysqgl_stmt_bind_result()

bool
nmysql _stmt _bind_resul t (MYSQL_STMI *stnt,
MYSQL_BI ND *bi nd)

140

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_close()

Description

nmysqgl _stnt_bind_result() isused to associate (that is, bind) output columns in the result set to data
buffers and length buffers. When nmysql _stnt _fetch() is called to fetch data, the MySQL client/server
protocol places the data for the bound columns into the specified buffers.

All columns must be bound to buffers prior to calling nysql _stnt _fetch().bi nd is the address of
an array of MYSQL_BI ND structures. The client library expects the array to contain one element for each
column of the result set. If you do not bind columns to MYSQL_BI ND structures, nysql st _fetch()
simply ignores the data fetch. The buffers should be large enough to hold the data values, because the
protocol does not return data values in chunks.

A column can be bound or rebound at any time, even after a result set has been partially retrieved. The
new binding takes effect the next time nysql _stnt _fetch() is called. Suppose that an application binds
the columns in a result set and calls nysql _stnt _fetch(). The client/server protocol returns data in

the bound buffers. Then suppose that the application binds the columns to a different set of buffers. The
protocol places data into the newly bound buffers when the next call to mysqgl stnt fetch() occurs.

To bind a column, an application calls nysql _stnt _bi nd_resul t () and passes the type, address, and
length of the output buffer into which the value should be stored. Section 6.2, “C API Prepared Statement
Data Structures”, describes the members of each MYSQL_BI ND element and how they should be set to
receive output values.

Return Values

Zero for success. Nonzero if an error occurred.
Errors

* CR_UNSUPPORTED_PARAM TYPE

The conversion is not supported. Possibly the buf f er _t ype value is invalid or is not one of the
supported types.

« CR_OUT_OF_MEMORY
Out of memory.
« CR_UNKNOM ERROR
An unknown error occurred.
Example
See the Example in Section 6.4.11, “mysql_stmt_fetch()".

6.4.6 mysqgl_stmt_close()

bool
nmysql _stmt _cl ose(MYSQL_STMTI *stnt)

Description
Closes the prepared statement. nysql _stnt _cl ose() also deallocates the statement handler

pointed to by st nt , which at that point becomes invalid and should no longer be used. For a failed
nysqgl _stnt _cl ose() call, donotcall mysgl _stnt_error(),ornysql _stnt_errno(), or

141

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_data_seek()

nysqgl _stnt _sql state() to obtain error information because nysql _stnt _cl ose() makes the
statement handler invalid. Call nysql _error (), nysql _errno(),ormnmysqgl sql state() instead.

If the current statement has pending or unread results, this function cancels them so that the next query
can be executed.

Return Values

Zero for success. Nonzero if an error occurred.

Errors
« CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR_UNKNOAN ERROR
An unknown error occurred.
Example

See the Example in Section 6.4.10, “mysql_stmt_execute()”.

6.4.7 mysqgl_stmt_data seek()

voi d
nysql _stnt _data_seek(MYSQL_STMI *stnt,
uint64_t of fset)

Description

Seeks to an arbitrary row in a statement result set. The of f set value is a row humber and should be in
the range from O to nysql _stnt_num rows(stnt)- 1.

This function requires that the statement result set structure contains the entire result of the
last executed query, so nmysql _stnt _data_seek() may be used only in conjunction with
nysqgl _stnt _store result().

Return Values
None.

Errors
None.

6.4.8 mysqgl_stmt_errno()

unsi gned i nt
nmysql _stmt _errno(MYSQL_STMTI *stnt)

Description

For the statement specified by st nt , nysqgl _stnt _errno() returns the error code for the most recently
invoked statement API function that can succeed or fail. A return value of zero means that no error

142

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_error()

occurred. Client error message numbers are listed in the MySQL er r nsg. h header file. Server error
message numbers are listed in nysql d_err or. h. Errors also are listed at Error Messages and Common
Problems.

If the failed statement API function was nysql stm cl ose(), donotcall or mysqgl stnt _errno()

to obtain error information because nysql st _cl ose() makes the statement handler invalid. Call
nysql _errno() instead.

Return Values

An error code value. Zero if no error occurred.
Errors

None.

6.4.9 mysql_stmt_error()

const char *
nysql _stnt_error (MYSQL_STMI *stnt)

Description

For the statement specified by st nt , nysql _stnt_error () returns a null-terminated string containing
the error message for the most recently invoked statement API function that can succeed or fail. An empty
string (" ") is returned if no error occurred. Either of these two tests can be used to check for an error:

if(*nysqgl _stnt_errno(stnt))

/1 an error occurred

}
if (nysqgl _stnt_error(stnt)[0])

/1 an error occurred

}

If the failed statement API function was nysqgl _stnt _cl ose(), donotcall nysql _stnt_error()
to obtain error information because mysql st _cl ose() makes the statement handler invalid. Call
mysql _error () instead.

The language of the client error messages may be changed by recompiling the MySQL client library. You
can choose error messages in several different languages.

Return Values

A character string that describes the error. An empty string if no error occurred.
Errors

None.

6.4.10 mysqgl_stmt_execute()

i nt
nysql _stnt_execut e(MYSQL_STMI *stnt)

143

https://dev.mysql.com/doc/refman/8.0/en/error-handling.html
https://dev.mysql.com/doc/refman/8.0/en/error-handling.html

mysql_stmt_execute()

Description

mysql _stmt _execut e() executes the prepared query associated with the statement handler. The
currently bound parameter marker values are sent to server during this call, and the server replaces the
markers with this newly supplied data.

Statement processing following nysql _stnmt _execut e() depends on the type of statement:

» For an UPDATE, DELETE, or | NSERT, the number of changed, deleted, or inserted rows can be found by
calling nysql _stm _affected_rows().

» For a statement such as SELECT that generates a result set, you must call nysql _stnt _fetch() to
fetch the data prior to calling any other functions that result in query processing. For more information on
how to fetch the results, refer to Section 6.4.11, “mysql_stmt_fetch()”".

Do not follow invocation of mysqgl _stnt _execut e() withacallto mysqgl store result() or
nysql _use_resul t (). Those functions are not intended for processing results from prepared
statements.

For statements that generate a result set, you can request that nysql st nt _execut e() open a cursor
for the statement by calling nysql _stnt_attr_set () before executing the statement. If you execute a
statement multiple times, mysqgl _stnt _execut e() closes any open cursor before opening a new one.

Metadata changes to tables or views referred to by prepared statements are detected and cause automatic
repreparation of the statement when it is next executed. For more information, see Caching of Prepared
Statements and Stored Programs.

Return Values

Errors

Zero for success. Nonzero if an error occurred.

« CR_COVWANDS OUT_OF SYNC
Commands were executed in an improper order.
» CR_QUT_OF_MEMORY
Out of memory.
« CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to create and populate a table using nysql _stnt _init(),
nysql _stnt_prepare(),nysql _stnt _param count (), nysql _stnt_bind_paran(),
nmysqgl stnt_execute(),andnysql _stnt_affected rows().Thenysql variable is assumed

144

https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_execute()

to be a valid connection handler. For an example that shows how to retrieve data, see Section 6.4.11,
“mysql_stmt_fetch()".

#defi ne STRI NG_SI ZE 50

#def i ne DROP_SAMPLE_TABLE "DROP TABLE | F EXI STS test_tabl e"
#def i ne CREATE_SAMPLE_TABLE " CREATE TABLE test_tabl e(col 1 |NT,\
col 2 VARCHAR(40), \
col 3 SMALLI NT, \
col 4 TI MESTAWP) "
#def i ne | NSERT_SAMPLE " | NSERT | NTO \
test_tabl e(col 1, col 2, col 3) \
VALUES(?, ?,?)"

MYSQL_STMI *stnt;
MYSQL_BIND bind[3];

ui nt 64_t af f ect ed_r ows;

i nt par am count ;

short snmal | _dat a;

i nt i nt _dat a;

char str_dat a[STRI NG_SI ZE] ;
unsi gned | ong str_I ength;

bool is_null;

if (nysqgl _query(nysqgl, DROP_SAWMPLE_TABLE))
{

fprintf(stderr, " DROP TABLE failed\n");
fprintf(stderr, " %\n", nysqgl _error(mysql));
exit(0);

}

if (nysqgl _query(nysqgl, CREATE _SAMPLE_TABLE))

fprintf(stderr, " CREATE TABLE fail ed\n");
fprintf(stderr, " %\n", nysqgl _error(mysql));
exit(0);

}

/* Prepare an |INSERT query with 3 paraneters */

/* (the TI MESTAMP colum is not naned; the server */
/* sets it to the current date and tine) */

stmt = nmysql _stnt _init(nysql);

if (!stnt)

fprintf(stderr, " nysqgl_stnt_init(), out of menory\n");
exit(0);

if (nysqgl _stnt_prepare(stnt, |NSERT_SAMPLE, strlen(lNSERT_SAMPLE)))

fprintf(stderr, " nmysqgl_stnt_prepare(), |INSERT failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

fprintf(stdout, " prepare, |NSERT successful\n");

/* Get the paranmeter count fromthe statenent */
param count = nysql _stmt _param count (stnt);

fprintf(stdout, " total parameters in INSERT: %\ n", param count);

if (paramcount != 3) /* validate paraneter count */
fprintf(stderr, " invalid parameter count returned by MySQ.\n");
exit(0);

}

/* Bind the data for all 3 paraneters */

145

mysql_stmt_execute()

menset (bi nd, 0, sizeof (bind));

/* | NTEGER PARAM */

/* This is a nunber type, so there is no need
to specify buffer_length */

bi nd[0] . buf fer _t ype= MYSQL_TYPE_LONG

bi nd[0] . buf fer= (char *)& nt_dat a;

bind[0] .is_null= 0;

bi nd[0] . | engt h= 0O;

/* STRI NG PARAM */

bi nd[1] . buf fer _t ype= MYSQ._TYPE_STRI NG
bi nd[1] . buf fer= (char *)str_dat a;

bi nd[1] . buf fer _| engt h= STRI NG_SI ZE;
bind[1].is_null= 0;

bi nd[1] . | engt h= &str_| engt h;

/* SMALLI NT PARAM */

bi nd[2] . buf fer _t ype= MYSQL_TYPE_SHORT;
bi nd[2] . buf fer= (char *)&smal | _dat a;
bind[2].is_null= & s_null;

bi nd[2] . | engt h= 0;

/* Bind the buffers */
if (nysqgl _stnt_bind_paran(stnmt, bind))

fprintf(stderr, " nysqgl_stnt_bind_paran() failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

/* Specify the data values for the first row */

i nt _data= 10; /* integer */
strncpy(str_data, "MySQ", STRING SIZE); /* string */
str_length= strlen(str_data);

/* | NSERT SVALLINT data as NULL */
is_null=1;

/* Execute the | NSERT statenent - 1*/
if (nysqgl _stnt_execute(stnt))

fprintf(stderr, " nysqgl_stnt_execute(), 1 failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

/* Cet the nunber of affected rows */

af fected_rows= nysqgl _stnt_affected_rows(stnt);

fprintf(stdout, " total affected rows(insert 1): % u\n",
(unsigned | ong) affected_rows);

if (affected_rows != 1) /* validate affected rows */
fprintf(stderr, " invalid affected rows by MySQ\n");
exit(0);

}

/* Specify data values for second row,
then re-execute the statement */
i nt _data= 1000;
strncpy(str_data,
The nmost popul ar Open Sour ce dat abase",

STRI NG_SI ZE) ;
str_length= strlen(str_data);
smal | _dat a= 1000; [* smallint */
is_null= 0; /* reset */

146

mysql_stmt_fetch()

/* Execute the | NSERT statenent - 2*/
if (nysqgl _stnt_execute(stnt))

fprintf(stderr, " nysqgl_stnt_execute, 2 failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

/* Cet the total rows affected */

af fected_rows= nysqgl _stnt_affected_rows(stnt);

fprintf(stdout, " total affected rows(insert 2): % u\n",
(unsigned | ong) affected_rows);

if (affected_rows != 1) /* validate affected rows */
fprintf(stderr, " invalid affected rows by MySQ\n");
exit(0);

}

/* C ose the statenent */
if (nysqgl _stnt_cl ose(stnt))

/* mysql _stmt _close() invalidates stnt, so call */
/* nysql _error(nysql) rather than nysql _stnt_error(stnt) */
fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %\n", nysqgl _error(mysql));

exit(0);

Note

For complete examples on the use of prepared statement functions, refer to the file
tests/ nysql _client_test.c. This file can be obtained from a MySQL source
distribution or from the source repository (see Installing MySQL from Source).

6.4.11 mysql_stmt_fetch()

int
nmysql _stmt _fetch(MYSQL_STMI *stnt)

Description

nmysqgl _stnt _fetch() returns the next row in the result set. It can be called only while the result set
exists; that is, after a call to mysql _stnmt _execut e() for a statement such as SELECT that produces a
result set.

nmysqgl _stnt_fetch() returns row data using the buffers bound by nysqgl _stnt _bind_result().It
returns the data in those buffers for all the columns in the current row set and the lengths are returned to
the | engt h pointer. All columns must be bound by the application before it calls nysql _stnt_fetch().

nmysqgl _stnt_fetch() typically occurs within a loop, to ensure that all result set rows are fetched. For
example:

int status;
while (1)
{
status = nysql _stnt_fetch(stnt);

if (status == 1 || status == MYSQL_NO _DATA)
br eak;

147

https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

mysql_stmt_fetch()

/* handl e current row here */

}

/* if desired, handle status == 1 case and di splay error here */

By default, result sets are fetched unbuffered a row at a time from the server. To buffer the entire result
set on the client, call nysql _stnt _store_result() after binding the data buffers and before calling
nysqgl _stnt _fetch().

If a fetched data value is a NULL value, the *i s_nul | value of the corresponding MYSQL_BI ND structure
contains TRUE (1). Otherwise, the data and its length are returned in the * buf f er and *| engt h elements
based on the buffer type specified by the application. Each numeric and temporal type has a fixed length,
as listed in the following table. The length of the string types depends on the length of the actual data
value, as indicated by dat a_I engt h.

Type Length
MYSQL_TYPE_TI NY 1
MYSQL_TYPE_SHORT 2

MYSQL_TYPE_LONG 4
MYSQL_TYPE_LONGLONG 8

MYSQL_TYPE_FLOAT 4
MYSQ._TYPE_DOUBLE 8

MYSQL_TYPE_TI ME si zeof (MYSQL_TI ME)
MYSQL_TYPE_DATE si zeof (MYSQL_TI ME)
MYSQL_TYPE_DATETI ME si zeof (MYSQL_TI ME)
MYSQL_TYPE_STRI NG data |l ength
MYSQL_TYPE_BLOB data_l ength

In some cases, you might want to determine the length of a column value before fetching it with
nysqgl _stnt _fetch().Forexample, the value might be a long string or BLOB value for which you want
to know how much space must be allocated. To accomplish this, use one of these strategies:

» Before invoking mysql _stnt _fetch() to retrieve individual rows, pass
STMI_ATTR _UPDATE MAX LENGTHto mysqgl stnt _attr_set (), theninvoke
nysql _stnt_store result() to buffer the entire result on the client side. Setting
the STMI_ATTR_UPDATE NMAX_ LENGTH attribute causes the maximal length of column
values to be indicated by the max_| engt h member of the result set metadata returned by
nysql _stnt _result netadata().

* Invoke nysql _stnt _fetch() with a zero-length buffer for the column in question and a pointer in
which the real length can be stored. Then use the real length with mysqgl _stnt _fetch_col um().

real _| ength= 0;

bi nd[0] . buf fer= 0;

bi nd[0] . buf f er _| engt h= 0;

bi nd[0] . | engt h= &real _| ength

nmysql _stnt_bind_result(stnt, bind);

nmysql _stnt_fetch(stnt);

if (real_length > 0)

{
data= mal |l oc(real _I| ength);
bi nd[0] . buf f er = dat a;

148

https://dev.mysql.com/doc/refman/8.0/en/blob.html

mysql_stmt_fetch()

bi nd[0] . buf f er _| engt h= real _| engt h;
nmysql _stmt _fetch_col um(stnt, bind, 0, 0);
}

Return Values

Return Value

Description

0 Success, the data has been fetched to application
data buffers.
1 Error occurred. Error code and message can be

obtained by calling mysqgl stnt _errno() and
nysqgl _stnt_error().

MYSQL_NO_DATA

Success, no more data exists

MYSQL_DATA_TRUNCATED

Data truncation occurred

MYSQL_DATA TRUNCATED is returned when truncation reporting is enabled. To determine which column
values were truncated when this value is returned, check the er r or members of the MYSQL_BI ND
structures used for fetching values. Truncation reporting is enabled by default, but can be controlled by
calling nysql _opti ons() with the MYSQL_REPORT_DATA_TRUNCATI ON option.

Errors
¢ CR_COMVANDS_QUT_OF_SYNC
Commands were executed in an improper order.
Although nysql stnt _fetch() can produce this error, it is more likely to occur for the following C API
callif nysql _stnt _fetch() is not called enough times to read the entire result set (that is, enough
times to return MYSQL_NO_DATA).
« CR_OUT_OF_MEMORY
Out of memory.
« CR_SERVER GONE_ERROR
The MySQL server has gone away.
« CR _SERVER LOST
The connection to the server was lost during the query.
« CR_UNKNOAN ERROR
An unknown error occurred.
« CR_UNSUPPORTED PARAM TYPE
The buffer type is MYSQL_TYPE_DATE, MYSQL_TYPE_TI Mg, M\YSQL_TYPE_DATETI ME, or
MYSQL_TYPE_TI MESTAMP, but the data type is not DATE, Tl ME, DATETI VE, or TI MESTAMP.
 All other unsupported conversion errors are returned from nmysqgl stnt _bind result().
Example

The following example demonstrates how to fetch data from a table using
nysqgl _stnt _result _netadata(),nysql _stnt_bind result(),andnysqgl _stnt _fetch().

149

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

mysql_stmt_fetch()

(This example expects to retrieve the two rows inserted by the example shown in Section 6.4.10,
“mysqgl_stmt_execute()”.) The mysql variable is assumed to be a valid connection handler.

#defi ne STRI NG_SI ZE 50

#defi ne SELECT_SAMPLE " SELECT col 1, col 2, col 3, col 4 \
FROM t est _t abl e"

MYSQL_STMT *stnt;

MYSQL_BI ND bi nd[4] ;

MYSQL_RES *prepare_neta_result;
MYSQL_TI ME ts;

unsi gned | ong | engt h[4] ;

i nt param count, col umm_count, row_count;
short smal | _dat a;

i nt i nt _dat a;

char str_dat a[STRI NG_SI ZE] ;

bool is_null[4];

bool error[4];

/* Prepare a SELECT query to fetch data fromtest_table */
stmt = nmysql _stnt _init(nysql);
if (!stnt)

fprintf(stderr, " nysqgl_stnt_init(), out of menory\n");
exit(0);

if (nysqgl _stnt_prepare(stnt, SELECT_SAMPLE, strlen(SELECT_SAMPLE)))

fprintf(stderr, " mysqgl_stnt_prepare(), SELECT failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

fprintf(stdout, " prepare, SELECT successful\n");

/* Get the paranmeter count fromthe statenent */
param count = nysql _stmt _param count (stnt);

fprintf(stdout, " total parameters in SELECT: %\ n", param count);

if (paramcount != 0) /* validate paraneter count */
fprintf(stderr, " invalid parameter count returned by MySQ.\n");
exit(0);

}

/* Execute the SELECT query */
if (nysqgl _stnt_execute(stnt))

fprintf(stderr, " nysqgl_stnt_execute(), failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

/* Fetch result set meta information */
prepare_meta_result = mysqgl _stnt_result_netadata(stnt);
if (!prepare_neta_result)

fprintf(stderr,
nmysql _stmt _result_netadata(), \
returned no neta information\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);
}

/* Get total colums in the query */
col um_count = nysqgl _num fi el ds(prepare_neta_result);
fprintf(stdout,

150

mysql_stmt_fetch()

" total colums in SELECT statenent: %il\n",
col umm_count) ;

if (colum_count != 4) /* validate columm count */
fprintf(stderr, " invalid colum count returned by MySQ\n");
exit(0);

}

/* Bind the result buffers for all 4 colums before fetching them */

menset (bi nd, 0, sizeof (bind));

/* | NTEGER COLUWN */

bi nd[0] . buf fer _t ype= MYSQL_TYPE_LONG
bi nd[0] . buf fer= (char *)& nt_dat a;
bind[0].is_null= & s_null[0];

bi nd[0] . | engt h= &l engt h[0] ;

bind[0] . error= &error[0];

/* STRI NG COLUWN */

bi nd[1] . buf fer _t ype= MYSQ._TYPE_STRI NG
bi nd[1] . buf fer= (char *)str_dat a;

bi nd[1] . buf f er _| engt h= STRI NG_SI ZE;
bind[1].is_null= & s_nul I [1];

bi nd[1] . | engt h= & engt h[1] ;

bind[1] .error= &error[1];

/* SMALLI NT COLUWN */

bi nd[2] . buf fer _t ype= MYSQL_TYPE_SHORT;
bi nd[2] . buf fer= (char *)&smal | _dat a;
bind[2].is_null= & s_null[2];

bi nd[2] . | engt h= &l engt h[2] ;
bind[2].error= &error[2];

/* TI MESTAMP COLUWN */

bi nd[3] . buf fer _t ype= MYSQL_TYPE_TI MESTAVP;
bi nd[3] . buf fer= (char *)&ts;
bind[3].is_null= & s_null[3];

bi nd[3] . | engt h= &l engt h[3] ;

bind[3].error= &error[3];

/* Bind the result buffers */
if (nysqgl _stnt_bind_result(stnmt, bind))

fprintf(stderr, " mysqgl_stnt_bind_result() failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

/* Now buffer all results to client (optional step) */
if (nysqgl _stnt_store_result(stnt))

fprintf(stderr, " nmysqgl_stnt_store_result() failed\n");
fprintf(stderr, " %\n", nysqgl_stnt_error(stnt));
exit(0);

}

/* Fetch all rows */
row_count = O;
fprintf(stdout, "Fetching results ...\n");
while (!nysqgl _stnt_fetch(stnt))
{
row_count ++;
fprintf(stdout, " row %l\n", row count);

/* colum 1 */

151

mysql_stmt_fetch_column()

fprintf(stdout, " columl (integer) : ");
if (is_null[0])

fprintf(stdout, " NULL\n");
el se

fprintf(stdout, " %(%d)\n", int_data, length[0]);

/* colum 2 */

fprintf(stdout, " colum2 (string) D I
if (is_null[1])

fprintf(stdout, " NULL\n");
el se

fprintf(stdout, " %(%d)\n", str_data, length[1]);

/* columm 3 */

fprintf(stdout, " colum3 (smallint) : ");
if (is_null[2])

fprintf(stdout, " NULL\n");
el se

fprintf(stdout, " %(%d)\n", small_data, |ength[2]);

/* columm 4 */

fprintf(stdout, " colum4 (timestanmp): ");
if (is_null[3])

fprintf(stdout, " NULL\n");
el se

fprintf(stdout, " %4d-%02d-%92d 9%92d: 992d: %92d (% d)\n",
ts.year, ts.nonth, ts.day,
ts.hour, ts.mnute, ts.second,

I ength[3]);
fprintf(stdout, "\n");
}
/* Validate rows fetched */
fprintf(stdout, " total rows fetched: %\ n", row count);
if (row_count != 2)
fprintf(stderr, " M/SQ failed to return all rows\n");
exit(0);
}

/* Free the prepared result netadata */
nmysql _free_resul t(prepare_neta_result);

/* O ose the statenent */
if (nysqgl _stnt_cl ose(stnt))

/* mysql _stmt _close() invalidates stnt, so call */
/* nysql _error(nysql) rather than nysql _stnt_error(stnt) */
fprintf(stderr, " failed while closing the statement\n");
fprintf(stderr, " %\n", nysqgl _error(mysql));
exit(0);

}

6.4.12 mysql_stmt_fetch_column()

i nt

nysql _stmt _fetch_col um(MYSQL_STMI *stnt,
MYSQL_BI ND *bi nd,
unsi gned int col um,
unsi gned | ong of fset)

Description

Fetches one column from the current result set row. bi nd provides the buffer where data should be
placed. It should be set up the same way as for nysql stnt_bind _result().col unm indicates which

152

mysql_stmt_field_count()

column to fetch. The first column is numbered 0. of f set is the offset within the data value at which to
begin retrieving data. This can be used for fetching the data value in pieces. The beginning of the value is
offset 0.
Return Values
Zero for success. Nonzero if an error occurred.
Errors
« CR_| NVALI D_PARAVETER NO
Invalid column number.
« CR_NO DATA
The end of the result set has already been reached.
6.4.13 mysqgl_stmt_field count()

unsi gned i nt
nmysql _stmt _field_count (MYSQL_STMI *stnt)

Description

Returns the number of columns for the most recent statement for the statement handler. This value is zero
for statements such as | NSERT or DELETE that do not produce result sets.

nmysqgl _stnt _field _count () can be called after you have prepared a statement by invoking
mysql _stmt _prepare().

Return Values

An unsigned integer representing the number of columns in a result set.
Errors

None.

6.4.14 mysqgl_stmt_free_result()

bool
nysql _stnt_free_result (MYSQL_STMI *stnt)

Description

Releases memory associated with the result set produced by execution of the prepared statement. If there
is a cursor open for the statement, nysql st _free_resul t() closesit.

Return Values
Zero for success. Nonzero if an error occurred.
6.4.15 mysqgl_stmt_init()

MYSQL_STMI *

153

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_parameter_no
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_no_data
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

mysql_stmt_insert_id()

mysql _stmt _init(MSQ *nysql)
Description

Creates and returns a MYSQL_ STMT handler. The handler should be freed with mysqgl _stnt _cl ose(), at
which point the handler becomes invalid and should no longer be used.

See also Section 6.2, “C API Prepared Statement Data Structures”, for more information.
Return Values
A pointer to a MYSQL_ STMT structure in case of success. NULL if out of memory.
Errors
« CR_OUT_OF MEMORY
Out of memory.
6.4.16 mysqgl_stmt_insert_id()

ui nt 64_t
mysql _stmt _insert _i d(MYSQL_STMI *stnt)

Description

Returns the value generated for an AUTO_| NCREMENT column by the prepared | NSERT or UPDATE
statement. Use this function after you have executed a prepared | NSERT statement on a table which
contains an AUTO | NCREMENT field.

See Section 5.4.42, “mysql_insert_id()", for more information.
Return Values

Value for AUTO | NCREMENT column which was automatically generated or explicitly set during execution
of prepared statement, or value generated by LAST | NSERT | D(expr) function. Return value is
undefined if statement does not set AUTO | NCRENMENT value.

Errors

None.

6.4.17 mysqgl_stmt_next_result()

i nt
nysql _stnt_next_resul t (MYSQL_STMI *nysql)

Description

This function is used when you use prepared CALL statements to execute stored procedures, which can
return multiple result sets. Use a loop that calls mysql _stnt _next resul t () to determine whether
there are more results. If a procedure has OUT or | NOUT parameters, their values will be returned as a
single-row result set following any other result sets. The values will appear in the order in which they are
declared in the procedure parameter list.

For information about the effect of unhandled conditions on procedure parameters, see Condition Handling
and OUT or INOUT Parameters.

154

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/conditions-and-parameters.html
https://dev.mysql.com/doc/refman/8.0/en/conditions-and-parameters.html

mysql_stmt_num_rows()

nysqgl _stnt _next result() returns a status to indicate whether more results exist. If
nysqgl _stnt_next result() returns an error, there are no more results.

Before each call to nysql _stnt_next _result (), youmustcall mysqgl _stnt_free_resul t() forthe
current result if it produced a result set (rather than just a result status).

After calling nysql stnt _next resul t() the state of the connection is as if you had called
nmysqgl _stnt _execut e(). This means that you can call nysql _stmt _bind result(),
nysqgl stnt _affected rows(), and so forth.

It is also possible to test whether there are more results by calling nysql _nore_resul ts().
However, this function does not change the connection state, so if it returns true, you must still call
mysql _stnt _next _result() toadvance to the next result.

For an example that shows how to use nmysqgl _stnt _next result(), see Section 3.6.5, “Prepared
CALL Statement Support”.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results
>0 An error occurred

Errors
« CR_COVWANDS OUT_OF SYNC
Commands were executed in an improper order.
« CR_SERVER GONE_ERROR

The MySQL server has gone away.

CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOAN_ERROR

An unknown error occurred.

6.4.18 mysql_stmt_num_rows()

ui nt 64 _t
nysql _stnt_num rows(MYSQL_STMI *st nt)

Description

Returns the number of rows in the result set.

The use of nysql _stnt_num rows() depends on whether you used nysql stnt_store_resul t ()
to buffer the entire result set in the statement handler. If you use nysqgl _stnt _store result(),
nysqgl _stnt_num rows() may be called immediately. Otherwise, the row count is unavailable unless
you count the rows as you fetch them.

155

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_param_count()

nysqgl _stnt_num rows() isintended for use with statements that return a result set, such as SELECT.
For statements such as | NSERT, UPDATE, or DELETE, the number of affected rows can be obtained with
mysql _stmt _affected_rows().

Return Values
The number of rows in the result set.

Errors
None.

6.4.19 mysqgl_stmt_param_count()

unsi gned | ong
nysql _stnt_param count (MYSQL_STMI *st nt)

Description

Returns the number of parameter markers present in the prepared statement.
Return Values

An unsigned long integer representing the number of parameters in a statement.
Errors

None.
Example

See the Example in Section 6.4.10, “mysql_stmt_execute()".

6.4.20 mysql_stmt_param_metadata()

MYSQL_RES *
nysql _stnt_param net adat a(MYSQL_STMI' *st nt)

This function currently does nothing.

6.4.21 mysql_stmt_prepare()

int

nmysql _stmt _prepare(MYSQL_STMI' *st mt
const char *stmt_str
unsi gned | ong | engt h)

Description

Given the statement handler returned by nysql _stnt _init (), prepares the SQL statement pointed

to by the string st nt _st r and returns a status value. The string length should be given by the | engt h
argument. The string must consist of a single SQL statement. You should not add a terminating semicolon
(;) or\ g to the statement.

The application can include one or more parameter markers in the SQL statement by embedding question
mark (?) characters into the SQL string at the appropriate positions.

156

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

mysql_stmt_reset()

The markers are legal only in certain places in SQL statements. For example, they are permitted in the
VALUES() list of an | NSERT statement (to specify column values for a row), or in a comparison with a
column in a WHERE clause to specify a comparison value. However, they are not permitted for identifiers
(such as table or column names), or to specify both operands of a binary operator such as the = equal
sign. The latter restriction is necessary because it would be impossible to determine the parameter type.
In general, parameters are legal only in Data Manipulation Language (DML) statements, and not in Data
Definition Language (DDL) statements.

The parameter markers must be bound to application variables using nysql _st nmt _bi nd_par an()
before executing the statement.

Metadata changes to tables or views referred to by prepared statements are detected and cause automatic
repreparation of the statement when it is next executed. For more information, see Caching of Prepared
Statements and Stored Programs.

Return Values
Zero for success. Nonzero if an error occurred.
Errors
» CR_COMVANDS_QUT_OF_SYNC
Commands were executed in an improper order.
« CR_OUT_OF MEMORY

Out of memory.

CR_SERVER GONE_ERRCR
The MySQL server has gone away.
¢ CR_SERVER LOST

The connection to the server was lost during the query

CR_UNKNOMN_ERROR
An unknown error occurred.

If the prepare operation was unsuccessful (that is, mysql _stm _prepare() returns nonzero), the error
message can be obtained by calling mysqgl _stnt _error ().

Example
See the Example in Section 6.4.10, “mysql_stmt_execute()".

6.4.22 mysqgl_stmt_reset()

bool
nmysql _stmt _reset (MYSQL_STMI *stnt)

Description

Resets a prepared statement on client and server to state after prepare. It resets the statement on the
server, data sent using mysqgl _stnt _send_| ong_dat a(), unbuffered result sets and current errors.

157

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_result_metadata()

It does not clear bindings or stored result sets. Stored result sets will be cleared when executing the
prepared statement (or closing it).

To re-prepare the statement with another query, use nmysql _stnt _prepare().
Return Values

Zero for success. Nonzero if an error occurred.
Errors

« CR_COVWWANDS_OUT_OF SYNC

Commands were executed in an improper order.

CR_SERVER GONE_ERROR

The MySQL server has gone away.

CR_SERVER _LOST
The connection to the server was lost during the query
* CR_UNKNOWN_ERROR

An unknown error occurred.

6.4.23 mysql_stmt_result_metadata()

MYSQL_RES *
nysql _stnt_result_netadata(MYSQL_STMI *stnt)

Description

nmysqgl _stnt _result_netadata() is used to obtain result set metadata for a prepared statement. Its
use requires that the statement when executed by nmysql st nt _execut e() does produce a result set.

nmysqgl _stnt_result netadata() may be called after preparing the statement with

nysql _stnt_prepare() and before closing the statement handler. The result set metadata returned
by mysqgl _stnt _result_netadata() isinthe form of a pointer to a MYSQL_ RES structure that can be
used to process the meta information such as number of fields and individual field information. This result
set pointer can be passed as an argument to any of the field-based API functions that process result set
metadata, such as:

e nysqgl _num fields()

e nysql _fetch field()

« mysql _fetch field direct()
* nysql _fetch fields()

 nysql _field count()

 nysql _field seek()

« mysql _field_ tell()

* nysql _free_result()

158

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_row_seek()

If the client has suppressed metadata (as described in Section 3.6.7, “Optional Result Set Metadata”), the
MYSQL_ RES structure has the field count filled in but is no field information.

When you are done with the metadata result set structure, free it by passing itto nysql free result().
This is similar to the way you free a result set structure obtained from a call to nysql _store result().

If you callnysql _stnt _result netadata() afternysql _stnmt prepare() but before

nysgl _stnt _execut e(), the column types in the metadata are as determined by the optimizer. If
you callnysql _stnt _result netadata() afternysql _stnt_execute(), the column types in the
metadata are as actually present in the result set. In most cases, these should be the same.

If the executed statement is a CALL statement, it may produce multiple result sets. In this case, do not call
nmysqgl _stnt _result netadata() immediately after nysql _stnt _prepare(). Instead, check the
metadata for each result set separately after calling mysqgl _stnt _execut e() . For an example of this
technigue, see Section 3.6.5, “Prepared CALL Statement Support”.

The result set returned by nysql _stnt_resul t _net adat a() contains only metadata. It does not
contain any row results. To obtain the row results, use the statement handler with mysql _stnt _fet ch()
after executing the statement with mysql _st nt _execut e(), as usual.

Return Values

A MYSQL_RES result structure. NULL if no meta information exists for the prepared statement.

« CR_QUT_OF MEMORY
Out of memory.
¢ CR_UNKNOMN ERROR

An unknown error occurred.

Example

See the Example in Section 6.4.11, “mysql_stmt_fetch()".

6.4.24 mysql_stmt_row_seek()

MYSQL_ROWN OFFSET
nysql _stnt_row seek(MYSQL_STMI *st nt,
MYSQL_ROW OFFSET of f set)

Description

Sets the row cursor to an arbitrary row in a statement result set. The of f set value is a row offset that
should be a value returned from nysql _stnt _row tell () orfromnysql _stm row seek().
This value is not a row number; if you want to seek to a row within a result set by number, use

mysql _stmt data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
nmysqgl _stnt _row seek() may be used only in conjunction with mysql st _store result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
nysqgl _stnt_row seek().

159

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_row_tell()

Errors

None.

6.4.25 mysql_stmt_row _tell()

MYSQL_ROWN OFFSET
nmysql _stmt_row tel | (MYSQL_STMI *st nt)

Description

Returns the current position of the row cursor for the last mysql _stnmt _fet ch() . This value can be used
as an argument to nysql _stnt _row seek().

You should use nysql _stnt _row_tell () onlyafter mysql _stnt_store_result().

Return Values

Errors

The current offset of the row cursor.

None.

6.4.26 mysqgl_stmt_send_long_data()

bool

nysqgl _stnt_send_| ong_dat a(MYSQL_STMI *st nt,
unsi gned i nt paranet er_nunber,
const char *data,
unsi gned | ong | engt h)

Description

Enables an application to send parameter data to the server in pieces (or “chunks”). Call this function after
nysqgl _stnt _bind_paran() and before nysql stnt _execut e(). It can be called multiple times to
send the parts of a character or binary data value for a column, which must be one of the TEXT or BLOB
data types.

par anmet er _nunber indicates which parameter to associate the data with. Parameters are numbered
beginning with 0. dat a is a pointer to a buffer containing data to be sent, and | engt h indicates the
number of bytes in the buffer.

Note

The next nysql _stnt _execut e() callignores the bind buffer for all parameters
that have been used with nysqgl _stnt _send_| ong_dat a() since last
mysql _stmt _execute() ormysqgl _stm _reset().

To reset/forget the sent data, call nysqgl _stnt _reset (). See Section 6.4.22, “mysql_stmt_reset()".

The max_al | owed_packet system variable controls the maximum size of parameter values that can be
sentwith mysql _stm _send | ong _data().

Return Values

Zero for success. Nonzero if an error occurred.

160

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet

mysql_stmt_send_long_data()

Errors

« CR_I NVALI D_BUFFER _USE

The parameter does not have a string or binary type.
« CR I NVALI D_PARAMETER NO

Invalid parameter number.
« CR_COWVANDS_OUT_OF SYNC

Commands were executed in an improper order.
« CR_SERVER GONE_ERROR

The MySQL server has gone away.
« CR_OUT_OF_MEMORY

Out of memory.
« CR_UNKNOM_ERROR

An unknown error occurred.

Example

The following example demonstrates how to send the data for a TEXT column in chunks. It inserts the data
value' MySQL - The nost popul ar Open Source database' intothetext _col umm column. The

nysql variable is assumed to be a valid connection handler.

#defi ne | NSERT_QUERY "| NSERT | NTO \
test _| ong_dat a(text_col um) VALUES(?)"

MYSQL_BI ND bi nd[1] ;

| ong | engt h;

stmt = nmysql _stnt_init(mysql);

if (!stnt)
fprintf(stderr, " nysql_stnt_init(), out of nenory\n");
exit(0);

}
if (nysqgl _stnt_prepare(stnt, | NSERT_QUERY, strlen(|NSERT_QUERY)))
{

fprintf(stderr, "\n nysql _stnt_prepare(), |NSERT failed");
fprintf(stderr, "\n %", nysql _stnt_error(stnt));
exit(0);

nmenset (bi nd, 0, sizeof(bind));

bi nd[0] . buf fer _type= MYSQL_TYPE_STRI NG
bi nd[0] . | engt h= &l engt h;

bind[0] .is_null= 0;

/* Bind the buffers */
if (nysql _stnt_bind_paran(stnt, bind))
{

fprintf(stderr, "\n param bind failed");
fprintf(stderr, "\n %", nysql _stnt_error(stnt));
exit(0);

}

161

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_buffer_use
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_parameter_no
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/blob.html

mysql_stmt_sqlstate()

/* Supply data in chunks to server */
if (nysqgl _stnt_send_| ong_data(stnt, 0, "M/SQ",5))
{

fprintf(stderr, "\n send_|l ong_data failed");
fprintf(stderr, "\'n %", nysqgl_stnt_error(stnt));
exit(0);

}

/* Supply the next piece of data */
if (nysqgl _stnt_send_| ong_data(stnt, O,

" - The npbst popul ar Open Source database", 40))
{

fprintf(stderr, "\n send_|l ong_data failed");
fprintf(stderr, "\'n %", nysqgl_stnt_error(stnt));
exit(0);

}

/* Now, execute the query */
if (nysqgl _stnt_execute(stnt))

{
fprintf(stderr, "\'n nysqgl _stnt_execute failed");

fprintf(stderr, "\'n %", nysqgl_stnt_error(stnt));
exit(0);
}

6.4.27 mysqgl_stmt_sqlstate()

const char *
nysql _stnt_sql stat e(MYSQL_STMI' *st nt)

Description

For the statement specified by st nt , nysql _stnt_sql st at e() returns a null-terminated string
containing the SQLSTATE error code for the most recently invoked prepared statement API function that
can succeed or fail. The error code consists of five characters. " 00000" means “no error.” The values
are specified by ANSI SQL and ODBC. For a list of possible values, see Error Messages and Common
Problems.

Not all MySQL errors are mapped to SQLSTATE codes. The value " HY000" (general error) is used for
unmapped errors.

If the failed statement API function was nysql _stnt _cl ose(), donotcallnysql _stnt_sql state()
to obtain error information because nysql _stnt _cl ose() makes the statement handler invalid. Call
nysgl _sql state() instead.

Return Values
A null-terminated character string containing the SQLSTATE error code.

6.4.28 mysql_stmt_store result()

int
nysql _stnt_store_result (MYSQL_STMI *stnt)

Description

Result sets are produced by calling nysql _stnm execut e() to executed prepared statements for SQL
statements such as SELECT, SHOW DESCRI BE, and EXPLAI N. By default, result sets for successfully
executed prepared statements are not buffered on the client and nysql _stnt fetch() fetches

162

https://dev.mysql.com/doc/refman/8.0/en/error-handling.html
https://dev.mysql.com/doc/refman/8.0/en/error-handling.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/describe.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html

mysql_stmt_store_result()

them one at a time from the server. To cause the complete result set to be buffered on the client, call
nysqgl _stnt_store_resul t() after binding data buffers with mysqgl _stnt _bind _resul t()
and before calling mysqgl stnt _fetch() to fetch rows. (For an example, see Section 6.4.11,
“mysql_stmt_fetch()".)

nmysqgl _stnt _store_ result() isoptional for result set processing, unless you will call
nysqgl stnt _data seek(), nmysql _stmt _row seek(),ornysql _stnt _row tell (). Those
functions require a seekable result set.

It is unnecessary to call mysql _stnt _store_resul t () after executing an SQL statement that
does not produce a result set, but if you do, it does not harm or cause any notable performance
problem. You can detect whether the statement produced a result set by checking whether

nmysqgl _stnt _result netadata() returns NULL. For more information, refer to Section 6.4.23,
“mysql_stmt_result_metadata()”.

Note

MySQL does not by default calculate MYSQL_FI ELD- >max_| engt h for all
columnsin nysqgl _stnt _store result() because calculating this would slow
down nysql stnt _store result() considerably and most applications do
not need mex_| engt h. If you want max_| engt h to be updated, you can call
mysql _stnt_attr_set (MYSQL_STMI, STMI_ATTR_UPDATE MAX_LENGTH,
&f | ag) to enable this. See Section 6.4.3, “mysql_stmt_attr_set()".

Return Values

Errors

Zero for success. Nonzero if an error occurred.

« CR_COWANDS OUT_OF SYNC
Commands were executed in an improper order.
» CR_QUT_OF_MEMORY
Out of memory.
« CR_SERVER _GONE_ERROR
The MySQL server has gone away.
« CR_SERVER LOST

The connection to the server was lost during the query.

CR_UNKNOAN_ERROR

An unknown error occurred.

163

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

164

Chapter 7 C API Asynchronous Interface

Table of Contents

7.1 Overview of the C APl ASynchronous INTEIfaceooviiiiiiiiiii e e 165
7.2 C API Asynchronous Interface Data StrUCLUIESoviuniiiiiieiiii e e e e e ea e aes 170
7.3 C API Asynchronous FUNCtion REFEIENCEiiiiiiiiii e e 170
7.4 C APl Asynchronous FUNCION DESCIIPLIONSccuuuiiiiieiiieii e e e e e e e e e e e e eaaeeanas 171
7.4.1 mysql_fetch_row_nonbloCKiNg()cevueeii e 171
7.4.2 mysql_free_result_nonbloCKiNG()c.u i 172
7.4.3 mysql_next_result_nonbIOCKING() «..uovvenieiii i e 172
7.4.4 mysql_real_connect_NoNBIOCKING() «....evveneriiieii e e e e e e 173
7.4.5 mysql_real_query_nonbloCKiNG() «..couueeiiiiii et 173
7.4.6 mysqgl_store_result_NonbIOCKING()ovveniiiiiiir e 174

As of MySQL 8.0.16, the C API includes asynchronous functions that enable nonblocking communication
with the MySQL server. Asynchronous functions enable development of applications that differ from the
guery processing model based on synchronous functions that block if reads from or writes to the server
connection must wait. Using the asynchronous functions, an application can check whether work on the
server connection is ready to proceed. If not, the application can perform other work before checking again
later.

For example, an application might open multiple connections to the server and use them to submit multiple
statements for execution. The application then can poll the connections to see which of them have results
to be fetched, while doing other work.

Note

As just indicated, execution of multiple simultaneous statements should be done
using multiple connections and executing one statement per connection. The
asynchronous interface is not intended for executing multiple simultaneous
statements per connection. What it enables is that applications can do other work
rather than waiting for server operations to complete.

7.1 Overview of the C API Asynchronous Interface

This section describes how to use the C API asynchronous interface. In this discussion, asynchronous and
nonblocking are used as synonyms, as are synchronous and blocking.

The asynchronous C API functions cover operations that might otherwise block when reading to or
writing from the server connection: The initial connection operation, sending a query, reading the result,
and so forth. Each asynchronous function has the same name as its synchronous counterpart, plus a
_nonbl ocki ng suffix:

* nysql _fetch_row nonbl ocki ng() : Asynchronously fetches the next row from the result set.
e nysql _free_ result _nonbl ocki ng() : Asynchronously frees memory used by a result set.

* nysqgl _next result nonbl ocki ng() : Asynchronously returns/initiates the next result in multiple-
result executions.

* nysql _real _connect _nonbl ocki ng() : Asynchronously connects to a MySQL server.

e nysqgl real query nonbl ocki ng() : Asynchronously executes an SQL query specified as a
counted string.

165

Asynchronous Function Calling Conventions

e nysqgl _store_result_nonbl ocki ng() : Asynchronously retrieves a complete result set to the client.

Applications can mix asynchronous and synchronous functions if there are operations that need not be
done asynchronously or for which the asynchronous functions do not apply.

The following discussion describes in more detail how to use asynchronous C API functions.
» Asynchronous Function Calling Conventions
» Example Program

» Asynchronous Function Restrictions

Asynchronous Function Calling Conventions

All asynchronous C API functions return an enum net _async_st at us value. The return value can be
one of the following values to indicate operation status:

* NET_ASYNC NOT_READY: The operation is still in progress and not yet complete.
* NET_ASYNC_COVPLETE: The operation completed successfully.
* NET_ASYNC_ERROR: The operation terminated in error.

* NET_ASYNC COVPLETE_NO MORE RESULTS: The operation completed successfully and no more
results are available. This status applies only to nysql _next _result_nonbl ocki ng() .

In general, to use an asynchronous function, do this:
 Call the function repeatedly until it no longer returns a status of NET_ASYNC_NOT _READY.

» Check whether the final status indicates successful completion (NET_ASYNC COVPLETE) or an error
(NET_ASYNC_ERROR).

The following examples illustrate some typical calling patterns. f uncti on(ar gs) represents an
asynchronous function and its argument list.

« If it is desirable to perform other processing while the operation is in progress:
enum net _async_st at us st at us;

status = function(args);
whi l e (status == NET_ASYNC NOT_READY) {
/* perform other processing */
ot her _processing ();
/* invoke same function and arguments again */
status = function(args);

}
if (status == NET_ASYNC ERROR) ({
/* call failed; handle error */
} else {
/* call successful; handle result */

}
« If there is no need to perform other processing while the operation is in progress:

enum net _async_st at us st at us;

while ((status = function(args)) == NET_ASYNC NOT_READY)
; /* enpty | oop */

if (status == NET_ASYNC ERROR) ({
/* call failed; handle error */

} else {
/* call successful; handle result */

166

Example Program

}

« If the function success/failure result does not matter and you want to ensure only that the operation has
completed:

while (function (args) != NET_ASYNC COWLETE)
/* enpty |oop */

Fornysqgl next result nonbl ocki ng(), itis also necessary to account for the
NET _ASYNC COVPLETE NO MORE RESULTS status, which indicates that the operation completed
successfully and no more results are available. Use it like this:

while ((status = nysql _next_resul t _nonbl ocking()) != NET_ASYNC COWPLETE) {
if (status == NET_ASYNC COMPLETE _NO MORE RESULTS) {
/* no nore results */
}
else if (status == NET_ASYNC ERROR) {
/* handle error by calling nysql _error(); */
br eak;
}
}

In most cases, arguments for the asynchronous functions are the same as for the corresponding
synchronous functions. Exceptions are nysql _fetch_row nonbl ocki ng() and

nysqgl store_result_nonbl ocki ng(), each of which takes an extra argument compared to
its synchronous counterpart. For details, see Section 7.4.1, “mysql_fetch_row_nonblocking()”, and
Section 7.4.6, “mysqgl_store_result_nonblocking()”.

Example Program
This section shows an example C++ program that illustrates use of asynchronous C API functions.

To set up the SQL objects used by the program, execute the following statements. Substitute a different
database or user as desired; in this case, you will need to make some adjustments to the program as well.

CREATE DATABASE db;

USE db;

CREATE TABLE test_table (id I NT NOT NULL);

I NSERT | NTO test_table VALUES (10), (20), (30);

CREATE USER 'testuser' @I ocal host' | DENTIFI ED BY 'testpass';
GRANT ALL ON db.* TO 'testuser' @I ocal host" ;

Create a file named async_app. cc containing the following program. Adjust the connection parameters
as necessary.

#i ncl ude <stdi o. h>
#i ncl ude <string. h>
#i ncl ude <i ostrean>
#i ncl ude <nysql . h>
#i ncl ude <nysql d_error. h>

usi ng namespace std;

/* change foll owi ng connection paraneters as necessary */

static const char * c_host = "l ocal host";

static const char * c_user = "testuser";

static const char * c_auth = "testpass";

static int c_port = 3306;

static const char * c_sock = "/usr/local/nysqgl/nysql.sock";
static const char * c_dbnm = "db";

void performarithnetic() {
cout <<"dummy function invoked\n";

167

Example Program

}

for (int i =0; i < 1000; i++)

R o
(I

int main(int argc, char ** argv)

{

MYSQL *nysql _I| ocal ;
MYSQL_RES *resul t;
MYSQL_ROW r ow,

net _async_st at us st at us;
const char *stnt_text;

if (!(mysqgl _local = nmysql _init(NULL))) {
cout <<"nysql _init() failed\n";
exit(1);

}

while ((status = mysql _real _connect_nonbl ocki ng(nmysql _I ocal, c_host, c_user,

c_auth, c_dbnm c_port,
c_sock, 0))
== NET_ASYNC_NOT_READY)
; [* enpty | oop */
if (status == NET_ASYNC ERROR) {
cout <<"nysqgl _real _connect _nonbl ocki ng() failed\n";

exit(1);
}
/* run query asynchronously */
stnt_text = "SELECT * FROM test_tabl e ORDER BY id";

status = nysql _real _query_nonbl ocki ng(nmysqgl _I| ocal, stnt_text,
(unsigned long)strlen(stnt_text));
/* do sone other task before checking function result */
performarithmetic();
whil e (status == NET_ASYNC_NOT_READY) {
status = nysql _real _query_nonbl ocki ng(nmysql _I| ocal, stnt_text,
(unsigned long)strlen(stnt_text));
performarithmetic();
}
if (status == NET_ASYNC ERROR) {
cout <<"mysql _real _query_nonbl ocki ng() failed\n";
exit(1);
}

/* retrieve query result asynchronously */
status = nysql _store_result_nonbl ocki ng(nysqgl _| ocal, &esult);
/* do sone other task before checking function result */
performarithmetic();
whi l e (status == NET_ASYNC_NOT_READY) {
status = nysql _store_result_nonbl ocki ng(nysqgl _I| ocal, &esult);
performarithmetic();

if (status == NET_ASYNC_ERROR) {
cout <<"nmysqgl _store_resul t_nonbl ocking() failed\n";
exit(1);

}

if (result == NULL) {
cout <<"nmysqgl _store_resul t_nonbl ocking() found O records\n";
exit(1);

}

/* fetch a row synchronously */

row = nysql _fetch_rowmresult);

if (row!= NULL && strcnp(rowf 0], "10") == 0)
cout<<"ROW " << row 0] << "\n";

el se
cout <<"incorrect result fetched\n";

/* fetch a row asynchronously, but w thout doing other work */

168

Asynchronous Function Restrictions

whi | e (nysql _fetch_row_nonbl ocki ng(result, & ow) != NET_ASYNC COWLETE)
; [* enpty | oop */

/* 2nd row fetched */

if (row!= NULL && strcnp(row 0], "20") == 0)
cout<<"ROW " << row 0] << "\n";

el se
cout <<"incorrect result fetched\n";

/* fetch a row asynchronously, doing other work while waiting */
status = nysql _fetch_row _nonbl ocki ng(result, & ow);
/* do sone other task before checking function result */
performarithmetic();
while (status ! = NET_ASYNC COWPLETE) {
status = nysql _fetch_row _nonbl ocki ng(result, & ow);
performarithmetic();
}
/* 3rd row fetched */
if (row!= NULL && strcnp(rowf 0], "30") == 0)
cout<<"ROW " << row 0] << "\n";
el se
cout <<"incorrect result fetched\n";

/* fetch a row asynchronously (no nore rows expected) */
while ((status = nysql _fetch_row_nonbl ocki ng(result, & ow))
I = NET_ASYNC_COWPLETE)
; [* enpty | oop */
if (row == NULL)
cout <<"No nore rows to process.\n";
el se
cout <<"Mdre rows found than expected.\n";

/* free result set nenory asynchronously */
whi l e (nysql _free_result_nonbl ocking(result) != NET_ASYNC COVPLETE)
; [* enpty | oop */

nmysql _cl ose(nysql _l ocal);

Compile the program using a command similar to this; adjust the compiler and options as necessary:

gcc -g async_app.cc -std=c++11 \
-1 /usr/local/nmysqgl/include \
-0 async_app -L/usr/lib64/ -lstdc++ \
-L/usr/local /nmysqgl/lib/ -1mysqglclient

Run the program. The results should be similar to what you see here, although you might see a varying
number of dummy functi on i nvoked instances.

durmy function invoked
dummy function invoked
ROW 10

ROW 20

dummy function invoked
ROW 30

No nbre rows to process.

To experiment with the program, add and remove rows from t est _t abl e, running the program again
after each change.

Asynchronous Function Restrictions

These restrictions apply to the use of asynchronous C API functions:

169

C API Asynchronous Interface Data Structures

e nysql real connect_nonbl ocki ng() can be used only for accounts that authenticate with one
of these authentication plugins: nysqgl _nati ve passwor d (deprecated), sha256 passwor d, or
cachi ng_sha2_password.

e nysqgl _real connect _nonbl ocki ng() can be used only to establish TCP/IP or Unix socket file
connections.

e These statements are not supported and must be processed using synchronous C API functions: LOAD
DATA, LOAD XM..

 Input arguments passed to an asynchronous C API call that initiates a nonblocking operation may
remain in use until the operation terminates later, and should not be reused until termination occurs.

» Protocol compression is not supported for asynchronous C API functions.

7.2 C APl Asynchronous Interface Data Structures

This section describes data structures specific to asynchronous C API functions. For information about
general-purpose C API data structures, see Section 5.2, “C API Basic Data Structures”.

e enum net _async_st at us

The enumeration type used to express the return status of asynchronous C API functions. The following
table shows the permitted status values.

Enumeration Status Value Description

NET_ASYNC COVPLETE Asynchronous operation is complete

NET_ASYNC_NOT_READY Asynchronous operation is still in progress

NET_ASYNC ERROR Asynchronous operation terminated in error

NET_ASYNC_COVPLETE_NO MORE_RESULTS For nysql _next _resul t _nonbl ocki ng();
indicates no more results available

For more information, see Chapter 7, C APl Asynchronous Interface.

7.3 C APl Asynchronous Function Reference

The following table summarizes the functions available for asynchronous interaction with the MySQL
server. For greater detail, see the descriptions in Section 7.4, “C APl Asynchronous Function Descriptions”.

Table 7.1 C APl Asynchronous Functions

Name Description Introduced
mysqgl _fetch _row nonbl ocki ngsynchronously fetch next result |8.0.16
set row
nysql _free_resul t _nonbl ockjiAsyhEhronously free result set 8.0.16
memory

mysqgl _next _result_nonbl ockliAsyhghronously return/initiate next|8.0.16
result in multiple-result execution

mysqgl real connect nonbl oclAsyathronously connect to 8.0.16
MySQL server

mysqgl real query_nonbl ocki [#Agynchronously execute 8.0.16
statement

170

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-xml.html

C API Asynchronous Function Descriptions

Name Description Introduced

mysqgl store_result _nonbl oclAsyathronously retrieve and store |8.0.16
entire result set

7.4 C API Asynchronous Function Descriptions

To interact asynchronously with the MySQL server, use the functions described in the following sections.
For descriptions of their synchronous counterparts, see Section 5.4, “C API Basic Function Descriptions”.

7.4.1 mysqgl_fetch_row_nonblocking()

enum net _async_st at us
nmysql _fetch_row _nonbl ocki ng(MYSQL_RES *resul t,
MYSQL_ROW * r ow)

Description
Note

nysqgl fetch _row nonbl ocki ng() is an asynchronous function. It is the
counterpart of the nysql _fetch_row() synchronous function, for use by
applications that require asynchronous communication with the server. For general
information about writing asynchronous C API applications, see Chapter 7, C API
Asynchronous Interface.

nysqgl _fetch _row nonbl ocki ng() is used similarly to nysqgl fetch _row(). For details about the
latter, see Section 5.4.22, “mysql_fetch_row()”. The two functions differ as follows:

 nysql _fetch row() returns a MYSQL_ROWvalue containing the next row, or NULL. The meaning of a
NULL return depends on which function was called preceding nysql _fetch_row():

e When used after nysql _store_resul t() ormnmysqgl _store_result_nonbl ocking(),
nysql _fetch_row() returns NULL if there are no more rows to retrieve.

* When used after mysqgl use result(),nysqgl _fetch row) returns NULL if there are no more
rows to retrieve or an error occurred.

* nysql _fetch row nonbl ocki ng() returns an enum net async_st at us status indicator
and takes a second r ow argument that provides a pointer to a MYSQL_ ROMvalue. When the return
status is NET_ASYNC COVPLETE, the r owargument is a pointer to a MYSQL_ ROWvalue containing
the next row, or NULL. The meaning of NULL depends on which function was called preceding
nysql _fetch_row_nonbl ocki ng():

* When used after mysql _store_resul t() ormnmysqgl _store_result_nonbl ocking(), therow
argument is NULL if there are no more rows to retrieve.

* When used after mysqgl _use _resul t (), the r owargumentis NULL if there are no more rows to
retrieve or an error occurred.

nmysqgl _fetch_row nonbl ocki ng() was added in MySQL 8.0.16.
Return Values

Returns an enum net _async_st at us value. See the description in Section 7.2, “C APl Asynchronous
Interface Data Structures”. A NET_ASYNC ERRCR return status indicates an error.

171

mysql_free_result_nonblocking()

Example

See Chapter 7, C API Asynchronous Interface.

7.4.2 mysql_free_result_nonblocking()

enum net _async_st at us
nysql _free_result_nonbl ocki ng(MYSQL_RES *resul t)

Description
Note

nysqgl _free_result_nonbl ocki ng() is an asynchronous function. It is the
counterpart of the mysql _free_resul t () synchronous function, for use by
applications that require asynchronous communication with the server. For general
information about writing asynchronous C API applications, see Chapter 7, C API
Asynchronous Interface.

nmysqgl _free result nonbl ocki ng() is used similarly to nysql free resul t (). For details about
the latter, see Section 5.4.26, “mysql_free_result()”. The two functions differ as follows:

 mysql _free_result() does notreturn a value.
e nysql _free result _nonbl ocking() returns an enum net _async_st at us status indicator.

mysql _free_result_nonbl ocki ng() was added in MySQL 8.0.16.
Return Values

Returns an enum net _async_st at us value. See the description in Section 7.2, “C APl Asynchronous
Interface Data Structures”. A NET_ASYNC ERRCR return status indicates an error.

Example
See Chapter 7, C API Asynchronous Interface.

7.4.3 mysqgl_next_result_nonblocking()

enum net _async_st at us
nmysql _next _resul t _nonbl ocki ng(MYSQL *nysql)

Description
Note

nysqgl _next _result_nonbl ocki ng() is an asynchronous function. It is the
counterpart of the mysql _next _resul t () synchronous function, for use by
applications that require asynchronous communication with the server. For general
information about writing asynchronous C API applications, see Chapter 7, C API
Asynchronous Interface.

nysql _next _resul t _nonbl ocki ng() is used similarly to mysqgl _next _resul t (). For details about
the latter, see Section 5.4.51, “mysql_next_result()”. The two functions differ as follows:

* nysqgl _next _result() returns an integer status indicator.

172

mysql_real_connect_nonblocking()

e nysqgl _next _result _nonbl ocking() returns an enum net _async_st at us status indicator.

nysgl next _result _nonbl ocki ng() was added in MySQL 8.0.16.

Return Values

Returns an enum net _async_st at us value. See the description in Section 7.2, “C APl Asynchronous
Interface Data Structures”. A NET_ASYNC COVPLETE _NO MORE RESULTS return status indicates there
are no more results available. A NET_ASYNC ERROR return status indicates an error.

Example

See Chapter 7, C API Asynchronous Interface.

7.4.4 mysql_real_connect_nonblocking()

enum net _async_st at us

nysql _real _connect _nonbl ocki ng(MYSQ. *nysql ,
const char *host,
const char *user,
const char *passwd,
const char *db,
unsi gned int port,
const char *uni x_socket,
unsi gned | ong
client_flag)

Description
Note

nysqgl real connect nonbl ocki ng() is an asynchronous function. It is the
counterpart of the mysql _real connect () synchronous function, for use by
applications that require asynchronous communication with the server. For general
information about writing asynchronous C API applications, see Chapter 7, C API
Asynchronous Interface.

nmysqgl real connect nonbl ocki ng() is used similarly to mysqgl real connect (). For details
about the latter, see Section 5.4.58, “mysql_real_connect()". The two functions differ as follows:

* nysql real connect () returns a connection handler or NULL.
* nysql _real connect_nonbl ocki ng() returns an enum net _async_st at us status indicator.
nysqgl real connect nonbl ocki ng() was added in MySQL 8.0.16.

Return Values

Returns an enum net _async_st at us value. See the description in Section 7.2, “C APl Asynchronous
Interface Data Structures”. A NET_ASYNC ERRCR return status indicates an error.

Example
See Chapter 7, C API Asynchronous Interface.

7.4.5 mysql_real_query_nonblocking()

enum net _async_st at us
nysql _real _query_nonbl ocki ng(MYSQL *nysql ,

173

mysql_store_result_nonblocking()

const char *stmt _str,
unsi gned | ong | engt h)

Description
Note

nmysql _real query_nonbl ocki ng() is an asynchronous function. It is the
counterpart of the mysql _real _query() synchronous function, for use by
applications that require asynchronous communication with the server. For general
information about writing asynchronous C API applications, see Chapter 7, C API
Asynchronous Interface.

nysql _real _query_nonbl ocki ng() is used similarly to nysql _real _query() . For details about the
latter, see Section 5.4.62, “mysql_real_query()”. The two functions differ as follows:

* nysql _real _query() returns an integer status indicator.
e nysqgl real query_nonbl ocki ng() returns an enum net _async_st at us status indicator.

nysql _real _query_nonbl ocki ng() was added in MySQL 8.0.16.

Return Values

Returns an enum net _async_st at us value. See the description in Section 7.2, “C APl Asynchronous
Interface Data Structures”. A NET_ASYNC ERRCR return status indicates an error.

Example

See Chapter 7, C APl Asynchronous Interface.

7.4.6 mysql_store_result_nonblocking()

enum net _async_st at us
nmysql _store_result_nonbl ocki ng(MYSQL *nysql ,
MYSQL_RES **resul t)

Description
Note

nysqgl _store_result_nonbl ocki ng() is an asynchronous function. It is the
counterpart of the nysql _store_resul t () synchronous function, for use by
applications that require asynchronous communication with the server. For general
information about writing asynchronous C API applications, see Chapter 7, C API
Asynchronous Interface.

nmysqgl store_result _nonbl ocki ng() is used similarly to mysqgl store_result (). For details
about the latter, see Section 5.4.84, “mysql_store_result()”. The two functions differ as follows:

e nysql _store_result() returns a pointer to a MYSQL_RESULT value that contains the result set, or
NULL if there is no result set or an error occurred.

* nysql _store_result_nonbl ocki ng() returns an enum net _async_st at us status indicator and
takes a second r esul t argument that is the address of a pointer to a MYSQL_RESULT into which to
store the result set. When the return status is NET_ASYNC_COVPLETE, the r esul t argument is NULL if
there is no result set or an error occurred.

174

mysql_store_result_nonblocking()

nysqgl store_result_nonbl ocki ng() was added in MySQL 8.0.16.
Return Values

Returns an enum net _async_st at us value. See the description in Section 7.2, “C APl Asynchronous
Interface Data Structures”. A NET_ASYNC ERRCR return status indicates an error.

When the return status is NET_ASYNC COVPLETE, the r esul t argument is NULL if there is no result set

or an error occurred. To determine whether an error occurred, check whether nysql _error () returns a

nonempty string, nysql _errno() returns nonzero, or nysql fi el d count () returns zero.
Example

See Chapter 7, C API Asynchronous Interface.

175

176

Chapter 8 C API Thread Interface

Table of Contents

8.1 C API Thread FUNCLION REFEIEINCEiiiiiiiiieii ettt 177
8.2 C API Threaded FUNCLION DESCIPLIONSiitiiii ittt et e e e e e e ean s 177
8.2.1 MYSOI_thread _ENG() «..oeen e e 177
8.2.2 MYSOl_thread_INIL()ueeeeei e 178
8.2.3 MySOl_thread_SAfe()ceeu e e 178

The MySQL C API includes functions enabling threaded client applications to be written. These functions
provide control over thread initialization and termination with the client. See also Section 3.4, “Writing C
API Threaded Client Programs”.

Another C API function, nysql _t hread_i d(), has “thread” in its name but is not used for client
threading purposes. Instead, it returns the ID of the server thread associated with the client, much like the
CONNECTI ONL_I D() SQL function. See Section 5.4.85, “mysql_thread_id()".

8.1 C API Thread Function Reference

The following table summarizes the functions available for the thread control within the client. For greater
detail, see the descriptions in Section 8.2, “C API Threaded Function Descriptions”.

Table 8.1 C API Thread Functions

Name Description

mysqgl _thread_end() Finalize thread handler

nmysqgl _thread_init() Initialize thread handler

mysqgl thread_safe() Whether client is compiled thread-safe

8.2 C API Threaded Function Descriptions

To create a threaded client, use the functions described in the following sections. See also Section 3.4,
“Writing C API Threaded Client Programs”.

8.2.1 mysql_thread_end()

voi d
nysql _t hread_end(voi d)

Description

Call this function as necessary before calling pt hr ead_exi t () to free memory allocated by
nysql _thread_init():

» For release/production builds without debugging support enabled, nysql _t hread_end() need not be
called.

» For debug builds, nysgl thread_init() allocates debugging information for the DBUG package (see
The DBUG Package). nysql _t hread_end() must be called for each nysqgl thread_init() callto
avoid a memory leak.

177

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_connection-id
https://dev.mysql.com/doc/refman/8.0/en/dbug-package.html

mysql_thread_init()

nysqgl _thread_end() is notinvoked automatically by the client library.
Return Values

None.
8.2.2 mysql_thread_init()

bool
nysql _thread_init(void)

Description
This function must be called early within each created thread to initialize thread-specific variables.
However, it may be unnecessarily to invoke it explicitly. Calling mysql _thread init() is
automatically handled by nysqgl _init(),nysql library init(),nmysql _server _init(),and
nysgl _connect (). If you invoke any of those functions, nysql thread i nit () is called for you.
Return Values
Zero for success. Nonzero if an error occurred.

8.2.3 mysql_thread_safe()

unsi gned
int nysqgl _thread_safe(void)

Description
This function indicates whether the client library is compiled as thread-safe.
Return Values

1 if the client library is thread-safe, O otherwise.

178

Chapter 9 C API Client Plugin Interface

Table of Contents

9.1 C API Plugin FUNCHON REFEIENCEiiii e e e e e e 179
9.2 C API Plugin FUNCtioN DESCHPLIONSiitiiiiieii et e e e e e et e e e ean s 179
9.2.1 mysql_client_find_PIUGIN()uoeeeeeii e e eens 180
9.2.2 mysql_client_register_PIUGIN()c.u et 180
9.2.3 Mysql_pIugin_get_ OPLION() .. eeen et a e 181
9.2.4 MySql_10ad_PIUGIN() . ..n e et e e e e e een 181
9.2.5 MySql_10ad_PIUGIN_ V() «.nneeneeiiie et e et e s 182
(S I 401 ViTo | I o] 0o 11 o] o] 1T o < PP 183

This section describes functions used for the client-side plugin API. They enable management of client
plugins. For a description of the st _nysql _cl i ent _pl ugi n structure used by these functions, see Client
Plugin Descriptors.

It is unlikely that a client program needs to call the functions in this section. For example, a client
that supports the use of authentication plugins normally causes a plugin to be loaded by calling
nmysqgl _options() tosetthe MYSQL_DEFAULT_ AUTHand MYSQL_PLUG N DI R options:

char *pl Ugl n_dl r =" pat h_t O_pl Ugl n_di r";
char *defaul t _auth = "plugi n_nanme";

/* ... process command-line options ... */

nmysql _options(&mysqgl, MYSQ._PLUG N DI R, plugin_dir);
nysql _options(&mysqgl, MySQ._DEFAULT_AUTH, default_auth);

Typically, the program will also accept - - pl ugi n-di r and - - def aul t - aut h options that enable users
to override the default values.

9.1 C API Plugin Function Reference

The following table summarizes the functions available for the client-side plugin API. For greater detail, see
the descriptions in Section 9.2, “C API Plugin Function Descriptions”.

Table 9.1 C API Plugin Functions

Name Description Introduced

nysql _client _find_plugi n()|Return pointer to a plugin
mysqgl _client_register_pl ugiR€gister a plugin

mysqgl | oad_pl ugi n() Load a plugin

nysql _l oad_pl ugi n_v() Load a plugin

nysql _pl ugi n_get _option() |Get plugin option 8.0.27
mysql _pl ugi n_options() Set plugin option

9.2 C API Plugin Function Descriptions

The following sections provide detailed descriptions of the functions that enable management of client
plugins.

179

https://dev.mysql.com/doc/extending-mysql/8.0/en/client-plugin-descriptors.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/client-plugin-descriptors.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_plugin-dir
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_default-auth

mysql_client_find_plugin()

9.2.1 mysql_client_find_plugin()

struct st_mysqgl _client_plugin *

nysql _client_find_plugi n(MYSQL *nysql,
const char *nane,
int type)

Description

Returns a pointer to a loaded plugin, loading the plugin first if necessary. An error occurs if the type is
invalid or the plugin cannot be found or loaded.

Specify the arguments as follows:

* nysql : A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-related
information.

e nane: The plugin name.
» type: The plugin type.
Return Values

A pointer to the plugin for success. NULL if an error occurred.

Errors

To check for errors, call the nysql _error () ornysgl errno() function. See Section 5.4.16,
“mysqgl_error()”, and Section 5.4.15, “mysql_errno()”.

Example

MYSQL nysql ;
struct st_mysqgl _client_plugin *p;

if ((p = nysqgl _client_find_plugin(&mwsqgl, "nyplugin",
MYSQL_CLI ENT_AUTHENTI CATI ON_PLUG N, 0)))
{

}

printf("Plugin version: %l. %l. %\ n", p->version[0], p->version[1l], p->version[2]);

9.2.2 mysql_client_register_plugin()
struct st_nysqgl _client_plugin *

nysql _client_register_plugi n(MYSQL *nysql,
struct st_nysql _client_plugin *plugin)

Description
Adds a plugin structure to the list of loaded plugins. An error occurs if the plugin is already loaded.

Specify the arguments as follows:

* nysql : A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-related
information.

e pl ugi n: A pointer to the plugin structure.

180

mysql_plugin_get_option()

Return Values
A pointer to the plugin for success. NULL if an error occurred.
Errors

To check for errors, call the mysql _error () ornysgl errno() function. See Section 5.4.16,
“mysql_error()”, and Section 5.4.15, “mysql_errno()”.

9.2.3 mysql_plugin_get_option()
i nt
nmysql _pl ugi n_get _option(struct st_mysql _client_plugin *plugin,

const char *option,
voi d *val ue)

Description

Given a plugin structure and an option name, returns the option value. If the plugin does not have an option
handler, an error occurs.

Specify the arguments as follows:

* pl ugi n: A pointer to the plugin structure.

e opt i on: The name of the option for which the value is to be returned.

» val ue: A pointer to the option value.

nysql _pl ugi n_get _option() was added in MySQL 8.0.27.
Return Values

Zero for success, 1 if an error occurred.
9.2.4 mysql_load_plugin()

struct st_nysqgl _client_plugin *
nmysql _| oad_pl ugi n(MYSQL *nysql ,
const char *nane,
int type,
int argc,

)
Description

Loads a MySQL client plugin, specified by name and type. An error occurs if the type is invalid or the plugin
cannot be loaded.

It is not possible to load multiple plugins of the same type. An error occurs if you try to load a plugin of a
type already loaded.

Specify the arguments as follows:

e nysql : A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-related
information.

181

mysql_load_plugin_v()

e nane: The name of the plugin to load.

» type: The type of plugin to load, or -1 to disable type checking. If type is not —1, only plugins matching
the type are considered for loading.

» ar gc: The number of following arguments (0O if there are none). Interpretation of any following arguments
depends on the plugin type.

Another way to cause plugins to be loaded is to set the LI BMWSQL_PLUG NS environment variable to a list
of semicolon-separated plugin names. For example:

export LIBMYSQL_PLUG NS="nmnypl ugi n1; nypl ugi n2"

Plugins named by LI BMYSQL_PLUG NS are loaded when the client program calls
nysqgl library init().Noerroris reported if problems occur loading these plugins.

The LI BWSQL_PLUG N _DI Renvironment variable can be set to the path name of the directory in which
to look for client plugins. This variable is used in two ways:

 During client plugin preloading, the value of the - - pl ugi n- di r option is not available, so client plugin
loading fails unless the plugins are located in the hardwired default directory. If the plugins are located
elsewhere, LI BWSQL_PLUG N_DI R environment variable can be set to the proper directory to enable
plugin preloading to succeed.

» For explicit client plugin loading, the nysql _| oad_pl ugi n() and nysql _| oad_pl ugi n_v() C API
functions use the LI BMYSQL_PLUGQ N_DI Rvalue if it exists and the - - pl ugi n- di r option was not

given. If - - pl ugi n-di r is given, mysqgl _| oad_pl ugi n() and nysqgl _| oad_pl ugi n_v() ignore
LI BWSQ._PLUG N DI R

Return Values

A pointer to the plugin if it was loaded successfully. NULL if an error occurred.

Errors
To check for errors, call the mysql _error () ornysqgl _errno() function. See Section 5.4.16,
“mysqgl_error()”, and Section 5.4.15, “mysql_errno()”.
Example
MYSQL nysql ;
i f(!nysql _| oad_pl ugi n(&ysql, "nyplugin",
MYSQL_CLI ENT_AUTHENTI CATI ON_PLUG N, 0))
{
fprintf(stderr, "Error: %\n", nysql _error(&mysql))
exit(-1);
}
See Also

See also Section 9.2.4, “mysql_load_plugin()”, Section 5.4.16, “mysql_error()”, Section 5.4.15,
“mysql_errno()”.

9.2.5 mysql_load_plugin_v()

struct st_nysqgl _client_plugin *

182

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_plugin-dir
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_plugin-dir
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_plugin-dir

mysql_plugin_options()

nmysql _| oad_pl ugi n_v(MYSQL *nmnysql
const char *name
int type
int argc,
va_list args)

Description

This function is equivalent to nysql _I| oad_pl ugi n(), but it accepts ava_I i st instead of a variable list
of arguments.

See Also
See also Section 9.2.4, “mysql_load_plugin()”.
9.2.6 mysql_plugin_options()
int
nmysql _pl ugi n_options(struct st_nysqgl _client_plugin *plugin

const char *option
const void *val ue)

Description

Passes an option type and value to a plugin. This function can be called multiple times to set several
options. If the plugin does not have an option handler, an error occurs.

Specify the arguments as follows:

e pl ugi n: A pointer to the plugin structure.

* opti on: The name of the option to be set.

» val ue: A pointer to the option value.
Return Values

Zero for success, 1 if an error occurred. If the plugin has an option handler, that handler should also return
zero for success and 1 if an error occurred.

183

184

Chapter 10 C API Binary Log Interface

Table of Contents

10.1 Overview of the C API Binary LOg INtEIfacCecoouiiiiiiiii e e 185
10.2 C API Binary LOg Data SIrUCIUIESiiiiiiiiiii it ee e e e e e e e e e e e e e e e et e e et e e eanneeees 186
10.3 C API Binary Log FUNCHION REFEIENCEccouiiiiiiiiii e e e e 187
10.4 C API Binary Log FUNCEION DESCIIPLIONScuuuiiiiiiiieiie e e e e e e e e e e et e e e e e e e e e eeanas 188
O 1)Y/ =To | I o] o TR o (o 7=) S 188
10.4.2 mysql_binlog fELCN() ..ccvuiii i 188
O c I o)<Yo | I o1 oo TR o) 1= 1 PSS 189

The MySQL client/server protocol includes a client interface for reading a stream of replication events from
a MySQL server binary log. This capability uses the MYSQL_RPL data structure and a small set of functions
to manage communication between a client program and the server from which the binary log is to be read.
The following sections describe aspects of this interface in more detail.

10.1 Overview of the C API Binary Log Interface

The following simple example program demonstrates the binary log C API functions. Program notes:
e nysql is assumed to be a valid connection handler.

» The initial SET statement sets the @ our ce_bi nl og_checksumuser-defined variable that the server
takes as an indication that the client is checksum-aware. This client does nothing with checksums, but
without this statement, a server that includes checksums in binary log events will return an error for the
first attempt to read an event containing a checksum. The value assigned to the variable is immaterial;
what matters is that the variable exist.

if (nysqgl _query(nysqgl, "SET @ource_binl og_checksun¥' ALL' "))

fprintf(stderr, "nmysql _query() failed\n");
fprintf(stderr, "Error %: %\n",
nmysql _errno(nysqgl), mnysql _error(nysql));
exit(1);
}

MYSQL_RPL rpl ;

rpl.file_nane_l ength = O;
rpl.file_nane = NULL;
rpl.start_position = 4;
rpl.server_id = O;
rpl.flags = 0;

if (nysql _binl og_open(nysqgl, &pl))
{
fprintf(stderr, "mysql _binlog_open() failed\n");

fprintf(stderr, "Error %: 9%\n",
nmysql _errno(nysqgl), mnysql _error(nysql));

exit(1);
}
for (;;) /* read events until error or EOF */
{

if (nysqgl _binlog_fetch(nysqgl, &pl))

fprintf(stderr, "mysql _binlog fetch() failed\n");

185

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

C API Binary Log Data Structures

fprintf(stderr, "Error %: %\n",
nysql _errno(nysqgl), nysqgl_error(nysql));
br eak;
}
if (rpl.size == 0) /[/* EOF */
fprintf(stderr, "ECF event received\n");
br eak;
}
fprintf(stderr, "Event received of size %u.\n", rpl.size);
nmysql _bi nl og_cl ose(nysqgl, & pl);

For additional examples that show how to use these functions, look in a MySQL source distribution for
these source files:

* nysql bi nl og. cc inthe cli ent directory

e nysql _client test.cinthetestclients directory

10.2 C API Binary Log Data Structures

C API functions for processing a replication event stream from a server require a connection handler (a
MYSQL * pointer) and a pointer to a MYSQL_RPL structure that describes the steam of replication events to
read from the server binary log. For example:

MYSQL *nysqgl = nysql _real _connect(...);
MYSQL_RPL rpl;

... initialize MYSQL_RPL nenbers ...

int result = nysql _binl og_open(nysqgl, &pl);

This section describes the MYSQL_RPL structure members. Connection handlers are described in
Section 5.2, “C API Basic Data Structures”.

The applicable MYSQL_RPL members depend on the binary log operation to be performed:

» Before calling mysql _bi nl og_open(), the caller must set the MYSQL_ RPL members from
file_nane_| engt h through f | ags. In addition, if f | ags has the MYSQL_RPL_GTI Dflag set, the
caller must set the members from gt i d_set encoded_si ze through gti d_set arg.

» After a successful nysql _bi nl og fetch() call, the caller examines the si ze and buf f er members.
MYSQL_RPL structure member descriptions:
o file_name_|l ength

The length of the name of the binary log file to read. This member is used in conjunction with
file_nane;seethefil e_name description.

 file_nane
The name of the binary log file to read:
e Iffil e_nane is NULL, the client library sets it to the empty string and setsfi | e_nane_| engt h to 0.

« Iffile_nanmeisnotNULL, file nane_ | engt h must either be the length of the name or 0.
Iffile _name_| engthis 0, the client library sets it to the length of the name, in which case,
fil e_name must be given as a null-terminated string.

186

C API Binary Log Function Reference

To read from the beginning of the binary log without having to know the name of the oldest binary log
file, setfi |l e_nane to NULL or the empty string, and st art _posi ti onto 4.

e start_position

The position at which to start reading the binary log. The position of the first event in any given binary log
file is 4.

» server _id
The server ID to use for identifying to the server from which the binary log is read.
» flags
The union of flags that affect binary log reading, or 0 if no flags are set. These flag values are permitted:
* MYSQL_RPL_SKI P_HEARTBEAT
Set this flag to cause nysql _bi nl og_f et ch() to skip heartbeat events.
e MYSQL_RPL_GTI D

Set this flag to read GTID (global transaction ID) data. If set, you must initialize the MYSQL_RPL
structure GTID-related members fromgti d_set encoded_si zetogti d set ar g before calling

mysql _bi nl og_open().

It is beyond the scope of this documentation to describe in detail how client programs use those GTID-
related members. For more information, examine the nmysql bi nl og. cc source file. For information
about GTID-based replication, see Replication with Global Transaction Identifiers.

 gtid_set _encoded_si ze
The size of GTID set data, or 0.
e fix _gtid_set

The address of a callback function for mysqgl _bi nl og_open() to call to fill the command packet GTID
set, or NULL if there is no such function. The callback function, if used, should have this calling signature:

voi d nmy_cal | back(MYSQL_RPL *rpl, unsigned char *packet_gtid_set);
e gtid set _arg

Either a pointer to GTID set data (if f i x_gti d_set is NULL), or a pointer to a value to be made
available for use within the callback function (if fi x_gtid_set isnotNULL).gtid _set _argisa
generic pointer, so it can point to any kind of value (for example, a string, a structure, or a function). Its
interpretation within the callback depends on how the callback intends to use it.

e sjze

After a successful nysql _bi nl og_fetch() call, the size of the returned binary log event. The value is
0 for an EOF event, greater than 0 for a non-EOF event.

e buffer

After a successful nysql _bi nl og_fetch() call, a pointer to the binary log event contents.

10.3 C API Binary Log Function Reference

187

https://dev.mysql.com/doc/refman/8.0/en/replication-gtids.html

C API Binary Log Function Descriptions

The following table summarizes the functions available for reading a replication event stream from a binary
log. For greater detail, see the descriptions in Section 10.4, “C API Binary Log Function Descriptions”.

Table 10.1 C API Binary Log Functions

Name Description

mysql _bi nl og_cl ose() Close replication event stream

mysql _binlog_fetch() Read event from replication event stream
nysql _bi nl og_open() Open replication event stream

10.4 C API Binary Log Function Descriptions

The following sections provide detailed descriptions of the functions that enable reading the stream of
replication events from a MySQL server binary log.

10.4.1 mysqgl _binlog_close()
voi d
nysql _bi nl og_cl ose(MYSQL *nysql ,
MYSQL_RPL *rpl)
Description
Close a replication event stream.

Arguments:

e nysql : The connection handler returned from nysql _i ni t (). The handler remains open after the
nysql _binl og cl ose() call

» rpl : The replication stream structure. After calling nysqgl _bi nl og_cl ose(), this structure should not
be used further without reinitializing it and calling mysql _bi nl og_open() again.

Errors
None.
Example
See Section 10.4, “C API Binary Log Function Descriptions”.

10.4.2 mysqgl_binlog_fetch()
i nt
nysql _bi nl og_fetch(MYSQL *nysql,
MYSQL_RPL *rpl)
Description
Fetch one event from the replication event stream.

Arguments:

e nysql : The connection handler returned from nysql _init().

188

mysql_binlog_open()

« rpl : The replication stream structure. After a successful call, the si ze member indicates the event size,
which is 0 for an EOF event. For a non-EOF event, si ze is greater than 0 and the buf f er member
points to the event contents.

Return Values
Zero for success. Nonzero if an error occurred.

Errors

Example
See Section 10.4, “C API Binary Log Function Descriptions”.
10.4.3 mysql_binlog_open()
i nt
nmysql _bi nl og_open(MYSQL *nysql ,
MYSQL_RPL *rpl)
Description
Open a new replication event stream, to read a MySQL server binary log.
Arguments:

» nysql : The connection handler returned from nmysql _init().

e rpl: AMYSQL_RPL structure that has been initialized to indicate the replication event stream source. For
a description of the structure members and how to initialize them, see Section 10.2, “C API Binary Log
Data Structures”.
Return Values

Zero for success. Nonzero if an error occurred.

Errors
« CR_FILE_NAVE_TOO LONG
The specified binary log file name was too long.
« CR_OUT_OF MEMORY
Out of memory.
Example

See Section 10.4, “C API Binary Log Function Descriptions”.

189

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_file_name_too_long
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory

190

Index

Symbols

@source_binlog_checksum user-defined variable, 185

A

asynchronous C API
data structures, 170
function descriptions, 171
function reference, 170
asynchronous interface
C API, 165
asynchronous interface usage
C API, 165

B

basic
C API, 34
basic data structures
C API, 37
basic function descriptions
C API, 46
basic function reference
C API, 42
basic interface usage
C API, 34
binary log
C API, 185
binary log C API
data structures, 186
function descriptions, 188
function reference, 187
binary log interface usage
C API, 185
building
client programs, 5

C

C API
asynchronous interface, 165

asynchronous interface usage, 165

basic, 34

basic data structures, 36
basic function descriptions, 46
basic function reference, 42
basic interface usage, 34
binary log, 185

binary log interface usage, 185
client version, 24

data types, 1

encrypted connections, 11
example programs, 5

function reference, 25
linking problems, 7

multiple statement execution, 13
optional result set metadata, 21

prepared CALL statement, 16

prepared statement interface usage, 128
prepared statements and temporal values, 15

reconnection control, 21
server version, 24
SSL session reuse, 12
C API functions
mysql_bind_param(), 48
client programs
building, 5
client version
C API, 24
clients
threaded, 9
compiling clients
on Unix, 5
on Windows, 6

D

data structures
asynchronous C API, 170
binary log C API, 186
prepared statement C API, 129
data types
CAPI, 1
DNS SRV records, 98

DYLD_LIBRARY_PATH environment variable, 10

E

encrypted connections
CAPI, 11

environment variable
DYLD_LIBRARY_PATH, 10
LD_LIBRARY_PATH, 10
LIBMYSQL_PLUGINS, 182
LIBMYSQL_PLUGIN_DIR, 182
PKG_CONFIG_PATH, 8

errors
linking, 7

example programs
CAPI, 5

F

function descriptions
asynchronous C API, 171
binary log C API, 188
plugin C API, 179
prepared statement C API, 137
thread C API, 177

191

function reference
asynchronous C API, 170
binary log C API, 188
C API, 25
plugin C API, 179
prepared statement C API, 136
thread C API, 177
functions
prepared statement C API, 135

I
ID
unique, 23

L

last row
unique ID, 23
LAST_INSERT_ID(), 23

LD_LIBRARY_PATH environment variable, 10
LIBMYSQL_PLUGINS environment variable, 182
LIBMYSQL_PLUGIN_DIR environment variable, 182

linking, 5
errors, 7
problems, 7
logging
prepared statement C API, 129

M

multiple statement execution

C API, 13
MYSQL C type, 37
mysql_affected_rows(), 23, 47
mysql_autocommit(), 48
MYSQL_BIND C type, 130
mysql_bind_param() C API function, 48
mysql_binlog_close(), 188
mysql_binlog_fetch(), 188
mysql_binlog_open(), 189
mysql_change_user(), 50
mysql_character_set_name(), 51
mysql_client_find_plugin(), 180
mysql_client_register_plugin(), 180
mysql_close(), 52
mysql_commit(), 52
mysql_connect(), 52
mysql_create_db(), 52
mysql_data_seek(), 53
mysql_debug(), 54
mysql_drop_db(), 54
mysql_dump_debug_info(), 55
mysql_eof(), 55
mysql_errno(), 56
mysql_error(), 57

mysql_escape_string(), 58
mysql_fetch_field(), 58
mysql_fetch_fields(), 59
mysql_fetch_field_direct(), 58
mysql_fetch_lengths(), 60
mysql_fetch_row(), 60
mysql_fetch_row_nonblocking(), 171
MYSQL_FIELD C type, 37
mysql_field_count(), 62, 81
MYSQL_FIELD_OFFSET C type, 37
mysql_field_seek(), 63
mysql_field_tell(), 63
mysql_free_result(), 63
mysql_free_result_nonblocking(), 172
mysql_free_ssl_session_data(), 64
mysql_get character_set_info(), 64
mysql_get_client_info(), 65
mysql_get_client_version(), 65
mysql_get_host_info(), 65
mysql_get _option(), 66
mysql_get_proto_info(), 67
mysql_get_server_info(), 67
mysql_get_server_version(), 68
mysql_get_ssl_cipher(), 68
mysql_get_ssl_session_data(), 68
mysql_get_ssl_session_reused(), 69
mysql_hex_string(), 69

mysql_info(), 23, 70

mysql_init(), 71

mysql_insert_id(), 23, 23, 71
mysql_kill(), 73

mysql_library_end(), 74
mysql_library_init(), 74
mysql_list_dbs(), 75
mysql_list_fields(), 76
mysql_list_processes(), 77
mysql_list_tables(), 78
mysql_load_plugin(), 181
mysql_load_plugin_v(), 182
mysqgl_more_results(), 79
mysql_next_result(), 79
mysql_next_result_nonblocking(), 172
mysql_num_fields(), 81
mysqgl_num_rows(), 23, 82
mysql_options(), 82
mysql_options4(), 91

mysql_ping(), 92
mysql_plugin_get_option(), 181
mysql_plugin_options(), 183
mysql_query(), 23, 93
mysql_real_connect(), 93
mysql_real_connect_dns_srv(), 98
mysql_real_connect_nonblocking(), 173
mysql_real_escape_string(), 99

192

mysql_real_escape_string_quote(), 100
mysql_real_query(), 23, 102
mysql_real_query_nonblocking(), 173
mysql_refresh(), 103
mysql_reload(), 104

MYSQL_RES C type, 37
mysql_reset_connection(), 105
mysql_reset_server_public_key(), 105
mysql_result_metadata(), 106
mysql_rollback(), 106
MYSQL_ROW C type, 37
mysql_row_seek(), 107
mysql_row_tell(), 107
mysql_select_db(), 107
mysql_server_end(), 108
mysql_server_init(), 108
mysql_session_track get first(), 109
mysql_session_track_get next(), 115
mysql_set_character_set(), 116
mysql_set_local_infile_default(), 116, 116
mysql_set_server_option(), 118
mysql_shutdown(), 119
mysql_sqlstate(), 119
mysql_ssl_set(), 120

mysql_stat(), 121

MYSQL_STMT C type, 130
mysql_stmt_affected rows(), 138
mysql_stmt_attr_get(), 138
mysql_stmt_attr_set(), 138
mysql_stmt_bind_param(), 140
mysql_stmt_bind_result(), 140
mysql_stmt_close(), 141
mysql_stmt_data_seek(), 142
mysql_stmt_errno(), 142
mysql_stmt_error(), 143
mysql_stmt_execute(), 143
mysql_stmt_fetch(), 147
mysql_stmt_fetch_column(), 152
mysql_stmt_field_count(), 153
mysql_stmt_free_result(), 153
mysql_stmt_init(), 153
mysql_stmt_insert_id(), 154
mysql_stmt_next_result(), 154
mysql_stmt_num_rows(), 155
mysql_stmt_param_count(), 156
mysql_stmt_param_metadata(), 156
mysql_stmt_prepare(), 156
mysql_stmt_reset(), 157
mysql_stmt_result_metadata, 158
mysql_stmt_row_seek(), 159
mysql_stmt_row_tell(), 160
mysql_stmt_send_long_data(), 160
mysql_stmt_sqlstate(), 162
mysql_stmt_store_result(), 162

mysql_store_result(), 23, 122
mysql_store_result_nonblocking(), 174
mysql_thread_end(), 177
mysql_thread_id(), 123
mysql_thread_init(), 178
mysql_thread_safe(), 178
MYSQL_TIME C type, 133
mysql_use_result(), 124
mysql_warning_count(), 125
my_bool C type, 37
my_ulonglong C type, 37

O

optional result set metadata
CAPI, 21

P

PKG_CONFIG_PATH environment variable, 8

plugin C API
function descriptions, 179
function reference, 179
prepared CALL statement
C API, 16
prepared statement C API
data structures, 129
function descriptions, 137
function reference, 136
functions, 135
logging, 129
type codes, 133
prepared statement interface usage
C API, 128
prepared statements
C API, 127
prepared statements and temporal values
C API, 15
problems
linking, 7
programs
client, 5

Q

QUOTE(), 99, 101

R

reconnection
automatic, 21

reconnection control
C API, 21

result set metadata
suppression, 21

193

S

server version
C API, 24
session state information, 109, 115
SIGPIPE signal
client response, 9, 95
@source_binlog_checksum user-defined variable, 185
SSL session reuse
C API, 12

T

tables
unique ID for last row, 23
thread C API
function descriptions, 177
function reference, 177
threaded clients, 9
type codes
prepared statement C API, 133

U

unique ID, 23
Unix
compiling clients on, 5

W

Windows
compiling clients on, 6

Z
ZEROFILL, 20

194

	MySQL 8.0 C API Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 The MySQL C API
	Chapter 2 MySQL C API Implementations
	Chapter 3 Writing C API-Based Client Applications
	3.1 Example C API Client Programs
	3.2 Building C API Client Programs
	3.3 Building C API Client Programs Using pkg-config
	3.4 Writing C API Threaded Client Programs
	3.5 Running C API Client Programs
	3.6 Using C API Features
	3.6.1 Support for Encrypted Connections
	3.6.2 SSL Session Reuse
	3.6.3 Multiple Statement Execution Support
	3.6.4 Prepared Statement Handling of Date and Time Values
	3.6.5 Prepared CALL Statement Support
	3.6.6 Prepared Statement Problems
	3.6.7 Optional Result Set Metadata
	3.6.8 Automatic Reconnection Control
	3.6.9 NULL mysql_store_result() Return After mysql_query() Success
	3.6.10 Results Available from a Query
	3.6.11 Obtaining the Unique ID for the Last Inserted Row
	3.6.12 Obtaining the Server Version and Client Library Version

	Chapter 4 C API Function Reference
	Chapter 5 C API Basic Interface
	5.1 Overview of the C API Basic Interface
	5.2 C API Basic Data Structures
	5.3 C API Basic Function Reference
	5.4 C API Basic Function Descriptions
	5.4.1 mysql_affected_rows()
	5.4.2 mysql_autocommit()
	5.4.3 mysql_bind_param()
	5.4.4 mysql_change_user()
	5.4.5 mysql_character_set_name()
	5.4.6 mysql_close()
	5.4.7 mysql_commit()
	5.4.8 mysql_connect()
	5.4.9 mysql_create_db()
	5.4.10 mysql_data_seek()
	5.4.11 mysql_debug()
	5.4.12 mysql_drop_db()
	5.4.13 mysql_dump_debug_info()
	5.4.14 mysql_eof()
	5.4.15 mysql_errno()
	5.4.16 mysql_error()
	5.4.17 mysql_escape_string()
	5.4.18 mysql_fetch_field()
	5.4.19 mysql_fetch_field_direct()
	5.4.20 mysql_fetch_fields()
	5.4.21 mysql_fetch_lengths()
	5.4.22 mysql_fetch_row()
	5.4.23 mysql_field_count()
	5.4.24 mysql_field_seek()
	5.4.25 mysql_field_tell()
	5.4.26 mysql_free_result()
	5.4.27 mysql_free_ssl_session_data()
	5.4.28 mysql_get_character_set_info()
	5.4.29 mysql_get_client_info()
	5.4.30 mysql_get_client_version()
	5.4.31 mysql_get_host_info()
	5.4.32 mysql_get_option()
	5.4.33 mysql_get_proto_info()
	5.4.34 mysql_get_server_info()
	5.4.35 mysql_get_server_version()
	5.4.36 mysql_get_ssl_cipher()
	5.4.37 mysql_get_ssl_session_data()
	5.4.38 mysql_get_ssl_session_reused()
	5.4.39 mysql_hex_string()
	5.4.40 mysql_info()
	5.4.41 mysql_init()
	5.4.42 mysql_insert_id()
	5.4.43 mysql_kill()
	5.4.44 mysql_library_end()
	5.4.45 mysql_library_init()
	5.4.46 mysql_list_dbs()
	5.4.47 mysql_list_fields()
	5.4.48 mysql_list_processes()
	5.4.49 mysql_list_tables()
	5.4.50 mysql_more_results()
	5.4.51 mysql_next_result()
	5.4.52 mysql_num_fields()
	5.4.53 mysql_num_rows()
	5.4.54 mysql_options()
	5.4.55 mysql_options4()
	5.4.56 mysql_ping()
	5.4.57 mysql_query()
	5.4.58 mysql_real_connect()
	5.4.59 mysql_real_connect_dns_srv()
	5.4.60 mysql_real_escape_string()
	5.4.61 mysql_real_escape_string_quote()
	5.4.62 mysql_real_query()
	5.4.63 mysql_refresh()
	5.4.64 mysql_reload()
	5.4.65 mysql_reset_connection()
	5.4.66 mysql_reset_server_public_key()
	5.4.67 mysql_result_metadata()
	5.4.68 mysql_rollback()
	5.4.69 mysql_row_seek()
	5.4.70 mysql_row_tell()
	5.4.71 mysql_select_db()
	5.4.72 mysql_server_end()
	5.4.73 mysql_server_init()
	5.4.74 mysql_session_track_get_first()
	5.4.75 mysql_session_track_get_next()
	5.4.76 mysql_set_character_set()
	5.4.77 mysql_set_local_infile_default()
	5.4.78 mysql_set_local_infile_handler()
	5.4.79 mysql_set_server_option()
	5.4.80 mysql_shutdown()
	5.4.81 mysql_sqlstate()
	5.4.82 mysql_ssl_set()
	5.4.83 mysql_stat()
	5.4.84 mysql_store_result()
	5.4.85 mysql_thread_id()
	5.4.86 mysql_use_result()
	5.4.87 mysql_warning_count()

	Chapter 6 C API Prepared Statement Interface
	6.1 Overview of the C API Prepared Statement Interface
	6.2 C API Prepared Statement Data Structures
	6.2.1 C API Prepared Statement Type Codes
	6.2.2 C API Prepared Statement Type Conversions

	6.3 C API Prepared Statement Function Reference
	6.4 C API Prepared Statement Function Descriptions
	6.4.1 mysql_stmt_affected_rows()
	6.4.2 mysql_stmt_attr_get()
	6.4.3 mysql_stmt_attr_set()
	6.4.4 mysql_stmt_bind_param()
	6.4.5 mysql_stmt_bind_result()
	6.4.6 mysql_stmt_close()
	6.4.7 mysql_stmt_data_seek()
	6.4.8 mysql_stmt_errno()
	6.4.9 mysql_stmt_error()
	6.4.10 mysql_stmt_execute()
	6.4.11 mysql_stmt_fetch()
	6.4.12 mysql_stmt_fetch_column()
	6.4.13 mysql_stmt_field_count()
	6.4.14 mysql_stmt_free_result()
	6.4.15 mysql_stmt_init()
	6.4.16 mysql_stmt_insert_id()
	6.4.17 mysql_stmt_next_result()
	6.4.18 mysql_stmt_num_rows()
	6.4.19 mysql_stmt_param_count()
	6.4.20 mysql_stmt_param_metadata()
	6.4.21 mysql_stmt_prepare()
	6.4.22 mysql_stmt_reset()
	6.4.23 mysql_stmt_result_metadata()
	6.4.24 mysql_stmt_row_seek()
	6.4.25 mysql_stmt_row_tell()
	6.4.26 mysql_stmt_send_long_data()
	6.4.27 mysql_stmt_sqlstate()
	6.4.28 mysql_stmt_store_result()

	Chapter 7 C API Asynchronous Interface
	7.1 Overview of the C API Asynchronous Interface
	7.2 C API Asynchronous Interface Data Structures
	7.3 C API Asynchronous Function Reference
	7.4 C API Asynchronous Function Descriptions
	7.4.1 mysql_fetch_row_nonblocking()
	7.4.2 mysql_free_result_nonblocking()
	7.4.3 mysql_next_result_nonblocking()
	7.4.4 mysql_real_connect_nonblocking()
	7.4.5 mysql_real_query_nonblocking()
	7.4.6 mysql_store_result_nonblocking()

	Chapter 8 C API Thread Interface
	8.1 C API Thread Function Reference
	8.2 C API Threaded Function Descriptions
	8.2.1 mysql_thread_end()
	8.2.2 mysql_thread_init()
	8.2.3 mysql_thread_safe()

	Chapter 9 C API Client Plugin Interface
	9.1 C API Plugin Function Reference
	9.2 C API Plugin Function Descriptions
	9.2.1 mysql_client_find_plugin()
	9.2.2 mysql_client_register_plugin()
	9.2.3 mysql_plugin_get_option()
	9.2.4 mysql_load_plugin()
	9.2.5 mysql_load_plugin_v()
	9.2.6 mysql_plugin_options()

	Chapter 10 C API Binary Log Interface
	10.1 Overview of the C API Binary Log Interface
	10.2 C API Binary Log Data Structures
	10.3 C API Binary Log Function Reference
	10.4 C API Binary Log Function Descriptions
	10.4.1 mysql_binlog_close()
	10.4.2 mysql_binlog_fetch()
	10.4.3 mysql_binlog_open()

	Index

