
MySQL 8.0 C API Developer Guide

Abstract

This is the MySQL 8.0 C API Developer Guide. This document accompanies MySQL 8.0 Reference Manual.

The C API provides low-level access to the MySQL client/server protocol and enables C programs to access
database contents. The C API code is distributed with MySQL and implemented in the libmysqlclient library.

For legal information, see the Legal Notices.

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other MySQL
users.

Document generated on: 2026-01-22 (revision: 84306)

https://dev.mysql.com/doc/refman/8.0/en/
http://forums.mysql.com

Table of Contents
Preface and Legal Notices .. vii
1 The MySQL C API .. 1
2 MySQL C API Implementations ... 3
3 Writing C API-Based Client Applications ... 5

3.1 Example C API Client Programs ... 5
3.2 Building C API Client Programs .. 5
3.3 Building C API Client Programs Using pkg-config .. 8
3.4 Writing C API Threaded Client Programs ... 9
3.5 Running C API Client Programs .. 10
3.6 Using C API Features ... 11

3.6.1 Support for Encrypted Connections ... 11
3.6.2 SSL Session Reuse ... 12
3.6.3 Multiple Statement Execution Support ... 13
3.6.4 Prepared Statement Handling of Date and Time Values ... 15
3.6.5 Prepared CALL Statement Support ... 16
3.6.6 Prepared Statement Problems .. 20
3.6.7 Optional Result Set Metadata ... 21
3.6.8 Automatic Reconnection Control ... 21
3.6.9 NULL mysql_store_result() Return After mysql_query() Success 23
3.6.10 Results Available from a Query .. 23
3.6.11 Obtaining the Unique ID for the Last Inserted Row .. 23
3.6.12 Obtaining the Server Version and Client Library Version .. 24

4 C API Function Reference ... 25
5 C API Basic Interface .. 33

5.1 Overview of the C API Basic Interface ... 34
5.2 C API Basic Data Structures ... 36
5.3 C API Basic Function Reference ... 42
5.4 C API Basic Function Descriptions .. 46

5.4.1 mysql_affected_rows() .. 47
5.4.2 mysql_autocommit() ... 48
5.4.3 mysql_bind_param() ... 48
5.4.4 mysql_change_user() ... 50
5.4.5 mysql_character_set_name() .. 51
5.4.6 mysql_close() ... 52
5.4.7 mysql_commit() .. 52
5.4.8 mysql_connect() ... 52
5.4.9 mysql_create_db() .. 52
5.4.10 mysql_data_seek() ... 53
5.4.11 mysql_debug() ... 54
5.4.12 mysql_drop_db() .. 54
5.4.13 mysql_dump_debug_info() .. 55
5.4.14 mysql_eof() .. 55
5.4.15 mysql_errno() ... 56
5.4.16 mysql_error() ... 57
5.4.17 mysql_escape_string() .. 58
5.4.18 mysql_fetch_field() ... 58
5.4.19 mysql_fetch_field_direct() ... 58
5.4.20 mysql_fetch_fields() .. 59
5.4.21 mysql_fetch_lengths() ... 60
5.4.22 mysql_fetch_row() .. 60
5.4.23 mysql_field_count() .. 62

iii

MySQL 8.0 C API Developer Guide

5.4.24 mysql_field_seek() ... 63
5.4.25 mysql_field_tell() .. 63
5.4.26 mysql_free_result() ... 63
5.4.27 mysql_free_ssl_session_data() ... 64
5.4.28 mysql_get_character_set_info() ... 64
5.4.29 mysql_get_client_info() ... 65
5.4.30 mysql_get_client_version() .. 65
5.4.31 mysql_get_host_info() .. 65
5.4.32 mysql_get_option() ... 66
5.4.33 mysql_get_proto_info() ... 67
5.4.34 mysql_get_server_info() .. 67
5.4.35 mysql_get_server_version() .. 68
5.4.36 mysql_get_ssl_cipher() ... 68
5.4.37 mysql_get_ssl_session_data() .. 68
5.4.38 mysql_get_ssl_session_reused() ... 69
5.4.39 mysql_hex_string() ... 69
5.4.40 mysql_info() ... 70
5.4.41 mysql_init() .. 71
5.4.42 mysql_insert_id() .. 71
5.4.43 mysql_kill() ... 73
5.4.44 mysql_library_end() .. 74
5.4.45 mysql_library_init() ... 74
5.4.46 mysql_list_dbs() ... 75
5.4.47 mysql_list_fields() ... 76
5.4.48 mysql_list_processes() ... 77
5.4.49 mysql_list_tables() .. 78
5.4.50 mysql_more_results() ... 79
5.4.51 mysql_next_result() .. 79
5.4.52 mysql_num_fields() .. 81
5.4.53 mysql_num_rows() ... 82
5.4.54 mysql_options() .. 82
5.4.55 mysql_options4() .. 91
5.4.56 mysql_ping() .. 92
5.4.57 mysql_query() .. 93
5.4.58 mysql_real_connect() ... 93
5.4.59 mysql_real_connect_dns_srv() .. 98
5.4.60 mysql_real_escape_string() .. 99
5.4.61 mysql_real_escape_string_quote() .. 100
5.4.62 mysql_real_query() ... 102
5.4.63 mysql_refresh() .. 103
5.4.64 mysql_reload() ... 104
5.4.65 mysql_reset_connection() ... 105
5.4.66 mysql_reset_server_public_key() ... 105
5.4.67 mysql_result_metadata() ... 106
5.4.68 mysql_rollback() ... 106
5.4.69 mysql_row_seek() .. 107
5.4.70 mysql_row_tell() ... 107
5.4.71 mysql_select_db() .. 107
5.4.72 mysql_server_end() .. 108
5.4.73 mysql_server_init() ... 108
5.4.74 mysql_session_track_get_first() ... 109
5.4.75 mysql_session_track_get_next() .. 115
5.4.76 mysql_set_character_set() .. 116
5.4.77 mysql_set_local_infile_default() ... 116

iv

MySQL 8.0 C API Developer Guide

5.4.78 mysql_set_local_infile_handler() .. 117
5.4.79 mysql_set_server_option() .. 118
5.4.80 mysql_shutdown() .. 119
5.4.81 mysql_sqlstate() ... 119
5.4.82 mysql_ssl_set() .. 120
5.4.83 mysql_stat() ... 121
5.4.84 mysql_store_result() ... 122
5.4.85 mysql_thread_id() ... 123
5.4.86 mysql_use_result() ... 124
5.4.87 mysql_warning_count() ... 125

6 C API Prepared Statement Interface .. 127
6.1 Overview of the C API Prepared Statement Interface ... 128
6.2 C API Prepared Statement Data Structures ... 129

6.2.1 C API Prepared Statement Type Codes .. 133
6.2.2 C API Prepared Statement Type Conversions ... 135

6.3 C API Prepared Statement Function Reference .. 136
6.4 C API Prepared Statement Function Descriptions ... 137

6.4.1 mysql_stmt_affected_rows() .. 138
6.4.2 mysql_stmt_attr_get() ... 138
6.4.3 mysql_stmt_attr_set() ... 138
6.4.4 mysql_stmt_bind_param() ... 140
6.4.5 mysql_stmt_bind_result() .. 140
6.4.6 mysql_stmt_close() ... 141
6.4.7 mysql_stmt_data_seek() ... 142
6.4.8 mysql_stmt_errno() ... 142
6.4.9 mysql_stmt_error() ... 143
6.4.10 mysql_stmt_execute() ... 143
6.4.11 mysql_stmt_fetch() ... 147
6.4.12 mysql_stmt_fetch_column() ... 152
6.4.13 mysql_stmt_field_count() .. 153
6.4.14 mysql_stmt_free_result() ... 153
6.4.15 mysql_stmt_init() .. 153
6.4.16 mysql_stmt_insert_id() .. 154
6.4.17 mysql_stmt_next_result() .. 154
6.4.18 mysql_stmt_num_rows() ... 155
6.4.19 mysql_stmt_param_count() ... 156
6.4.20 mysql_stmt_param_metadata() ... 156
6.4.21 mysql_stmt_prepare() ... 156
6.4.22 mysql_stmt_reset() ... 157
6.4.23 mysql_stmt_result_metadata() ... 158
6.4.24 mysql_stmt_row_seek() .. 159
6.4.25 mysql_stmt_row_tell() ... 160
6.4.26 mysql_stmt_send_long_data() ... 160
6.4.27 mysql_stmt_sqlstate() ... 162
6.4.28 mysql_stmt_store_result() ... 162

7 C API Asynchronous Interface ... 165
7.1 Overview of the C API Asynchronous Interface .. 165
7.2 C API Asynchronous Interface Data Structures .. 170
7.3 C API Asynchronous Function Reference .. 170
7.4 C API Asynchronous Function Descriptions ... 171

7.4.1 mysql_fetch_row_nonblocking() .. 171
7.4.2 mysql_free_result_nonblocking() ... 172
7.4.3 mysql_next_result_nonblocking() ... 172
7.4.4 mysql_real_connect_nonblocking() .. 173

v

MySQL 8.0 C API Developer Guide

7.4.5 mysql_real_query_nonblocking() ... 173
7.4.6 mysql_store_result_nonblocking() .. 174

8 C API Thread Interface .. 177
8.1 C API Thread Function Reference ... 177
8.2 C API Threaded Function Descriptions .. 177

8.2.1 mysql_thread_end() .. 177
8.2.2 mysql_thread_init() ... 178
8.2.3 mysql_thread_safe() ... 178

9 C API Client Plugin Interface ... 179
9.1 C API Plugin Function Reference .. 179
9.2 C API Plugin Function Descriptions ... 179

9.2.1 mysql_client_find_plugin() ... 180
9.2.2 mysql_client_register_plugin() ... 180
9.2.3 mysql_plugin_get_option() .. 181
9.2.4 mysql_load_plugin() ... 181
9.2.5 mysql_load_plugin_v() .. 182
9.2.6 mysql_plugin_options() ... 183

10 C API Binary Log Interface .. 185
10.1 Overview of the C API Binary Log Interface ... 185
10.2 C API Binary Log Data Structures ... 186
10.3 C API Binary Log Function Reference ... 187
10.4 C API Binary Log Function Descriptions ... 188

10.4.1 mysql_binlog_close() .. 188
10.4.2 mysql_binlog_fetch() ... 188
10.4.3 mysql_binlog_open() .. 189

Index .. 191

vi

Preface and Legal Notices
This is the MySQL 8.0 C API Developer Guide. This document accompanies MySQL 8.0 Reference
Manual.

The C API provides low-level access to the MySQL client/server protocol and enables C programs
to access database contents. The C API code is distributed with MySQL and implemented in the
libmysqlclient library.

Legal Notices

Copyright © 1997, 2026, Oracle and/or its affiliates.

License Restrictions

This software and related documentation are provided under a license agreement containing restrictions
on use and disclosure and are protected by intellectual property laws. Except as expressly permitted
in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast,
modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any
means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free.
If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs (including
any operating system, integrated software, any programs embedded, installed, or activated on delivered
hardware, and modifications of such programs), ii) Oracle computer documentation and/or iii) other Oracle
data, is subject to the rights and limitations specified in the license contained in the applicable contract.
The terms governing the U.S. Government's use of Oracle cloud services are defined by the applicable
contract for such services. No other rights are granted to the U.S. Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

vii

https://dev.mysql.com/doc/refman/8.0/en/
https://dev.mysql.com/doc/refman/8.0/en/

Documentation Accessibility

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Epyc, and the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a
registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other
formats is allowed as long as the actual content is not altered or edited in any way. You shall not publish
or distribute this documentation in any form or on any media, except if you distribute the documentation in
a manner similar to how Oracle disseminates it (that is, electronically for download on a Web site with the
software) or on a CD-ROM or similar medium, provided however that the documentation is disseminated
together with the software on the same medium. Any other use, such as any dissemination of printed
copies or use of this documentation, in whole or in part, in another publication, requires the prior written
consent from an authorized representative of Oracle. Oracle and/or its affiliates reserve any and all rights
to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website
at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit http://www.oracle.com/pls/topic/
lookup?ctx=acc&id=trs if you are hearing impaired.

viii

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 The MySQL C API
The C API provides low-level access to the MySQL client/server protocol and enables C programs
to access database contents. The C API code is distributed with MySQL and implemented in the
libmysqlclient library. See Chapter 2, MySQL C API Implementations.

Most other client APIs use the libmysqlclient library to communicate with the MySQL server.
(Exceptions are Connector/J and Connector/NET.) This means that, for example, you can take advantage
of many of the same environment variables that are used by other client programs because they are
referenced from the library. For a list of these variables, see Overview of MySQL Programs.

For instructions on building client programs using the C API, see Section 3.2, “Building C API Client
Programs”. For programming with threads, see Section 3.4, “Writing C API Threaded Client Programs”.

Note

If, after an upgrade, you experience problems with compiled client programs,
such as Commands out of sync or unexpected core dumps, the programs
were probably compiled using old header or library files. In this case, check the
date of the mysql.h file and libmysqlclient.a library used for compilation
to verify that they are from the new MySQL distribution. If not, recompile the
programs with the new headers and libraries. Recompilation might also be
necessary for programs compiled against the shared client library if the library
major version number has changed (for example, from libmysqlclient.so.17
to libmysqlclient.so.18). For additional compatibility information, see
Section 3.5, “Running C API Client Programs”.

Clients have a maximum communication buffer size. The size of the buffer that is allocated initially (16KB)
is automatically increased up to the maximum size (16MB by default). Because buffer sizes are increased
only as demand warrants, simply increasing the maximum limit does not in itself cause more resources to
be used. This size check is mostly a precaution against erroneous statements and communication packets.

The communication buffer must be large enough to contain a single SQL statement (for client-to-server
traffic) and one row of returned data (for server-to-client traffic). Each session's communication buffer is
dynamically enlarged to handle any query or row up to the maximum limit. For example, if you have BLOB
values that contain up to 16MB of data, you must have a communication buffer limit of at least 16MB (in
both server and client). The default maximum built into the client library is 1GB, but the default maximum in
the server is 1MB. You can increase this by changing the value of the max_allowed_packet parameter
at server startup. See Configuring the Server.

The MySQL server shrinks each communication buffer to net_buffer_length bytes after each query.
For clients, the size of the buffer associated with a connection is not decreased until the connection is
closed, at which time client memory is reclaimed.

1

https://dev.mysql.com/doc/refman/8.0/en/programs-overview.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/refman/8.0/en/server-configuration.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_net_buffer_length

2

Chapter 2 MySQL C API Implementations
The MySQL C API is a C-based API that client applications written in C can use to communicate with
MySQL Server. Client programs refer to C API header files at compile time and link to a C API library file,
libmysqlclient, at link time.

To obtain the C API header and library files required to build C API client programs, install a MySQL Server
distribution.

You can install a binary distribution that contains the C API files pre-built, or you can use a MySQL
Server source distribution and build the C API files yourself. Building MySQL Server also builds
libmysqlclient; see Installing MySQL from Source. It cannot be built alone, but configuring with the
optional -DWITHOUT_SERVER=ON CMake option is related.

The names of the library files to use when linking C API client applications depend on the library type and
platform for which a distribution is built:

• On Unix (and Unix-like) systems, the static library is libmysqlclient.a. The dynamic library is
libmysqlclient.so on most Unix systems and libmysqlclient.dylib on macOS.

• On Windows, the static library is mysqlclient.lib and the dynamic library is libmysql.dll.
Windows distributions also include libmysql.lib, a static import library needed for using the dynamic
library.

Windows distributions also include a set of debug libraries. These have the same names as the
nondebug libraries, but are located in the lib/debug library. You must use the debug libraries when
compiling clients built using the debug C runtime.

On Unix, you may also see libraries that include _r in the names. Before MySQL 5.5, these were built as
thread-safe (re-entrant) libraries separately from the non-_r libraries. As of 5.5, both libraries are the same
and the _r names are symbolic links to the corresponding non-_r names. There is no need to use the _r
libraries. For example, if you use mysql_config to obtain linker flags, you can use mysql_config --
libs in all cases, even for threaded clients. There is no need to use mysql_config --libs_r.

3

https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_without_server

4

Chapter 3 Writing C API-Based Client Applications

Table of Contents
3.1 Example C API Client Programs ... 5
3.2 Building C API Client Programs .. 5
3.3 Building C API Client Programs Using pkg-config .. 8
3.4 Writing C API Threaded Client Programs .. 9
3.5 Running C API Client Programs .. 10
3.6 Using C API Features ... 11

3.6.1 Support for Encrypted Connections .. 11
3.6.2 SSL Session Reuse ... 12
3.6.3 Multiple Statement Execution Support ... 13
3.6.4 Prepared Statement Handling of Date and Time Values ... 15
3.6.5 Prepared CALL Statement Support ... 16
3.6.6 Prepared Statement Problems .. 20
3.6.7 Optional Result Set Metadata ... 21
3.6.8 Automatic Reconnection Control ... 21
3.6.9 NULL mysql_store_result() Return After mysql_query() Success ... 23
3.6.10 Results Available from a Query .. 23
3.6.11 Obtaining the Unique ID for the Last Inserted Row .. 23
3.6.12 Obtaining the Server Version and Client Library Version .. 24

The following sections provide information on building client applications that use the C API. Topics include
compiling and linking clients, writing threaded clients, and troubleshooting runtime problems.

3.1 Example C API Client Programs
Many of the clients in MySQL source distributions are written in C, such as mysql, mysqladmin, and
mysqlshow. If you are looking for examples that demonstrate how to use the C API, take a look at those
clients: Obtain a source distribution and look in its client directory. See How to Get MySQL.

For information about individual C API functions, the sections for most functions include usage examples.

3.2 Building C API Client Programs
This section provides guidelines for compiling C programs that use the MySQL C API.

• Compiling MySQL Clients on Unix

• Compiling MySQL Clients on Microsoft Windows

• Troubleshooting Problems Linking to the MySQL Client Library

Compiling MySQL Clients on Unix

The examples here use gcc as the compiler. A different compiler might be appropriate on some systems
(for example, clang on macOS or FreeBSD, or Sun Studio on Solaris). Adjust the examples as necessary.

You may need to specify an -I option when you compile client programs that use MySQL header files,
so that the compiler can find them. For example, if the header files are installed in /usr/local/mysql/
include, use this option in the compile command:

-I/usr/local/mysql/include

5

https://dev.mysql.com/doc/refman/8.0/en/getting-mysql.html

Compiling MySQL Clients on Microsoft Windows

You can link your code with either the dynamic or static MySQL C client library. The dynamic library base
name is libmysqlclient and the suffix differs by platform (for example, .so for Linux, .dylib for
macOS). The static library is named libmysqlclient.a on all platforms.

MySQL clients must be linked using the -lmysqlclient option in the link command. You may also need
to specify a -L option to tell the linker where to find the library. For example, if the library is installed in /
usr/local/mysql/lib, use these options in the link command:

-L/usr/local/mysql/lib -lmysqlclient

The path names may differ on your system. Adjust the -I and -L options as necessary.

To make it simpler to compile MySQL programs on Unix, use the mysql_config script. See mysql_config
— Display Options for Compiling Clients.

mysql_config displays the options needed for compiling or linking:

mysql_config --cflags
mysql_config --libs

You can invoke those commands at the command line to get the proper options and add them manually
to compilation or link commands. Alternatively, include the output from mysql_config directly within
command lines using backticks:

gcc -c `mysql_config --cflags` progname.c
gcc -o progname progname.o `mysql_config --libs`

On Unix, linking uses dynamic libraries by default. To link to the static client library instead, add its path
name to the link command. For example, if the library is located in /usr/local/mysql/lib, link like this:

gcc -o progname progname.o /usr/local/mysql/lib/libmysqlclient.a

Or use mysql_config to provide the path to the library:

gcc -o progname progname.o `mysql_config --variable=pkglibdir`/libmysqlclient.a

mysql_config does not currently provide a way to list all libraries needed for static linking, so it might be
necessary to name additional libraries on the link command (for example, -lnsl -lsocket on Solaris).
To get an idea which libraries to add, use mysql_config --libs and ldd libmysqlclient.so (or
otool -L libmysqlclient.dylib on macOS).

pkg-config can be used as an alternative to mysql_config for obtaining information such as
compiler flags or link libraries required to compile MySQL applications. For example, the following pairs of
commands are equivalent:

mysql_config --cflags
pkg-config --cflags mysqlclient

mysql_config --libs
pkg-config --libs mysqlclient

To produce flags for static linking, use this command:

pkg-config --static --libs mysqlclient

For more information, see Section 3.3, “Building C API Client Programs Using pkg-config”.

Compiling MySQL Clients on Microsoft Windows

To specify header and library file locations, use the facilities provided by your development environment.

6

https://dev.mysql.com/doc/refman/8.0/en/mysql-config.html
https://dev.mysql.com/doc/refman/8.0/en/mysql-config.html

Troubleshooting Problems Linking to the MySQL Client Library

To build C API clients on Windows, you must link in the C client library, as well as the Windows ws2_32
sockets library and Secur32 security library.

You can link your code with either the dynamic or static MySQL C client library:

• The dynamic library is named libmysql.dll. In addition, the libmysql.lib static import library is
needed for using the dynamic library.

• The static library is named mysqlclient.lib. To link with the static C client library, the client
application must be compiled with the same version of Visual Studio used to compile the C client library
(which is Visual Studio 2015 for the static C client library built by Oracle).

When using the Oracle-built MySQL C client library, follow these rules when it comes to linking the C
runtime for your client application:

• For the MySQL C client library from a Community distribution of MySQL:

• Always link dynamically to the C runtime (use the /MD compiler option), whether you are linking to the
static or dynamic C client library. Also, target hosts running the client application must have the Visual
C++ Redistributable for Visual Studio 2015 installed.

• For the MySQL C client library from a Commercial distribution of MySQL:

• If linking to the static C client library, link statically to the C runtime (use the /MT compiler option).

• If linking to the dynamic C client library, link either statically or dynamically to the C runtime (use either
/MT or /MD compiler option).

In general, when linking to a static MySQL C client library, the client library and the client application must
use the same compiler options when it comes to linking the C runtime—that is, if your C client library is
compiled with the /MT option, your client application should also be compiled with the /MT option, and so
on (see the MSDN page describing the C library linking options for more details). Follow this rule when
you build your own static MySQL C client library from a source distribution of MySQL and link your client
application to it.

Note

Debug Mode: Because of the just-mentioned linking rule, you cannot build your
application in debug mode (with the /MTd or /MDd compiler option) and link it to
a static C client library built by Oracle, which is not built with the debug options.
Instead, you must build the static client library from source with the debug options.

Troubleshooting Problems Linking to the MySQL Client Library

The MySQL client library includes SSL support built in. It is unnecessary to specify either -lssl or -
lcrypto at link time. Doing so may in fact result in problems at runtime.

If the linker cannot find the MySQL client library, you might get undefined-reference errors for symbols that
start with mysql_, such as those shown here:

/tmp/ccFKsdPa.o: In function `main':
/tmp/ccFKsdPa.o(.text+0xb): undefined reference to `mysql_init'
/tmp/ccFKsdPa.o(.text+0x31): undefined reference to `mysql_real_connect'
/tmp/ccFKsdPa.o(.text+0x69): undefined reference to `mysql_error'
/tmp/ccFKsdPa.o(.text+0x9a): undefined reference to `mysql_close'

You should be able to solve this problem by adding -Ldir_path -lmysqlclient at the end of your link
command, where dir_path represents the path name of the directory where the client library is located.
To determine the correct directory, try this command:

7

https://www.microsoft.com/en-us/download/details.aspx?id=48145
https://www.microsoft.com/en-us/download/details.aspx?id=48145
http://msdn.microsoft.com/en-us/library/2kzt1wy3.aspx

Building C API Client Programs Using pkg-config

mysql_config --libs

The output from mysql_config might indicate other libraries that should be specified on the link
command as well. You can include mysql_config output directly in your compile or link command using
backticks. For example:

gcc -o progname progname.o `mysql_config --libs`

If an error occurs at link time that the floor symbol is undefined, link to the math library by adding -lm
to the end of the compile/link line. Similarly, if you get undefined-reference errors for other functions that
should exist on your system, such as connect(), check the manual page for the function in question to
determine which libraries you should add to the link command.

If you get undefined-reference errors such as the following for functions that do not exist on your system, it
usually means that your MySQL client library was compiled on a system that is not 100% compatible with
yours:

mf_format.o(.text+0x201): undefined reference to `__lxstat'

In this case, you should download a source distribution for the latest version of MySQL and compile the
MySQL client library yourself. See Installing MySQL from Source.

3.3 Building C API Client Programs Using pkg-config
MySQL distributions contain a mysqlclient.pc file that provides information about MySQL configuration
for use by the pkg-config command. This enables pkg-config to be used as an alternative to
mysql_config for obtaining information such as compiler flags or link libraries required to compile
MySQL applications. For example, the following pairs of commands are equivalent:

mysql_config --cflags
pkg-config --cflags mysqlclient

mysql_config --libs
pkg-config --libs mysqlclient

The last pkg-config command produces flags for dynamic linking. To produce flags for static linking, use
this command:

pkg-config --static --libs mysqlclient

On some platforms, the output with and without --static might be the same.

Note

 If pkg-config does not find MySQL information, it might be necessary to
set the PKG_CONFIG_PATH environment variable to the directory in which the
mysqlclient.pc file is located, which by default is usually the pkgconfig
directory under the MySQL library directory. For example (adjust the location
appropriately):

For sh, bash, ...
export PKG_CONFIG_PATH=/usr/local/mysql/lib/pkgconfig
For csh, tcsh, ...
setenv PKG_CONFIG_PATH /usr/local/mysql/lib/pkgconfig

The mysqlconfig.pc installation location can be controlled using the
INSTALL_PKGCONFIGDIR CMake option. See MySQL Source-Configuration
Options.

The --variable option takes a configuration variable name and displays the variable value:

8

https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_install_pkgconfigdir
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html

Writing C API Threaded Client Programs

installation prefix directory
pkg-config --variable=prefix mysqlclient
header file directory
pkg-config --variable=includedir mysqlclient
library directory
pkg-config --variable=libdir mysqlclient

To see which variable values pkg-config can display using the --variable option, use this command:

pkg-config --print-variables mysqlclient

You can use pkg-config within a command line using backticks to include the output that it produces for
particular options. For example, to compile and link a MySQL client program, use pkg-config as follows:

gcc -c `pkg-config --cflags mysqlclient` progname.c
gcc -o progname progname.o `pkg-config --libs mysqlclient`

3.4 Writing C API Threaded Client Programs
This section provides guidance for writing client programs that use the thread-related functions in the
MySQL C API. For further information about these functions, see Section 8.2, “C API Threaded Function
Descriptions”. For examples of source code that uses them, look in the client directory of a MySQL
source distribution:

• The source for mysqlimport uses threading in the code associated with the --use-threads option.

• The source for mysqlslap uses threads to set up simultaneous workloads, to test server operation
under high load.

As an alternative to thread programming, applications may find the asynchronous (nonblocking) C API
functions useful. These functions enable applications to submit multiple outstanding requests to the
server and determine when each has finished using polling. For more information, see Chapter 7, C API
Asynchronous Interface.

If undefined-reference errors occur when linking a threaded program against the MySQL client library, the
most likely cause is that you did not include the thread libraries on the link/compile command.

The client library is almost thread-safe. The biggest problem is that the subroutines in sql/net_serv.cc
that read from sockets are not interrupt-safe. This was done with the thought that you might want to have
your own alarm that can break a long read to a server. If you install interrupt handlers for the SIGPIPE
interrupt, socket handling should be thread-safe.

To avoid aborting the program when a connection terminates, MySQL blocks SIGPIPE on the first call to
mysql_library_init(), mysql_init(), or mysql_connect(). To use your own SIGPIPE handler,
first call mysql_library_init(), then install your handler.

The client library is thread-safe per connection. Two threads can share the same connection with the
following caveats:

• Unless you are using the asynchronous C API functions mentioned previously, multiple threads
cannot send a query to the MySQL server at the same time on the same connection. In particular,
you must ensure that between calls to mysql_real_query() (or mysql_query()) and
mysql_store_result() in one thread, no other thread uses the same connection. To do
this, use a mutex lock around your pair of mysql_real_query() (or mysql_query()) and
mysql_store_result() calls. After mysql_store_result() returns, the lock can be released and
other threads may query the same connection.

If you use POSIX threads, you can use pthread_mutex_lock() and pthread_mutex_unlock() to
establish and release a mutex lock.

9

https://dev.mysql.com/doc/refman/8.0/en/mysqlimport.html#option_mysqlimport_use-threads

Running C API Client Programs

Note

If you examine programs in a MySQL source distribution, instead of calls to
pthread_mutex_lock() and pthread_mutex_unlock(), you will see
calls to native_mutex_lock() and native_mutex_unlock(). The latter
functions are defined in the thr_mutex.h header file and map to platform-
specific mutex functions.

• Multiple threads can access different result sets that are retrieved with mysql_store_result().

• To use mysql_use_result(), you must ensure that no other thread uses the same connection until
the result set is closed. However, it really is best for threaded clients that share the same connection to
use mysql_store_result().

If a thread does not create the connection to the MySQL database but calls MySQL functions, take the
following into account:

When you call mysql_init(), MySQL creates a thread-specific variable for the thread that is used
by the debug library (among other things). If you call a MySQL function before the thread has called
mysql_init(), the thread does not have the necessary thread-specific variables in place and you are
likely to end up with a core dump sooner or later. To avoid problems, you must do the following:

1. Call mysql_library_init() before any other MySQL functions. It is not thread-safe, so call it
before threads are created, or protect the call with a mutex.

2. Arrange for mysql_thread_init() to be called early in the thread handler before calling any MySQL
function. (If you call mysql_init(), it calls mysql_thread_init() for you.)

3. In the thread, call mysql_thread_end() before calling pthread_exit(). This frees the memory
used by MySQL thread-specific variables.

The preceding notes regarding mysql_init() also apply to mysql_connect(), which calls
mysql_init().

3.5 Running C API Client Programs

If, after an upgrade, you experience problems with compiled client programs, such as Commands out of
sync or unexpected core dumps, the programs were probably compiled using old header or library files. In
this case, check the date of the mysql.h header file and libmysqlclient.a library used for compilation
to verify that they are from the new MySQL distribution. If not, recompile the programs with the new
headers and libraries. Recompilation might also be necessary for programs compiled against the shared
client library if the library major version number has changed (for example, from libmysqlclient.so.17
to libmysqlclient.so.18).

The major shared client library version determines compatibility. (For example, for
libmysqlclient.so.18.1.0, the major version is 18.) Libraries shipped with newer versions of MySQL
are drop-in replacements for older versions that have the same major number. As long as the major library
version is the same, you can upgrade the library and old applications should continue to work with it.

Undefined-reference errors might occur at runtime when you try to execute a MySQL program. If these
errors specify symbols that start with mysql_ or indicate that the libmysqlclient library cannot be
found, it means that your system cannot find the shared libmysqlclient.so library. The solution to this
problem is to tell your system to search for shared libraries in the directory where that library is located.
Use whichever of the following methods is appropriate for your system:

10

Using C API Features

• Add the path of the directory where libmysqlclient.so is located to the LD_LIBRARY_PATH or
LD_LIBRARY environment variable.

• On macOS, add the path of the directory where libmysqlclient.dylib is located to the
DYLD_LIBRARY_PATH environment variable.

• Copy the shared-library files (such as libmysqlclient.so) to some directory that is searched by your
system, such as /lib, and update the shared library information by executing ldconfig. Be sure to
copy all related files. A shared library might exist under several names, using symlinks to provide the
alternate names.

3.6 Using C API Features
The following sections discuss techniques for working with several features of the C API into your
applications. It also covers some restrictions and troubleshooting topics.

3.6.1 Support for Encrypted Connections

This section describes how C applications use the C API capabilities for encrypted connections. By default,
MySQL programs attempt to connect using encryption if the server supports encrypted connections, falling
back to an unencrypted connection if an encrypted connection cannot be established (see Configuring
MySQL to Use Encrypted Connections). For applications that require control beyond the default behavior
over how encrypted connections are established, the C API provides these capabilities:

• The mysql_options() function enables applications to set the appropriate SSL/TLS options before
calling mysql_real_connect(). For example, to require the use of an encrypted connection, see
Enforcing an Encrypted Connection.

• The mysql_get_ssl_cipher() function enables applications to determine, after a connection has
been established, whether the connection uses encryption. A NULL return value indicates that encryption
is not being used. A non-NULL return value indicates an encrypted connection and names the encryption
cipher. See Section 5.4.36, “mysql_get_ssl_cipher()”.

• Options for Encrypted Connections

• Enforcing an Encrypted Connection

• Improving Security of Encrypted Connections

Options for Encrypted Connections

mysql_options() provides the following options for control over use of encrypted connections. For
option details, see Section 5.4.54, “mysql_options()”.

• MYSQL_OPT_SSL_CA: The path name of the Certificate Authority (CA) certificate file. This option, if used,
must specify the same certificate used by the server.

• MYSQL_OPT_SSL_CAPATH: The path name of the directory that contains trusted SSL CA certificate files.

• MYSQL_OPT_SSL_CERT: The path name of the client public key certificate file.

• MYSQL_OPT_SSL_CIPHER: The list of encryption ciphers the client permits for connections that use TLS
protocols up through TLSv1.2.

• MYSQL_OPT_SSL_CRL: The path name of the file containing certificate revocation lists.

• MYSQL_OPT_SSL_CRLPATH: The path name of the directory that contains certificate revocation list files.

• MYSQL_OPT_SSL_KEY: The path name of the client private key file.

11

https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html

SSL Session Reuse

• MYSQL_OPT_SSL_MODE: The connection security state.

• MYSQL_OPT_SSL_SESSION_DATA : Serialized session data from an encrypted connection that was
returned by a call to the mysql_get_ssl_session_data() function while the connection was active.

• MYSQL_OPT_TLS_CIPHERSUITES: The list of encryption ciphersuites the client permits for connections
that use TLSv1.3.

• MYSQL_OPT_TLS_VERSION: The encryption protocols the client permits.

The deprecated mysql_ssl_set() function can be used as a convenience routine that is equivalent to a
set of mysql_options() calls that specify certificate and key files, encryption ciphers, and so forth. See
Section 5.4.82, “mysql_ssl_set()”.

Enforcing an Encrypted Connection

mysql_options() options for information such as SSL certificate and key files are used to establish
an encrypted connection if such connections are available, but do not enforce any requirement that the
connection obtained be encrypted. To require an encrypted connection, use the following technique:

1. Call mysql_options() as necessary supply the appropriate SSL parameters (certificate and key
files, encryption ciphers, and so forth).

2. Call mysql_options() to pass the MYSQL_OPT_SSL_MODE option with a value of
SSL_MODE_REQUIRED or one of the more-restrictive option values.

3. Call mysql_real_connect() to connect to the server. The call fails if an encrypted connection
cannot be obtained; exit with an error.

Improving Security of Encrypted Connections

For additional security relative to that provided by the default encryption, clients can supply a CA certificate
matching the one used by the server and enable host name identity verification. In this way, the server and
client place their trust in the same CA certificate and the client verifies that the host to which it connected is
the one intended:

• To specify the CA certificate, call mysql_options() to pass the MYSQL_OPT_SSL_CA (or
MYSQL_OPT_SSL_CAPATH) option, and call mysql_options() to pass the MYSQL_OPT_SSL_MODE
option with a value of SSL_MODE_VERIFY_CA.

• To enable host name identity verification as well, call mysql_options() to pass the
MYSQL_OPT_SSL_MODE option with a value of SSL_MODE_VERIFY_IDENTITY rather than
SSL_MODE_VERIFY_CA.

Note

Host name identity verification with SSL_MODE_VERIFY_IDENTITY does not
work with self-signed certificates created automatically by the server, or manually
using mysql_ssl_rsa_setup (see Creating SSL and RSA Certificates and Keys
using MySQL). Such self-signed certificates do not contain the server name as the
Common Name value.

Host name identity verification also does not work with certificates that specify the
Common Name using wildcards because that name is compared verbatim to the
server name.

3.6.2 SSL Session Reuse

12

https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-rsa-files-using-mysql.html
https://dev.mysql.com/doc/refman/8.0/en/creating-ssl-rsa-files-using-mysql.html

Multiple Statement Execution Support

As of MySQL 8.0.29, the server supports SSL session reuse by default, but only within a configurable
timeout period after a user enables the feature. All MySQL client applications support session reuse. For a
description of server-side and client-side operations, see Reusing SSL Sessions.

This section describes how C applications can use the C API capabilities to enable session reuse for
encrypted connections.

SSL session reuse works as follows:

1. With an active SSL connection ongoing, your application can request the current SSL session data by
calling mysql_get_ssl_session_data(). The call returns a pointer to an in-memory object, which
is currently the PEM serialization of the session as an ASCII string.

2. Your application then passes the pointer to mysql_options() with the
MYSQL_OPT_SSL_SESSION_DATA option for use in the new connection it is building (during the pre-
connect phase).

3. At runtime, the application connects as it normally does. At this point the prior session has to potential
to be reused. Your application can determine whether a session is being reused for the new connection
by calling mysql_get_ssl_session_reused(). The call returns TRUE if there was a session and it
was reused.

4. After your application no longer needs the pointer, it is important to free it with a call to
mysql_free_ssl_session_data().

MySQL uses a random TLS context-related context ID, which also applies to session reuse. With TLS 1.3,
when the previously described call sequence occurs, OpenSSL uses pre-shared keys for session reuse. In
contrast, with TLS 1.2, OpenSSL uses session tickets.

3.6.3 Multiple Statement Execution Support

By default, mysql_real_query() and mysql_query() interpret their statement string argument as a
single statement to be executed, and you process the result according to whether the statement produces
a result set (a set of rows, as for SELECT) or an affected-rows count (as for INSERT, UPDATE, and so
forth).

MySQL also supports the execution of a string containing multiple statements separated by semicolon (;)
characters. This capability is enabled by special options that are specified either when you connect to the
server with mysql_real_connect() or after connecting by calling mysql_set_server_option().

Executing a multiple-statement string can produce multiple result sets or row-count indicators. Processing
these results involves a different approach than for the single-statement case: After handling the result
from the first statement, it is necessary to check whether more results exist and process them in turn
if so. To support multiple-result processing, the C API includes the mysql_more_results() and
mysql_next_result() functions. These functions are used at the end of a loop that iterates as long as
more results are available. Failure to process the result this way may result in a dropped connection to the
server.

Multiple-result processing also is required if you execute CALL statements for stored procedures. Results
from a stored procedure have these characteristics:

• Statements within the procedure may produce result sets (for example, if it executes SELECT
statements). These result sets are returned in the order that they are produced as the procedure
executes.

In general, the caller cannot know how many result sets a procedure will return. Procedure execution
may depend on loops or conditional statements that cause the execution path to differ from one call to
the next. Therefore, you must be prepared to retrieve multiple results.

13

https://dev.mysql.com/doc/refman/8.0/en/reusing-ssl-sessions.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Multiple Statement Execution Support

• The final result from the procedure is a status result that includes no result set. The status indicates
whether the procedure succeeded or an error occurred.

The multiple statement and result capabilities can be used only with mysql_real_query() or
mysql_query(). They cannot be used with the prepared statement interface. Prepared statement
handlers are defined to work only with strings that contain a single statement. See Chapter 6, C API
Prepared Statement Interface.

To enable multiple-statement execution and result processing, the following options may be used:

• The mysql_real_connect() function has a flags argument for which two option values are
relevant:

• CLIENT_MULTI_RESULTS enables the client program to process multiple results. This option must
be enabled if you execute CALL statements for stored procedures that produce result sets. Otherwise,
such procedures result in an error Error 1312 (0A000): PROCEDURE proc_name can't
return a result set in the given context. CLIENT_MULTI_RESULTS is enabled by
default.

• CLIENT_MULTI_STATEMENTS enables mysql_real_query() and mysql_query() to execute
statement strings containing multiple statements separated by semicolons. This option also enables
CLIENT_MULTI_RESULTS implicitly, so a flags argument of CLIENT_MULTI_STATEMENTS
to mysql_real_connect() is equivalent to an argument of CLIENT_MULTI_STATEMENTS |
CLIENT_MULTI_RESULTS. That is, CLIENT_MULTI_STATEMENTS is sufficient to enable multiple-
statement execution and all multiple-result processing.

• After the connection to the server has been established, you can use the
mysql_set_server_option() function to enable or disable multiple-statement
execution by passing it an argument of MYSQL_OPTION_MULTI_STATEMENTS_ON or
MYSQL_OPTION_MULTI_STATEMENTS_OFF. Enabling multiple-statement execution with this function
also enables processing of “simple” results for a multiple-statement string where each statement
produces a single result, but is not sufficient to permit processing of stored procedures that produce
result sets.

The following procedure outlines a suggested strategy for handling multiple statements:

1. Pass CLIENT_MULTI_STATEMENTS to mysql_real_connect(), to fully enable multiple-statement
execution and multiple-result processing.

2. After calling mysql_real_query() or mysql_query() and verifying that it succeeds, enter a loop
within which you process statement results.

3. For each iteration of the loop, handle the current statement result, retrieving either a result set or an
affected-rows count. If an error occurs, exit the loop.

4. At the end of the loop, call mysql_next_result() to check whether another result exists and initiate
retrieval for it if so. If no more results are available, exit the loop.

One possible implementation of the preceding strategy is shown following. The final part of the loop can
be reduced to a simple test of whether mysql_next_result() returns nonzero. The code as written
distinguishes between no more results and an error, which enables a message to be printed for the latter
occurrence.

/* connect to server with the CLIENT_MULTI_STATEMENTS option */
if (mysql_real_connect (mysql, host_name, user_name, password,
 db_name, port_num, socket_name, CLIENT_MULTI_STATEMENTS) == NULL)
{

14

https://dev.mysql.com/doc/refman/8.0/en/call.html

Prepared Statement Handling of Date and Time Values

 printf("mysql_real_connect() failed\n");
 mysql_close(mysql);
 exit(1);
}

/* execute multiple statements */
status = mysql_query(mysql,
 "DROP TABLE IF EXISTS test_table;\
 CREATE TABLE test_table(id INT);\
 INSERT INTO test_table VALUES(10);\
 UPDATE test_table SET id=20 WHERE id=10;\
 SELECT * FROM test_table;\
 DROP TABLE test_table");
if (status)
{
 printf("Could not execute statement(s)");
 mysql_close(mysql);
 exit(0);
}

/* process each statement result */
do {
 /* did current statement return data? */
 result = mysql_store_result(mysql);
 if (result)
 {
 /* yes; process rows and free the result set */
 process_result_set(mysql, result);
 mysql_free_result(result);
 }
 else /* no result set or error */
 {
 if (mysql_field_count(mysql) == 0)
 {
 printf("%lld rows affected\n",
 mysql_affected_rows(mysql));
 }
 else /* some error occurred */
 {
 printf("Could not retrieve result set\n");
 break;
 }
 }
 /* more results? -1 = no, >0 = error, 0 = yes (keep looping) */
 if ((status = mysql_next_result(mysql)) > 0)
 printf("Could not execute statement\n");
} while (status == 0);

mysql_close(mysql);

3.6.4 Prepared Statement Handling of Date and Time Values

The binary (prepared statement) protocol enables you to send and receive date and time values (DATE,
TIME, DATETIME, and TIMESTAMP), using the MYSQL_TIME structure. The members of this structure are
described in Section 6.2, “C API Prepared Statement Data Structures”.

To send temporal data values, create a prepared statement using mysql_stmt_prepare(). Then,
before calling mysql_stmt_execute() to execute the statement, use the following procedure to set up
each temporal parameter:

1. In the MYSQL_BIND structure associated with the data value, set the buffer_type member to
the type that indicates what kind of temporal value you're sending. For DATE, TIME, DATETIME,
or TIMESTAMP values, set buffer_type to MYSQL_TYPE_DATE, MYSQL_TYPE_TIME,
MYSQL_TYPE_DATETIME, or MYSQL_TYPE_TIMESTAMP, respectively.

15

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

Prepared CALL Statement Support

2. Set the buffer member of the MYSQL_BIND structure to the address of the MYSQL_TIME structure in
which you pass the temporal value.

3. Fill in the members of the MYSQL_TIME structure that are appropriate for the type of temporal value to
pass.

Use mysql_stmt_bind_param() to bind the parameter data to the statement. Then you can call
mysql_stmt_execute().

To retrieve temporal values, the procedure is similar, except that you set the buffer_type member to the
type of value you expect to receive, and the buffer member to the address of a MYSQL_TIME structure
into which the returned value should be placed. Use mysql_stmt_bind_result() to bind the buffers to
the statement after calling mysql_stmt_execute() and before fetching the results.

Here is a simple example that inserts DATE, TIME, and TIMESTAMP data. The mysql variable is assumed
to be a valid connection handler.

 MYSQL_TIME ts;
 MYSQL_BIND bind[3];
 MYSQL_STMT *stmt;

 strmov(query, "INSERT INTO test_table(date_field, time_field, \
 timestamp_field) VALUES(?,?,?");

 stmt = mysql_stmt_init(mysql);
 if (!stmt)
 {
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
 }
 if (mysql_stmt_prepare(mysql, query, strlen(query)))
 {
 fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
 }

 /* set up input buffers for all 3 parameters */
 bind[0].buffer_type= MYSQL_TYPE_DATE;
 bind[0].buffer= (char *)&ts;
 bind[0].is_null= 0;
 bind[0].length= 0;
 ...
 bind[1]= bind[2]= bind[0];
 ...

 mysql_stmt_bind_param(stmt, bind);

 /* supply the data to be sent in the ts structure */
 ts.year= 2002;
 ts.month= 02;
 ts.day= 03;

 ts.hour= 10;
 ts.minute= 45;
 ts.second= 20;

 mysql_stmt_execute(stmt);
 ..

3.6.5 Prepared CALL Statement Support

This section describes prepared-statement support in the C API for stored procedures executed using
CALL statements:

16

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/call.html

Prepared CALL Statement Support

Stored procedures executed using prepared CALL statements can be used in the following ways:

• A stored procedure can produce any number of result sets. The number of columns and the data types
of the columns need not be the same for all result sets.

• The final values of OUT and INOUT parameters are available to the calling application after the procedure
returns. These parameters are returned as an extra single-row result set following any result sets
produced by the procedure itself. The row contains the values of the OUT and INOUT parameters in the
order in which they are declared in the procedure parameter list.

For information about the effect of unhandled conditions on procedure parameters, see Condition
Handling and OUT or INOUT Parameters.

The following discussion shows how to use these capabilities through the C API for prepared statements.
To use prepared CALL statements through the PREPARE and EXECUTE statements, see CALL Statement.

An application that executes a prepared CALL statement should use a loop that fetches a result and then
invokes mysql_stmt_next_result() to determine whether there are more results. The results consist
of any result sets produced by the stored procedure followed by a final status value that indicates whether
the procedure terminated successfully.

If the procedure has OUT or INOUT parameters, the result set preceding the final status value
contains their values. To determine whether a result set contains parameter values, test whether the
SERVER_PS_OUT_PARAMS bit is set in the server_status member of the MYSQL connection handler:

mysql->server_status & SERVER_PS_OUT_PARAMS

The following example uses a prepared CALL statement to execute a stored procedure that produces
multiple result sets and that provides parameter values back to the caller by means of OUT and INOUT
parameters. The procedure takes parameters of all three types (IN, OUT, INOUT), displays their initial
values, assigns new values, displays the updated values, and returns. The expected return information
from the procedure therefore consists of multiple result sets and a final status:

• One result set from a SELECT that displays the initial parameter values: 10, NULL, 30. (The OUT
parameter is assigned a value by the caller, but this assignment is expected to be ineffective: OUT
parameters are seen as NULL within a procedure until assigned a value within the procedure.)

• One result set from a SELECT that displays the modified parameter values: 100, 200, 300.

• One result set containing the final OUT and INOUT parameter values: 200, 300.

• A final status packet.

The code to execute the procedure:

MYSQL_STMT *stmt;
MYSQL_BIND ps_params[3]; /* input parameter buffers */
int int_data[3]; /* input/output values */
bool is_null[3]; /* output value nullability */
int status;

/* set up stored procedure */
status = mysql_query(mysql, "DROP PROCEDURE IF EXISTS p1");
test_error(mysql, status);

status = mysql_query(mysql,
 "CREATE PROCEDURE p1("
 " IN p_in INT, "
 " OUT p_out INT, "
 " INOUT p_inout INT) "
 "BEGIN "
 " SELECT p_in, p_out, p_inout; "

17

https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/conditions-and-parameters.html
https://dev.mysql.com/doc/refman/8.0/en/conditions-and-parameters.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/prepare.html
https://dev.mysql.com/doc/refman/8.0/en/execute.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Prepared CALL Statement Support

 " SET p_in = 100, p_out = 200, p_inout = 300; "
 " SELECT p_in, p_out, p_inout; "
 "END");
test_error(mysql, status);

/* initialize and prepare CALL statement with parameter placeholders */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 printf("Could not initialize statement\n");
 exit(1);
}
status = mysql_stmt_prepare(stmt, "CALL p1(?, ?, ?)", 16);
test_stmt_error(stmt, status);

/* initialize parameters: p_in, p_out, p_inout (all INT) */
memset(ps_params, 0, sizeof (ps_params));

ps_params[0].buffer_type = MYSQL_TYPE_LONG;
ps_params[0].buffer = (char *) &int_data[0];
ps_params[0].length = 0;
ps_params[0].is_null = 0;

ps_params[1].buffer_type = MYSQL_TYPE_LONG;
ps_params[1].buffer = (char *) &int_data[1];
ps_params[1].length = 0;
ps_params[1].is_null = 0;

ps_params[2].buffer_type = MYSQL_TYPE_LONG;
ps_params[2].buffer = (char *) &int_data[2];
ps_params[2].length = 0;
ps_params[2].is_null = 0;

/* bind parameters */
status = mysql_stmt_bind_param(stmt, ps_params);
test_stmt_error(stmt, status);

/* assign values to parameters and execute statement */
int_data[0]= 10; /* p_in */
int_data[1]= 20; /* p_out */
int_data[2]= 30; /* p_inout */

status = mysql_stmt_execute(stmt);
test_stmt_error(stmt, status);

/* process results until there are no more */
do {
 int i;
 int num_fields; /* number of columns in result */
 MYSQL_FIELD *fields; /* for result set metadata */
 MYSQL_BIND *rs_bind; /* for output buffers */

 /* the column count is > 0 if there is a result set */
 /* 0 if the result is only the final status packet */
 num_fields = mysql_stmt_field_count(stmt);

 if (num_fields > 0)
 {
 /* there is a result set to fetch */
 printf("Number of columns in result: %d\n", (int) num_fields);

 /* what kind of result set is this? */
 printf("Data: ");
 if(mysql->server_status & SERVER_PS_OUT_PARAMS)
 printf("this result set contains OUT/INOUT parameters\n");
 else
 printf("this result set is produced by the procedure\n");

18

Prepared CALL Statement Support

 MYSQL_RES *rs_metadata = mysql_stmt_result_metadata(stmt);
 test_stmt_error(stmt, rs_metadata == NULL);

 fields = mysql_fetch_fields(rs_metadata);

 rs_bind = (MYSQL_BIND *) malloc(sizeof (MYSQL_BIND) * num_fields);
 if (!rs_bind)
 {
 printf("Cannot allocate output buffers\n");
 exit(1);
 }
 memset(rs_bind, 0, sizeof (MYSQL_BIND) * num_fields);

 /* set up and bind result set output buffers */
 for (i = 0; i < num_fields; ++i)
 {
 rs_bind[i].buffer_type = fields[i].type;
 rs_bind[i].is_null = &is_null[i];

 switch (fields[i].type)
 {
 case MYSQL_TYPE_LONG:
 rs_bind[i].buffer = (char *) &(int_data[i]);
 rs_bind[i].buffer_length = sizeof (int_data);
 break;

 default:
 fprintf(stderr, "ERROR: unexpected type: %d.\n", fields[i].type);
 exit(1);
 }
 }

 status = mysql_stmt_bind_result(stmt, rs_bind);
 test_stmt_error(stmt, status);

 /* fetch and display result set rows */
 while (1)
 {
 status = mysql_stmt_fetch(stmt);

 if (status == 1 || status == MYSQL_NO_DATA)
 break;

 for (i = 0; i < num_fields; ++i)
 {
 switch (rs_bind[i].buffer_type)
 {
 case MYSQL_TYPE_LONG:
 if (*rs_bind[i].is_null)
 printf(" val[%d] = NULL;", i);
 else
 printf(" val[%d] = %ld;",
 i, (long) *((int *) rs_bind[i].buffer));
 break;

 default:
 printf(" unexpected type (%d)\n",
 rs_bind[i].buffer_type);
 }
 }
 printf("\n");
 }

 mysql_free_result(rs_metadata); /* free metadata */
 free(rs_bind); /* free output buffers */
 }

19

Prepared Statement Problems

 else
 {
 /* no columns = final status packet */
 printf("End of procedure output\n");
 }

 /* more results? -1 = no, >0 = error, 0 = yes (keep looking) */
 status = mysql_stmt_next_result(stmt);
 if (status > 0)
 test_stmt_error(stmt, status);
} while (status == 0);

mysql_stmt_close(stmt);

Execution of the procedure should produce the following output:

Number of columns in result: 3
Data: this result set is produced by the procedure
 val[0] = 10; val[1] = NULL; val[2] = 30;
Number of columns in result: 3
Data: this result set is produced by the procedure
 val[0] = 100; val[1] = 200; val[2] = 300;
Number of columns in result: 2
Data: this result set contains OUT/INOUT parameters
 val[0] = 200; val[1] = 300;
End of procedure output

The code uses two utility routines, test_error() and test_stmt_error(), to check for errors and
terminate after printing diagnostic information if an error occurred:

static void test_error(MYSQL *mysql, int status)
{
 if (status)
 {
 fprintf(stderr, "Error: %s (errno: %d)\n",
 mysql_error(mysql), mysql_errno(mysql));
 exit(1);
 }
}

static void test_stmt_error(MYSQL_STMT *stmt, int status)
{
 if (status)
 {
 fprintf(stderr, "Error: %s (errno: %d)\n",
 mysql_stmt_error(stmt), mysql_stmt_errno(stmt));
 exit(1);
 }
}

3.6.6 Prepared Statement Problems

Here follows a list of the currently known problems with prepared statements:

• TIME, TIMESTAMP, and DATETIME do not support parts of seconds (for example, from
DATE_FORMAT()).

• When converting an integer to string, ZEROFILL is honored with prepared statements in some cases
where the MySQL server does not print the leading zeros. (For example, with MIN(number-with-
zerofill)).

• When converting a floating-point number to a string in the client, the rightmost digits of the converted
value may differ slightly from those of the original value.

20

https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/date-and-time-functions.html#function_date-format
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_min
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_min

Optional Result Set Metadata

• Prepared statements do not support multi-statements (that is, multiple statements within a single string
separated by ; characters).

• The capabilities of prepared CALL statements are described in Section 3.6.5, “Prepared CALL Statement
Support”.

3.6.7 Optional Result Set Metadata

When a client executes a statement that produces a result set, MySQL makes available the data the
result set contains, and by default also result set metadata that provides information about the result
set data. Metadata is contained in the MYSQL_FIELD structure (see Section 5.2, “C API Basic Data
Structures”), which is returned by the mysql_fetch_field(), mysql_fetch_field_direct(), and
mysql_fetch_fields() functions.

Clients can indicate on a per-connection basis that result set metadata is optional and that the client will
indicate to the server whether to return it. Suppression of metadata transfer by the client can improve
performance, particularly for sessions that execute many queries that return few rows each.

There are two ways for a client to indicate that result set metadata is optional for a connection. They are
equivalent, so either one suffices:

• Prior to connect time, enable the MYSQL_OPT_OPTIONAL_RESULTSET_METADATA option for
mysql_options().

• At connect time, enable the CLIENT_OPTIONAL_RESULTSET_METADATA flag for the client_flag
argument of mysql_real_connect().

For metadata-optional connections, the client sets the resultset_metadata system variable to control
whether the server returns result set metadata. Permitted values are FULL (return all metadata) and NONE
(return no metadata). The default is FULL, so even for metadata-optional connections, the server by default
returns metadata.

For metadata-optional connections, the mysql_fetch_field(), mysql_fetch_field_direct(), and
mysql_fetch_fields() functions return NULL when resultset_metadata is set to NONE.

For connections that are not metadata-optional, setting resultset_metadata to NONE produces an
error.

To check whether a result set has metadata, the client calls the mysql_result_metadata() function.
This function returns RESULTSET_METADATA_FULL or RESULTSET_METADATA_NONE to indicate that the
result set has full metadata or no metadata, respectively.

mysql_result_metadata() is useful if the client does not know in advance whether a result set has
metadata. For example, if a client executes a stored procedure that returns multiple result sets and might
change the resultset_metadata system variable, the client can invoke mysql_result_metadata()
for each result set to determine whether it has metadata.

3.6.8 Automatic Reconnection Control

The MySQL client library can perform an automatic reconnection to the server if it finds that the connection
is down when you attempt to send a statement to the server to be executed. If auto-reconnect is enabled,
the library tries once to reconnect to the server and send the statement again.

Note

Beginning with MySQL 8.0.34, the automatic reconnection feature is deprecated.
The related MYSQL_OPT_RECONNECT option is still available but now returns

21

https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata

Automatic Reconnection Control

a deprecation warning to the standard error output if your application calls the
mysql_get_option() or mysql_options() function with the option, even when
setting it to false.

Expect automatic reconnection functionality to be removed in a future version of
MySQL.

Auto-reconnect is disabled by default.

If the connection has gone down, the effect of mysql_ping() depends on the auto-reconnect state. If
auto-reconnect is enabled, mysql_ping() performs a reconnect. Otherwise, it returns an error.

Some client programs might provide the capability of controlling automatic reconnection. For example,
mysql reconnects by default, but the --skip-reconnect option can be used to suppress this behavior.

If an automatic reconnection does occur (for example, as a result of calling mysql_ping()), there is no
explicit indication of it. To check for reconnection, call mysql_thread_id() to get the original connection
identifier before calling mysql_ping(), then call mysql_thread_id() again to see whether the
identifier changed.

Automatic reconnection can be convenient because you need not implement your own reconnect code, but
if a reconnection does occur, several aspects of the connection state are reset on the server side and your
application will not be notified.

Reconnection affects the connection-related state as follows:

• Rolls back any active transactions and resets autocommit mode.

• Releases all table locks.

• Closes (and drops) all TEMPORARY tables.

• Reinitializes session system variables to the values of the corresponding global system variables,
including system variables that are set implicitly by statements such as SET NAMES.

• Loses user-defined variable settings.

• Releases prepared statements.

• Closes HANDLER variables.

• Resets the value of LAST_INSERT_ID() to 0.

• Releases locks acquired with GET_LOCK().

• Loses the association of the client with the Performance Schema threads table row that determines
connection thread instrumentation. If the client reconnects after a disconnect, the session is associated
with a new row in the threads table and the thread monitoring state may be different. See The threads
Table.

If reconnection occurs, any SQL statement specified by calling mysql_options() with the
MYSQL_INIT_COMMAND option is re-executed.

If the connection drops, it is possible that the session associated with the connection on the server side
will still be running if the server has not yet detected that the client is no longer connected. In this case,
any locks held by the original connection still belong to that session, so you may want to kill it by calling
mysql_kill().

22

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_reconnect
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/handler.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-threads-table.html

NULL mysql_store_result() Return After mysql_query() Success

3.6.9 NULL mysql_store_result() Return After mysql_query() Success

It is possible for mysql_store_result() to return NULL following a successful call to the server using
mysql_real_query() or mysql_query(). When this happens, it means one of the following conditions
occurred:

• There was a malloc() failure (for example, if the result set was too large).

• The data could not be read (an error occurred on the connection).

• The query returned no data (for example, it was an INSERT, UPDATE, or DELETE).

You can always check whether the statement should have produced a nonempty result by calling
mysql_field_count(). If mysql_field_count() returns zero, the result is empty and the
last query was a statement that does not return values (for example, an INSERT or a DELETE). If
mysql_field_count() returns a nonzero value, the statement should have produced a nonempty
result. See the description of the mysql_field_count() function for an example.

You can test for an error by calling mysql_error() or mysql_errno().

3.6.10 Results Available from a Query

In addition to the result set returned by a query, you can also get the following information:

• mysql_affected_rows() returns the number of rows affected by the last query when doing an
INSERT, UPDATE, or DELETE.

For a fast re-create, use TRUNCATE TABLE.

• mysql_num_rows() returns the number of rows in a result set. With mysql_store_result(),
mysql_num_rows() may be called as soon as mysql_store_result() returns. With
mysql_use_result(), mysql_num_rows() may be called only after you have fetched all the rows
with mysql_fetch_row().

• mysql_insert_id() returns the ID generated by the last query that inserted a row into a table with an
AUTO_INCREMENT index. See Section 5.4.42, “mysql_insert_id()”.

• Some queries (LOAD DATA, INSERT INTO ... SELECT, UPDATE) return additional information. The
result is returned by mysql_info(). See the description for mysql_info() for the format of the string
that it returns. mysql_info() returns a NULL pointer if there is no additional information.

3.6.11 Obtaining the Unique ID for the Last Inserted Row

If you insert a record into a table that contains an AUTO_INCREMENT column, you can obtain the value
stored into that column by calling the mysql_insert_id() function.

You can check from your C applications whether a value was stored in an AUTO_INCREMENT column
by executing the following code (which assumes that you've checked that the statement succeeded). It
determines whether the query was an INSERT with an AUTO_INCREMENT index:

if ((result = mysql_store_result(&mysql)) == 0 &&
 mysql_field_count(&mysql) == 0 &&
 mysql_insert_id(&mysql) != 0)
{
 used_id = mysql_insert_id(&mysql);
}

23

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/truncate-table.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

Obtaining the Server Version and Client Library Version

When a new AUTO_INCREMENT value has been generated, you can also obtain it by executing a SELECT
LAST_INSERT_ID() statement with mysql_real_query() or mysql_query() and retrieving the value
from the result set returned by the statement.

When inserting multiple values, the last automatically incremented value is returned.

For LAST_INSERT_ID(), the most recently generated ID is maintained in the server on a per-connection
basis. It is not changed by another client. It is not even changed if you update another AUTO_INCREMENT
column with a nonmagic value (that is, a value that is not NULL and not 0). Using LAST_INSERT_ID()
and AUTO_INCREMENT columns simultaneously from multiple clients is perfectly valid. Each client will
receive the last inserted ID for the last statement that client executed.

If you want to use the ID that was generated for one table and insert it into a second table, you can use
SQL statements like this:

INSERT INTO foo (auto,text)
 VALUES(NULL,'text'); # generate ID by inserting NULL
INSERT INTO foo2 (id,text)
 VALUES(LAST_INSERT_ID(),'text'); # use ID in second table

mysql_insert_id() returns the value stored into an AUTO_INCREMENT column, whether that value is
automatically generated by storing NULL or 0 or was specified as an explicit value. LAST_INSERT_ID()
returns only automatically generated AUTO_INCREMENT values. If you store an explicit value other than
NULL or 0, it does not affect the value returned by LAST_INSERT_ID().

For more information on obtaining the last ID in an AUTO_INCREMENT column:

• For information on LAST_INSERT_ID(), which can be used within an SQL statement, see Information
Functions.

• For information on mysql_insert_id(), the function you use from within the C API, see
Section 5.4.42, “mysql_insert_id()”.

• For information on obtaining the auto-incremented value when using Connector/J, see Retrieving
AUTO_INCREMENT Column Values through JDBC.

• For information on obtaining the auto-incremented value when using Connector/ODBC, see Obtaining
Auto-Increment Values.

3.6.12 Obtaining the Server Version and Client Library Version

The string and numeric forms of the MySQL server version are available at compile time as the values
of the MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros, and at runtime as the values of the
mysql_get_server_info() and mysql_get_server_version() functions.

The client library version is the MySQL version. The string and numeric forms of this version are available
at compile time as the values of the MYSQL_SERVER_VERSION and MYSQL_VERSION_ID macros, and
at runtime as the values of the mysql_get_client_info() and mysql_get_client_version()
functions.

24

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html
https://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-last-insert-id.html
https://dev.mysql.com/doc/connector-j/en/connector-j-usagenotes-last-insert-id.html
https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html
https://dev.mysql.com/doc/connector-odbc/en/connector-odbc-usagenotes-functionality-last-insert-id.html

Chapter 4 C API Function Reference

The following table summarizes all functions available for the MySQL C API. For greater detail, see the
individual function descriptions.

Table 4.1 C API Functions

Name Description Introduced Deprecated

mysql_affected_rows()Number of rows
changed/deleted/inserted
by last UPDATE, DELETE,
or INSERT statement

mysql_autocommit() Set autocommit mode

mysql_bind_param() Define query attributes
for next statement
executed

8.0.23

mysql_binlog_close()Close replication event
stream

mysql_binlog_fetch()Read event from
replication event stream

mysql_binlog_open() Open replication event
stream

mysql_change_user() Change user and
database on an open
connection

mysql_character_set_name()Default character
set name for current
connection

mysql_client_find_plugin()Return pointer to a plugin

mysql_client_register_plugin()Register a plugin

mysql_close() Close connection to
server

mysql_commit() Commit transaction

mysql_connect() Connect to MySQL
server

Yes

mysql_create_db() Create database Yes

mysql_data_seek() Seek to arbitrary row
number in query result
set

mysql_debug() Perform DBUG_PUSH with
given string

mysql_drop_db() Drop database Yes

mysql_dump_debug_info()Cause server to write
debug information to
error log

25

https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

Name Description Introduced Deprecated

mysql_eof() Determine whether last
row of result set has
been read

Yes

mysql_errno() Error number for most
recently invoked MySQL
function

mysql_error() Error message for most
recently invoked MySQL
function

mysql_escape_string()Escape special
characters in string for
use in SQL statement

mysql_fetch_field() Type of the next table
field

mysql_fetch_field_direct()Table field type for given
field number

mysql_fetch_fields()Return array of all field
structures

mysql_fetch_lengths()Return lengths of all
columns in current row

mysql_fetch_row() Fetch next result set row

mysql_fetch_row_nonblocking()Asynchronously fetch
next result set row

8.0.16

mysql_field_count() Number of result columns
for most recent statement

mysql_field_seek() Seek to column within
result set row

mysql_field_tell() Field position for last
mysql_fetch_field()
call

mysql_free_result() Free result set memory

mysql_free_result_nonblocking()Asynchronously free
result set memory

8.0.16

mysql_free_ssl_session_data()Dispose of session
data handle from last
mysql_get_ssl_session_data()
call

8.0.29

mysql_get_character_set_info()Information about default
character set

mysql_get_client_info()Client version (string)

mysql_get_client_version()Client version (integer)

mysql_get_host_info()Information about the
connection

26

Name Description Introduced Deprecated

mysql_get_option() Value of a
mysql_options()
option

mysql_get_proto_info()Protocol version used by
the connection

mysql_get_server_info()Server version number
(string)

mysql_get_server_version()Server version number
(integer)

mysql_get_ssl_cipher()Current SSL cipher

mysql_get_ssl_session_data()Return session data for
SSL-enabled connection

8.0.29

mysql_get_ssl_session_reused()Whether a session is
reused

8.0.29

mysql_hex_string() Encode string in
hexadecimal format

mysql_info() Information about most
recently executed
statement

mysql_init() Get or initialize a MYSQL
structure

mysql_insert_id() ID generated for an
AUTO_INCREMENT
column by previous
statement

mysql_kill() Kill a thread Yes

mysql_library_end() Finalize MySQL C API
library

mysql_library_init()Initialize MySQL C API
library

mysql_list_dbs() Return database names
matching regular
expression

mysql_list_fields() Return field names
matching regular
expression

Yes

mysql_list_processes()List of current server
threads

Yes

mysql_list_tables() Return table names
matching regular
expression

mysql_load_plugin() Load a plugin

mysql_load_plugin_v()Load a plugin

27

Name Description Introduced Deprecated

mysql_more_results()Check whether more
results exist

mysql_next_result() Return/initiate next
result in multiple-result
execution

mysql_next_result_nonblocking()Asynchronously return/
initiate next result in
multiple-result execution

8.0.16

mysql_num_fields() Number of columns in
result set

mysql_num_rows() Number of rows in result
set

mysql_options() Set option prior to
connecting

mysql_options4() Set option prior to
connecting

mysql_ping() Ping server

mysql_plugin_get_option()Get plugin option 8.0.27

mysql_plugin_options()Set plugin option

mysql_query() Execute statement

mysql_real_connect()Connect to MySQL
server

mysql_real_connect_dns_srv()Connect to MySQL
server using DNS SRV
record

8.0.22

mysql_real_connect_nonblocking()Asynchronously connect
to MySQL server

8.0.16

mysql_real_escape_string()Encode special
characters in statement
string

mysql_real_escape_string_quote()Encode special
characters in statement
string accounting for
quoting context

mysql_real_query() Execute statement

mysql_real_query_nonblocking()Asynchronously execute
statement

8.0.16

mysql_refresh() Flush or reset tables and
caches

Yes

mysql_reload() Reload grant tables Yes

mysql_reset_connection()Reset the connection to
clear session state

mysql_reset_server_public_key()Clear cached RSA public
key from client library

28

Name Description Introduced Deprecated

mysql_result_metadata()Whether a result set has
metadata

8.0.13

mysql_rollback() Roll back transaction

mysql_row_seek() Seek to row offset in
result set

mysql_row_tell() Current position within
result set row

mysql_select_db() Select database

mysql_server_end() Finalize MySQL C API
library

Yes

mysql_server_init() Initialize MySQL C API
library

Yes

mysql_session_track_get_first()First part of session
state-change information

mysql_session_track_get_next()Next part of session
state-change information

mysql_set_character_set()Set current connection
default character set

mysql_set_local_infile_default()Set LOAD DATA LOCAL
handler callbacks to
default values

mysql_set_local_infile_handler()Install application-specific
LOAD DATA LOCAL
handler callbacks

mysql_set_server_option()Set option for current
connection

mysql_shutdown() Shut down MySQL server Yes

mysql_sqlstate() SQLSTATE value for
most recently invoked
MySQL function

mysql_ssl_set() Prepare to establish SSL
connection to server

8.0.35

mysql_stat() Server status

mysql_stmt_affected_rows()Number of rows
changed/deleted/inserted
by last prepared UPDATE,
DELETE, or INSERT
statement

mysql_stmt_attr_get()Get attribute value for
prepared statement

mysql_stmt_attr_set()Set attribute value for
prepared statement

mysql_stmt_bind_param()Associate application
data buffers with

29

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

Name Description Introduced Deprecated
parameter markers in
prepared statement

mysql_stmt_bind_result()Associate application
data buffers with columns
in result set

mysql_stmt_close() Free memory used by
prepared statement

mysql_stmt_data_seek()Seek to arbitrary row
number in prepared
statement result set

mysql_stmt_errno() Error number for most
recently invoked MySQL
prepared-statement
function

mysql_stmt_error() Error message for most
recently invoked MySQL
prepared-statement
function

mysql_stmt_execute()Execute prepared
statement

mysql_stmt_fetch() Fetch next result set row
and return data for all
bound columns

mysql_stmt_fetch_column()Fetches data for one
column of current result
set row

mysql_stmt_field_count()Number of result columns
for most recent prepared
statement

mysql_stmt_free_result()Free resources allocated
to statement handler

mysql_stmt_init() Allocate and initialize
memory for MYSQL_STMT
structure

mysql_stmt_insert_id()ID generated for an
AUTO_INCREMENT
column by previous
prepared statement

mysql_stmt_next_result()Return/initiate next
result in multiple-result
prepared statement
execution

mysql_stmt_num_rows()Row count from buffered
statement result set

mysql_stmt_param_count()Number of parameters in
prepared statement

30

Name Description Introduced Deprecated

mysql_stmt_param_metadata()Return parameter
metadata as result set

mysql_stmt_prepare()Prepare statement for
execution

mysql_stmt_reset() Reset statement buffers
on server side

mysql_stmt_result_metadata()Return prepared
statement metadata as
result set

mysql_stmt_row_seek()Seek to row offset in
prepared statement result
set

mysql_stmt_row_tell()Current position within
prepared statement result
set row

mysql_stmt_send_long_data()Send long data in chunks
to server

mysql_stmt_sqlstate()SQLSTATE value for
most recently invoked
MySQL prepared-
statement function

mysql_stmt_store_result()Retrieve and store entire
result set

mysql_store_result()Retrieve and store entire
result set

mysql_store_result_nonblocking()Asynchronously retrieve
and store entire result set

8.0.16

mysql_thread_end() Finalize thread handler

mysql_thread_id() Current thread ID

mysql_thread_init() Initialize thread handler

mysql_thread_safe() Whether client is
compiled thread-safe

mysql_use_result() Initiate row-by-row result
set retrieval

mysql_warning_count()Warning count for
previous statement

31

32

Chapter 5 C API Basic Interface

Table of Contents
5.1 Overview of the C API Basic Interface ... 34
5.2 C API Basic Data Structures ... 36
5.3 C API Basic Function Reference ... 42
5.4 C API Basic Function Descriptions .. 46

5.4.1 mysql_affected_rows() .. 47
5.4.2 mysql_autocommit() ... 48
5.4.3 mysql_bind_param() ... 48
5.4.4 mysql_change_user() ... 50
5.4.5 mysql_character_set_name() .. 51
5.4.6 mysql_close() ... 52
5.4.7 mysql_commit() .. 52
5.4.8 mysql_connect() ... 52
5.4.9 mysql_create_db() ... 52
5.4.10 mysql_data_seek() ... 53
5.4.11 mysql_debug() ... 54
5.4.12 mysql_drop_db() .. 54
5.4.13 mysql_dump_debug_info() .. 55
5.4.14 mysql_eof() .. 55
5.4.15 mysql_errno() ... 56
5.4.16 mysql_error() ... 57
5.4.17 mysql_escape_string() .. 58
5.4.18 mysql_fetch_field() ... 58
5.4.19 mysql_fetch_field_direct() ... 58
5.4.20 mysql_fetch_fields() .. 59
5.4.21 mysql_fetch_lengths() ... 60
5.4.22 mysql_fetch_row() .. 60
5.4.23 mysql_field_count() .. 62
5.4.24 mysql_field_seek() ... 63
5.4.25 mysql_field_tell() .. 63
5.4.26 mysql_free_result() ... 63
5.4.27 mysql_free_ssl_session_data() ... 64
5.4.28 mysql_get_character_set_info() ... 64
5.4.29 mysql_get_client_info() ... 65
5.4.30 mysql_get_client_version() .. 65
5.4.31 mysql_get_host_info() .. 65
5.4.32 mysql_get_option() ... 66
5.4.33 mysql_get_proto_info() ... 67
5.4.34 mysql_get_server_info() .. 67
5.4.35 mysql_get_server_version() .. 68
5.4.36 mysql_get_ssl_cipher() ... 68
5.4.37 mysql_get_ssl_session_data() .. 68
5.4.38 mysql_get_ssl_session_reused() ... 69
5.4.39 mysql_hex_string() ... 69
5.4.40 mysql_info() ... 70
5.4.41 mysql_init() .. 71
5.4.42 mysql_insert_id() .. 71
5.4.43 mysql_kill() ... 73
5.4.44 mysql_library_end() .. 74

33

Overview of the C API Basic Interface

5.4.45 mysql_library_init() ... 74
5.4.46 mysql_list_dbs() ... 75
5.4.47 mysql_list_fields() ... 76
5.4.48 mysql_list_processes() ... 77
5.4.49 mysql_list_tables() .. 78
5.4.50 mysql_more_results() ... 79
5.4.51 mysql_next_result() .. 79
5.4.52 mysql_num_fields() .. 81
5.4.53 mysql_num_rows() ... 82
5.4.54 mysql_options() .. 82
5.4.55 mysql_options4() .. 91
5.4.56 mysql_ping() .. 92
5.4.57 mysql_query() .. 93
5.4.58 mysql_real_connect() ... 93
5.4.59 mysql_real_connect_dns_srv() .. 98
5.4.60 mysql_real_escape_string() .. 99
5.4.61 mysql_real_escape_string_quote() .. 100
5.4.62 mysql_real_query() ... 102
5.4.63 mysql_refresh() .. 103
5.4.64 mysql_reload() ... 104
5.4.65 mysql_reset_connection() ... 105
5.4.66 mysql_reset_server_public_key() ... 105
5.4.67 mysql_result_metadata() ... 106
5.4.68 mysql_rollback() ... 106
5.4.69 mysql_row_seek() .. 107
5.4.70 mysql_row_tell() ... 107
5.4.71 mysql_select_db() .. 107
5.4.72 mysql_server_end() .. 108
5.4.73 mysql_server_init() ... 108
5.4.74 mysql_session_track_get_first() ... 109
5.4.75 mysql_session_track_get_next() .. 115
5.4.76 mysql_set_character_set() .. 116
5.4.77 mysql_set_local_infile_default() ... 116
5.4.78 mysql_set_local_infile_handler() .. 117
5.4.79 mysql_set_server_option() .. 118
5.4.80 mysql_shutdown() .. 119
5.4.81 mysql_sqlstate() ... 119
5.4.82 mysql_ssl_set() .. 120
5.4.83 mysql_stat() ... 121
5.4.84 mysql_store_result() ... 122
5.4.85 mysql_thread_id() ... 123
5.4.86 mysql_use_result() ... 124
5.4.87 mysql_warning_count() ... 125

This chapter describes the set of MySQL C API “basic” interface. For the most part, this interface
comprises the original set of C API data structures and functions to handle client/server interaction,
before others were invented for more specialized purposes (such as prepared-statement handling). Other
chapters describe more those more specialized data structures and functions.

5.1 Overview of the C API Basic Interface

Application programs should use this general outline for interacting with MySQL by means of the client
library:

34

Overview of the C API Basic Interface

1. Initialize the MySQL client library by calling mysql_library_init().

2. Initialize a connection handler by calling mysql_init() and connect to the server by calling a
connection-establishment function such as mysql_real_connect().

3. Issue SQL statements and process their results. (The following discussion provides more information
about how to do this.)

4. Close the connection to the MySQL server by calling mysql_close().

5. End use of the MySQL client library by calling mysql_library_end().

The purpose of calling mysql_library_init() and mysql_library_end() is to provide proper
initialization and finalization of the MySQL client library. For applications that are linked with the client
library, they provide improved memory management. If you do not call mysql_library_end(), a block
of memory remains allocated. (This does not increase the amount of memory used by the application, but
some memory leak detectors will complain about it.)

In a nonmultithreaded environment, the call to mysql_library_init() may be omitted, because
mysql_init() will invoke it automatically as necessary. However, mysql_library_init() is
not thread-safe in a multithreaded environment, and thus neither is mysql_init(), which calls
mysql_library_init(). You must either call mysql_library_init() prior to spawning any threads,
or else use a mutex to protect the call, whether you invoke mysql_library_init() or indirectly through
mysql_init(). This should be done prior to any other client library call.

To connect to the server, call mysql_init() to initialize a connection handler, then call a connection-
establishment function such as mysql_real_connect() with that handler (along with other information
such as the host name, user name, and password). When you are done with the connection, call
mysql_close() to terminate it. Do not use the handler after it has been closed.

Upon connection, mysql_real_connect() sets the reconnect flag (part of the MYSQL structure)
to a value of 0. You can use the MYSQL_OPT_RECONNECT option (deprecated as of MySQL 8.0.34) to
mysql_options() to control reconnection behavior. Setting the flag to 1 cause the client to attempt
reconnecting to the server before giving up if a statement cannot be performed because of a lost
connection.

Note

Beginning with 8.0.34, the automatic reconnection feature (Section 3.6.8,
“Automatic Reconnection Control”) is deprecated and subject to removal in a future
release of MySQL.

While a connection is active, the client may send SQL statements to the server using
mysql_real_query() or mysql_query(). The difference between the two is that mysql_query()
expects the query to be specified as a null-terminated string whereas mysql_real_query() expects
a counted string. If the string contains binary data (which may include null bytes), you must use
mysql_real_query().

For each non-SELECT query (for example, INSERT, UPDATE, DELETE), you can find out how many rows
were changed (affected) by calling mysql_affected_rows().

For SELECT queries, you retrieve the selected rows as a result set. (Note that some statements are
SELECT-like in that they return rows. These include SHOW, DESCRIBE, and EXPLAIN. Treat these
statements the same way as SELECT statements.)

There are two ways for a client to process result sets. One way is to retrieve the entire result set all at
once by calling mysql_store_result(). This function acquires from the server all the rows returned by

35

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/describe.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

C API Basic Data Structures

the query and stores them in the client. The second way is for the client to initiate a row-by-row result set
retrieval by calling mysql_use_result(). This function initializes the retrieval, but does not actually get
any rows from the server.

In both cases, you access rows by calling mysql_fetch_row(). With mysql_store_result(),
mysql_fetch_row() accesses rows that have previously been fetched from the server. With
mysql_use_result(), mysql_fetch_row() actually retrieves the row from the server. Information
about the size of the data in each row is available by calling mysql_fetch_lengths().

After you are done with a result set, call mysql_free_result() to free the memory used for it.

The two retrieval mechanisms are complementary. Choose the approach that is most appropriate for each
client application. In practice, clients tend to use mysql_store_result() more commonly.

An advantage of mysql_store_result() is that because the rows have all been fetched to the
client, you not only can access rows sequentially, you can move back and forth in the result set using
mysql_data_seek() or mysql_row_seek() to change the current row position within the result set.
You can also find out how many rows there are by calling mysql_num_rows(). On the other hand, the
memory requirements for mysql_store_result() may be very high for large result sets and you are
more likely to encounter out-of-memory conditions.

An advantage of mysql_use_result() is that the client requires less memory for the result set because
it maintains only one row at a time (and because there is less allocation overhead, mysql_use_result()
can be faster). Disadvantages are that you must process each row quickly to avoid tying up the server,
you do not have random access to rows within the result set (you can only access rows sequentially),
and the number of rows in the result set is unknown until you have retrieved them all. Furthermore, you
must retrieve all the rows even if you determine in mid-retrieval that you've found the information you were
looking for.

The API makes it possible for clients to respond appropriately to statements (retrieving rows only
as necessary) without knowing whether the statement is a SELECT. You can do this by calling
mysql_store_result() after each mysql_real_query() (or mysql_query()). If the result
set call succeeds, the statement was a SELECT and you can read the rows. If the result set call
fails, call mysql_field_count() to determine whether a result was actually to be expected. If
mysql_field_count() returns zero, the statement returned no data (indicating that it was an INSERT,
UPDATE, DELETE, and so forth), and was not expected to return rows. If mysql_field_count() is
nonzero, the statement should have returned rows, but did not. This indicates that the statement was a
SELECT that failed. See the description for mysql_field_count() for an example of how this can be
done.

Both mysql_store_result() and mysql_use_result() enable you to obtain information about
the fields that make up the result set (the number of fields, their names and types, and so forth). You
can access field information sequentially within the row by calling mysql_fetch_field() repeatedly,
or by field number within the row by calling mysql_fetch_field_direct(). The current field
cursor position may be changed by calling mysql_field_seek(). Setting the field cursor affects
subsequent calls to mysql_fetch_field(). You can also get information for fields all at once by calling
mysql_fetch_fields().

For detecting and reporting errors, MySQL provides access to error information by means of the
mysql_errno() and mysql_error() functions. These return the error code or error message for the
most recently invoked function that can succeed or fail, enabling you to determine when an error occurred
and what it was.

5.2 C API Basic Data Structures

36

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

C API Basic Data Structures

This section describes C API data structures other than those used for prepared statements, the
asynchronous interface, or the replication stream interface. For information about those, see Section 6.2,
“C API Prepared Statement Data Structures”, Section 7.2, “C API Asynchronous Interface Data
Structures”, and Section 10.2, “C API Binary Log Data Structures”.

• MYSQL

This structure represents the handler for one database connection. It is used for almost all MySQL
functions. Do not try to make a copy of a MYSQL structure. There is no guarantee that such a copy will be
usable.

• MYSQL_RES

This structure represents the result of a query that returns rows (SELECT, SHOW, DESCRIBE, EXPLAIN).
The information returned from a query is called the result set in the remainder of this section.

• MYSQL_ROW

This is a type-safe representation of one row of data. It is currently implemented as an array of
counted byte strings. (You cannot treat these as null-terminated strings if field values may contain
binary data, because such values may contain null bytes internally.) Rows are obtained by calling
mysql_fetch_row().

• MYSQL_FIELD

This structure contains metadata: information about a field, such as the field's name, type, and size. Its
members are described in more detail later in this section. You may obtain the MYSQL_FIELD structures
for each field by calling mysql_fetch_field() repeatedly. Field values are not part of this structure;
they are contained in a MYSQL_ROW structure.

• MYSQL_FIELD_OFFSET

This is a type-safe representation of an offset into a MySQL field list. (Used by mysql_field_seek().)
Offsets are field numbers within a row, beginning at zero.

• my_ulonglong

A type used for 64-bit unsigned integers. The my_ulonglong type was used before MySQL 8.0.18. As
of MySQL 8.0.18, use the uint64_t C type instead.

• my_bool

A boolean type, for values that are true (nonzero) or false (zero). The my_bool type was used before
MySQL 8.0. As of MySQL 8.0, use the bool or int C type instead.

Note

The change from my_bool to bool means that the mysql.h header file requires
a C++ or C99 compiler to compile.

The MYSQL_FIELD structure contains the members described in the following list. The definitions apply
primarily for columns of result sets such as those produced by SELECT statements. MYSQL_FIELD
structures are also used to provide metadata for OUT and INOUT parameters returned from stored
procedures executed using prepared CALL statements. For such parameters, some of the structure
members have a meaning different from the meaning for column values.

37

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/describe.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/call.html

C API Basic Data Structures

Tip

To view the MYSQL_FIELD member values for result sets interactively, start the
mysql client with the --column-type-info option, then execute some sample
queries.

• char * name

The name of the field, as a null-terminated string. If the field was given an alias with an AS clause, the
value of name is the alias. For a procedure parameter, the parameter name.

• char * org_name

The name of the field, as a null-terminated string. Aliases are ignored. For expressions, the value is an
empty string. For a procedure parameter, the parameter name.

• char * table

The name of the table containing this field, if it is not a calculated field. For calculated fields, the table
value is an empty string. If the column is selected from a view, table names the view. If the table or
view was given an alias with an AS clause, the value of table is the alias. For a UNION, the value is the
empty string. For a procedure parameter, the procedure name.

• char * org_table

The name of the table, as a null-terminated string. Aliases are ignored. If the column is selected from a
view, org_table names the view. If the column is selected from a derived table, org_table names
the base table. If a derived table wraps a view, org_table still names the base table. If the column
is an expression, org_table is the empty string. For a UNION, the value is the empty string. For a
procedure parameter, the value is the procedure name.

• char * db

The name of the database that the field comes from, as a null-terminated string. If the field is a
calculated field, db is an empty string. For a UNION, the value is the empty string. For a procedure
parameter, the name of the database containing the procedure.

• char * catalog

The catalog name. This value is always "def".

• char * def

The default value of this field, as a null-terminated string. This is set only if you use
mysql_list_fields().

• unsigned long length

The width of the field. This corresponds to the display length, in bytes.

The server determines the length value before it generates the result set, so this is the minimum length
required for a data type capable of holding the largest possible value from the result column, without
knowing in advance the actual values that will be produced by the query for the result set.

For string columns, the length value varies on the connection character set. For example, if the
character set is latin1, a single-byte character set, the length value for a SELECT 'abc' query is
3. If the character set is utf8mb4, a multibyte character set in which characters take up to 4 bytes, the
length value is 12.

38

https://dev.mysql.com/doc/refman/8.0/en/mysql-command-options.html#option_mysql_column-type-info
https://dev.mysql.com/doc/refman/8.0/en/union.html
https://dev.mysql.com/doc/refman/8.0/en/union.html
https://dev.mysql.com/doc/refman/8.0/en/union.html

C API Basic Data Structures

• unsigned long max_length

The maximum width of the field for the result set (the length in bytes of the longest field value for the
rows actually in the result set). If you use mysql_store_result() or mysql_list_fields(), this
contains the maximum length for the field. If you use mysql_use_result(), the value of this variable
is zero.

The value of max_length is the length of the string representation of the values in the result set. For
example, if you retrieve a FLOAT column and the “widest” value is -12.345, max_length is 7 (the
length of '-12.345').

If you are using prepared statements, max_length is not set by default because for the binary protocol
the lengths of the values depend on the types of the values in the result set. (See Section 6.2, “C
API Prepared Statement Data Structures”.) If you want the max_length values anyway, enable the
STMT_ATTR_UPDATE_MAX_LENGTH option with mysql_stmt_attr_set() and the lengths will be
set when you call mysql_stmt_store_result(). (See Section 6.4.3, “mysql_stmt_attr_set()”, and
Section 6.4.28, “mysql_stmt_store_result()”.)

• unsigned int name_length

The length of name.

• unsigned int org_name_length

The length of org_name.

• unsigned int table_length

The length of table.

• unsigned int org_table_length

The length of org_table.

• unsigned int db_length

The length of db.

• unsigned int catalog_length

The length of catalog.

• unsigned int def_length

The length of def.

• unsigned int flags

Bit-flags that describe the field. The flags value may have zero or more of the bits set that are shown in
the following table.

Flag Value Flag Description

NOT_NULL_FLAG Field cannot be NULL

PRI_KEY_FLAG Field is part of a primary key

UNIQUE_KEY_FLAG Field is part of a unique key

MULTIPLE_KEY_FLAG Field is part of a nonunique key

39

https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html

C API Basic Data Structures

Flag Value Flag Description

UNSIGNED_FLAG Field has the UNSIGNED attribute

ZEROFILL_FLAG Field has the ZEROFILL attribute

BINARY_FLAG Field has the BINARY attribute

AUTO_INCREMENT_FLAG Field has the AUTO_INCREMENT attribute

ENUM_FLAG Field is an ENUM

SET_FLAG Field is a SET

BLOB_FLAG Field is a BLOB or TEXT (deprecated)

TIMESTAMP_FLAG Field is a TIMESTAMP (deprecated)

NUM_FLAG Field is numeric; see additional notes following
table

NO_DEFAULT_VALUE_FLAG Field has no default value; see additional notes
following table

Some of these flags indicate data type information and are superseded by or used in conjunction with
the MYSQL_TYPE_xxx value in the field->type member described later:

• To check for BLOB or TIMESTAMP values, check whether type is MYSQL_TYPE_BLOB or
MYSQL_TYPE_TIMESTAMP. (The BLOB_FLAG and TIMESTAMP_FLAG flags are unneeded.)

• ENUM and SET values are returned as strings. For these, check that the type value is
MYSQL_TYPE_STRING and that the ENUM_FLAG or SET_FLAG flag is set in the flags value.

NUM_FLAG indicates that a column is numeric. This includes columns with a type of
MYSQL_TYPE_DECIMAL, MYSQL_TYPE_NEWDECIMAL, MYSQL_TYPE_TINY, MYSQL_TYPE_SHORT,
MYSQL_TYPE_LONG, MYSQL_TYPE_FLOAT, MYSQL_TYPE_DOUBLE, MYSQL_TYPE_NULL,
MYSQL_TYPE_LONGLONG, MYSQL_TYPE_INT24, and MYSQL_TYPE_YEAR.

NO_DEFAULT_VALUE_FLAG indicates that a column has no DEFAULT clause in its definition. This does
not apply to NULL columns (because such columns have a default of NULL), or to AUTO_INCREMENT
columns (which have an implied default value).

The following example illustrates a typical use of the flags value:

if (field->flags & NOT_NULL_FLAG)
 printf("Field cannot be null\n");

You may use the convenience macros shown in the following table to determine the boolean status of
the flags value.

Flag Status Description

IS_NOT_NULL(flags) True if this field is defined as NOT NULL

IS_PRI_KEY(flags) True if this field is a primary key

IS_BLOB(flags) True if this field is a BLOB or TEXT (deprecated;
test field->type instead)

• unsigned int decimals

The number of decimals for numeric fields, and the fractional seconds precision for temporal fields.

• unsigned int charsetnr

40

https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

C API Basic Data Structures

An ID number that indicates the character set/collation pair for the field.

Normally, character values in result sets are converted to the character set indicated by the
character_set_results system variable. In this case, charsetnr corresponds to the
character set indicated by that variable. Character set conversion can be suppressed by setting
character_set_results to NULL. In this case, charsetnr corresponds to the character set of the
original table column or expression. See also Connection Character Sets and Collations.

To distinguish between binary and nonbinary data for string data types, check whether the charsetnr
value is 63. If so, the character set is binary, which indicates binary rather than nonbinary data. This
enables you to distinguish BINARY from CHAR, VARBINARY from VARCHAR, and the BLOB types from the
TEXT types.

charsetnr values are the same as those displayed in the Id column of the SHOW COLLATION
statement or the ID column of the INFORMATION_SCHEMA COLLATIONS table. You can use those
information sources to see which character set and collation specific charsetnr values indicate:

mysql> SHOW COLLATION WHERE Id = 63;
+-----------+---------+----+---------+----------+---------+
| Collation | Charset | Id | Default | Compiled | Sortlen |
+-----------+---------+----+---------+----------+---------+
| binary | binary | 63 | Yes | Yes | 1 |
+-----------+---------+----+---------+----------+---------+

mysql> SELECT COLLATION_NAME, CHARACTER_SET_NAME
 FROM INFORMATION_SCHEMA.COLLATIONS WHERE ID = 33;
+-----------------+--------------------+
| COLLATION_NAME | CHARACTER_SET_NAME |
+-----------------+--------------------+
| utf8_general_ci | utf8 |
+-----------------+--------------------+

• enum enum_field_types type

The type of the field. The type value may be one of the MYSQL_TYPE_ symbols shown in the following
table.

Type Value Type Description

MYSQL_TYPE_TINY TINYINT field

MYSQL_TYPE_SHORT SMALLINT field

MYSQL_TYPE_LONG INTEGER field

MYSQL_TYPE_INT24 MEDIUMINT field

MYSQL_TYPE_LONGLONG BIGINT field

MYSQL_TYPE_DECIMAL DECIMAL or NUMERIC field

MYSQL_TYPE_NEWDECIMAL Precision math DECIMAL or NUMERIC

MYSQL_TYPE_FLOAT FLOAT field

MYSQL_TYPE_DOUBLE DOUBLE or REAL field

MYSQL_TYPE_BIT BIT field

MYSQL_TYPE_TIMESTAMP TIMESTAMP field

MYSQL_TYPE_DATE DATE field

MYSQL_TYPE_TIME TIME field

41

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/charset-connection.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/show-collation.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-collations-table.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/bit-type.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html

C API Basic Function Reference

Type Value Type Description

MYSQL_TYPE_DATETIME DATETIME field

MYSQL_TYPE_YEAR YEAR field

MYSQL_TYPE_STRING CHAR or BINARY field

MYSQL_TYPE_VAR_STRING VARCHAR or VARBINARY field

MYSQL_TYPE_BLOB BLOB or TEXT field (use max_length to determine
the maximum length)

MYSQL_TYPE_SET SET field

MYSQL_TYPE_ENUM ENUM field

MYSQL_TYPE_GEOMETRY Spatial field

MYSQL_TYPE_NULL NULL-type field

The MYSQL_TYPE_TIME2, MYSQL_TYPE_DATETIME2, and MYSQL_TYPE_TIMESTAMP2) type codes
are used only on the server side. Clients see the MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, and
MYSQL_TYPE_TIMESTAMP codes.

You can use the IS_NUM() macro to test whether a field has a numeric type. Pass the type value to
IS_NUM() and it evaluates to TRUE if the field is numeric:

if (IS_NUM(field->type))
 printf("Field is numeric\n");

ENUM and SET values are returned as strings. For these, check that the type value is
MYSQL_TYPE_STRING and that the ENUM_FLAG or SET_FLAG flag is set in the flags value.

5.3 C API Basic Function Reference

The following table summarizes the functions available in the C API basic interface. For greater detail, see
the descriptions in Section 5.4, “C API Basic Function Descriptions”.

Table 5.1 C API Basic Interface Functions

Name Description Introduced Deprecated

mysql_affected_rows()Number of rows
changed/deleted/inserted
by last UPDATE, DELETE,
or INSERT statement

mysql_autocommit() Set autocommit mode

mysql_bind_param() Define query attributes
for next statement
executed

8.0.23

mysql_change_user() Change user and
database on an open
connection

mysql_character_set_name()Default character
set name for current
connection

mysql_close() Close connection to
server

42

https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/enum.html
https://dev.mysql.com/doc/refman/8.0/en/set.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

C API Basic Function Reference

Name Description Introduced Deprecated

mysql_commit() Commit transaction

mysql_connect() Connect to MySQL
server

Yes

mysql_create_db() Create database Yes

mysql_data_seek() Seek to arbitrary row
number in query result
set

mysql_debug() Perform DBUG_PUSH with
given string

mysql_drop_db() Drop database Yes

mysql_dump_debug_info()Cause server to write
debug information to
error log

mysql_eof() Determine whether last
row of result set has
been read

Yes

mysql_errno() Error number for most
recently invoked MySQL
function

mysql_error() Error message for most
recently invoked MySQL
function

mysql_escape_string()Escape special
characters in string for
use in SQL statement

mysql_fetch_field() Type of the next table
field

mysql_fetch_field_direct()Table field type for given
field number

mysql_fetch_fields()Return array of all field
structures

mysql_fetch_lengths()Return lengths of all
columns in current row

mysql_fetch_row() Fetch next result set row

mysql_field_count() Number of result columns
for most recent statement

mysql_field_seek() Seek to column within
result set row

mysql_field_tell() Field position for last
mysql_fetch_field()
call

mysql_free_result() Free result set memory

mysql_free_ssl_session_data()Dispose of session
data handle from last

8.0.29

43

C API Basic Function Reference

Name Description Introduced Deprecated
mysql_get_ssl_session_data()
call

mysql_get_character_set_info()Information about default
character set

mysql_get_client_info()Client version (string)

mysql_get_client_version()Client version (integer)

mysql_get_host_info()Information about the
connection

mysql_get_option() Value of a
mysql_options()
option

mysql_get_proto_info()Protocol version used by
the connection

mysql_get_server_info()Server version number
(string)

mysql_get_server_version()Server version number
(integer)

mysql_get_ssl_cipher()Current SSL cipher

mysql_get_ssl_session_data()Return session data for
SSL-enabled connection

8.0.29

mysql_get_ssl_session_reused()Whether a session is
reused

8.0.29

mysql_hex_string() Encode string in
hexadecimal format

mysql_info() Information about most
recently executed
statement

mysql_init() Get or initialize a MYSQL
structure

mysql_insert_id() ID generated for an
AUTO_INCREMENT
column by previous
statement

mysql_kill() Kill a thread Yes

mysql_library_end() Finalize MySQL C API
library

mysql_library_init()Initialize MySQL C API
library

mysql_list_dbs() Return database names
matching regular
expression

mysql_list_fields() Return field names
matching regular
expression

Yes

44

C API Basic Function Reference

Name Description Introduced Deprecated

mysql_list_processes()List of current server
threads

Yes

mysql_list_tables() Return table names
matching regular
expression

mysql_more_results()Check whether more
results exist

mysql_next_result() Return/initiate next
result in multiple-result
execution

mysql_num_fields() Number of columns in
result set

mysql_num_rows() Number of rows in result
set

mysql_options() Set option prior to
connecting

mysql_options4() Set option prior to
connecting

mysql_ping() Ping server

mysql_query() Execute statement

mysql_real_connect()Connect to MySQL
server

mysql_real_connect_dns_srv()Connect to MySQL
server using DNS SRV
record

8.0.22

mysql_real_escape_string()Encode special
characters in statement
string

mysql_real_escape_string_quote()Encode special
characters in statement
string accounting for
quoting context

mysql_real_query() Execute statement

mysql_refresh() Flush or reset tables and
caches

Yes

mysql_reload() Reload grant tables Yes

mysql_reset_connection()Reset the connection to
clear session state

mysql_reset_server_public_key()Clear cached RSA public
key from client library

mysql_result_metadata()Whether a result set has
metadata

8.0.13

mysql_rollback() Roll back transaction

45

C API Basic Function Descriptions

Name Description Introduced Deprecated

mysql_row_seek() Seek to row offset in
result set

mysql_row_tell() Current position within
result set row

mysql_select_db() Select database

mysql_server_end() Finalize MySQL C API
library

Yes

mysql_server_init() Initialize MySQL C API
library

Yes

mysql_session_track_get_first()First part of session
state-change information

mysql_session_track_get_next()Next part of session
state-change information

mysql_set_character_set()Set current connection
default character set

mysql_set_local_infile_default()Set LOAD DATA LOCAL
handler callbacks to
default values

mysql_set_local_infile_handler()Install application-specific
LOAD DATA LOCAL
handler callbacks

mysql_set_server_option()Set option for current
connection

mysql_shutdown() Shut down MySQL server Yes

mysql_sqlstate() SQLSTATE value for
most recently invoked
MySQL function

mysql_ssl_set() Prepare to establish SSL
connection to server

8.0.35

mysql_stat() Server status

mysql_store_result()Retrieve and store entire
result set

mysql_thread_id() Current thread ID

mysql_use_result() Initiate row-by-row result
set retrieval

mysql_warning_count()Warning count for
previous statement

5.4 C API Basic Function Descriptions

This section describes C API functions other than those used for prepared statements, the asynchronous
interface, or the replication stream interface. For information about those, see Section 6.4, “C API Prepared
Statement Function Descriptions”, Chapter 7, C API Asynchronous Interface, and Chapter 10, C API
Binary Log Interface.

46

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

mysql_affected_rows()

In the descriptions here, a parameter or return value of NULL means NULL in the sense of the C
programming language, not a MySQL NULL value.

Functions that return a value generally return a pointer or an integer. Unless specified otherwise, functions
returning a pointer return a non-NULL value to indicate success or a NULL value to indicate an error, and
functions returning an integer return zero to indicate success or nonzero to indicate an error. Note that
“nonzero” means just that. Unless the function description says otherwise, do not test against a value other
than zero:

if (result) /* correct */
 ... error ...

if (result < 0) /* incorrect */
 ... error ...

if (result == -1) /* incorrect */
 ... error ...

When a function returns an error, the Errors subsection of the function description lists the possible types
of errors. You can find out which of these occurred by calling mysql_errno(). A string representation of
the error may be obtained by calling mysql_error().

5.4.1 mysql_affected_rows()
uint64_t
mysql_affected_rows(MYSQL *mysql)

Description

mysql_affected_rows() may be called immediately after executing a statement with
mysql_real_query() or mysql_query(). It returns the number of rows changed, deleted, or
inserted by the last statement if it was an UPDATE, DELETE, or INSERT. For SELECT statements,
mysql_affected_rows() works like mysql_num_rows().

For UPDATE statements, the affected-rows value by default is the number of rows actually changed. If you
specify the CLIENT_FOUND_ROWS flag to mysql_real_connect() when connecting to mysqld, the
affected-rows value is the number of rows “found”; that is, matched by the WHERE clause.

For REPLACE statements, the affected-rows value is 2 if the new row replaced an old row, because in this
case, one row was inserted after the duplicate was deleted.

For INSERT ... ON DUPLICATE KEY UPDATE statements, the affected-rows value per row is 1 if the
row is inserted as a new row, 2 if an existing row is updated, and 0 if an existing row is set to its current
values. If you specify the CLIENT_FOUND_ROWS flag, the affected-rows value is 1 (not 0) if an existing row
is set to its current values.

Following a CALL statement for a stored procedure, mysql_affected_rows() returns the value that it
would return for the last statement executed within the procedure, or 0 if that statement would return -1.
Within the procedure, you can use ROW_COUNT() at the SQL level to obtain the affected-rows value for
individual statements.

mysql_affected_rows() returns a meaningful value for a wide range of statements. For details, see
the description for ROW_COUNT() in Information Functions.

Return Values

An integer greater than zero indicates the number of rows affected or retrieved. Zero indicates that no
records were updated for an UPDATE statement, no rows matched the WHERE clause in the query or that

47

https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/replace.html
https://dev.mysql.com/doc/refman/8.0/en/insert-on-duplicate.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_row-count
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_row-count
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html
https://dev.mysql.com/doc/refman/8.0/en/update.html

mysql_autocommit()

no query has yet been executed. -1 indicates that the query returned an error or that, for a SELECT query,
mysql_affected_rows() was called prior to calling mysql_store_result().

Because mysql_affected_rows() returns an unsigned value, you can check for -1 by comparing the
return value to (uint64_t)-1 (or to (uint64_t)~0, which is equivalent).

Errors

None.

Example

char *stmt = "UPDATE products SET cost=cost*1.25
 WHERE group=10";
mysql_query(&mysql,stmt);
printf("%ld products updated",
 (long) mysql_affected_rows(&mysql));

5.4.2 mysql_autocommit()
bool
mysql_autocommit(MYSQL *mysql,
 bool mode)

Description

Sets autocommit mode on if mode is 1, off if mode is 0.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

5.4.3 mysql_bind_param()
bool
mysql_bind_param(MYSQL *mysql,
 unsigned n_params,
 MYSQL_BIND *bind,
 const char **name)

Description

mysql_bind_param(), available as of MySQL 8.0.23, enables defining attributes that apply to the next
query sent to the server. For discussion of the purpose and use of query attributes, see Query Attributes.

Attributes defined with mysql_bind_param() apply to nonprepared statements executed in
blocking fashion with mysql_real_query() or mysql_query(), or in nonblocking fashion with
mysql_real_query_nonblocking(). Attributes do not apply to prepared statements executed with
mysql_stmt_execute().

If multiple mysql_bind_param() calls occur prior to query execution, only the last call applies.

Attributes defined with mysql_bind_param() apply only to the next query executed and are cleared
thereafter. The mysql_reset_connection() and mysql_change_user() functions also clear any
currently defined attributes.

48

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html

mysql_bind_param()

mysql_bind_param() is backward compatible. For connections to older servers that do not support
query attributes, no attributes are sent.

Arguments:

• mysql: The connection handler returned from mysql_init().

• n_params: The number of attributes defined by the bind and name arguments.

• bind: The address of an array of MYSQL_BIND structures. The array should contain n_params
elements, one for each attribute.

• name: The address of an array of character pointers, each pointing to a null-terminated string defining
an attribute name. The array should contain n_params elements, one for each attribute. Query attribute
names are transmitted using the character set indicated by the character_set_client system
variable.

Each attribute has a name, a value, and a data type. The name argument defines attribute names, and the
bind argument defines their values and types. For a description of the members of the MYSQL_BIND data
structure used for the bind argument, see Section 6.2, “C API Prepared Statement Data Structures”.

Each attribute type most be one of the MYSQL_TYPE_xxx types listed in Table 6.1, “Permissible Input Data
Types for MYSQL_BIND Structures”, except that MYSQL_TYPE_BLOB and MYSQL_TYPE_TEXT are not
supported. If an unsupported type is specified for an attribute, a CR_UNSUPPORTED_PARAM_TYPE error
occurs.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The attribute data type is not supported.

Example

This example uses mysql_bind_param() to define string and integer query attributes, then retrieves and
displays their values by name using the mysql_query_attribute_string() user-defined function:

MYSQL_BIND bind[2];
const char *name[2] = { "name1", "name2" };
char *char_data = "char value";
int int_data = 3;
unsigned long length[2] = { 10, sizeof(int) };
int status;

/* clear and initialize attribute butffers */
memset(bind, 0, sizeof (bind));

bind[0].buffer_type = MYSQL_TYPE_STRING;
bind[0].buffer = char_data;
bind[0].length = &length[0];
bind[0].is_null = 0;

bind[1].buffer_type = MYSQL_TYPE_LONG;
bind[1].buffer = (char *) &int_data;
bind[1].length = &length[1];
bind[1].is_null = 0;

49

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/refman/8.0/en/query-attributes.html#function_mysql-query-attribute-string

mysql_change_user()

/* bind attributes */
status = mysql_bind_param(&mysql, 2, bind, name);
test_error(&mysql, status);
const char *query =
"SELECT mysql_query_attribute_string('name1'),"
" mysql_query_attribute_string('name2')";
status = mysql_real_query(&mysql, query, strlen(query));
test_error(&mysql, status);
MYSQL_RES *result = mysql_store_result(&mysql);
MYSQL_ROW row = mysql_fetch_row(result);
unsigned long *lengths = mysql_fetch_lengths(result);
for(int i = 0; i < 2; i++)
{
 printf("attribute %d: [%.*s]\n", i+1, (int) lengths[i],
 row[i] ? row[i] : "NULL");
}
mysql_free_result(result);

When executed, the code produces this result:

attribute 1: [char value]
attribute 2: [3]

5.4.4 mysql_change_user()
bool
mysql_change_user(MYSQL *mysql,
 const char *user,
 const char *password,
 const char *db)

Description

Changes the user and causes the database specified by db to become the default (current) database on
the connection specified by mysql. In subsequent queries, this database is the default for table references
that include no explicit database specifier.

mysql_change_user() fails if the connected user cannot be authenticated or does not have permission
to use the database. In this case, the user and database are not changed.

Pass a db parameter of NULL if you do not want to have a default database.

This function resets the session state as if one had done a new connect and reauthenticated. (See
Section 3.6.8, “Automatic Reconnection Control”.) It always performs a ROLLBACK of any active
transactions, closes and drops all temporary tables, and unlocks all locked tables. It resets session system
variables to the values of the corresponding global system variables, releases prepared statements, closes
HANDLER variables, and releases locks acquired with GET_LOCK(). Clears any current query attributes
defined as a result of calling mysql_bind_param(). These effects occur even if the user did not change.

To reset the connection state in a more lightweight manner without changing the user, use
mysql_reset_connection().

Return Values

Zero for success. Nonzero if an error occurred.

Errors

The same that you can get from mysql_real_connect(), plus:

50

https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/handler.html
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock

mysql_character_set_name()

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• ER_UNKNOWN_COM_ERROR

The MySQL server does not implement this command (probably an old server).

• ER_ACCESS_DENIED_ERROR

The user or password was wrong.

• ER_BAD_DB_ERROR

The database did not exist.

• ER_DBACCESS_DENIED_ERROR

The user did not have access rights to the database.

• ER_WRONG_DB_NAME

The database name was too long.

Example

if (mysql_change_user(&mysql, "user", "password", "new_database"))
{
 fprintf(stderr, "Failed to change user. Error: %s\n",
 mysql_error(&mysql));
}

5.4.5 mysql_character_set_name()
const char *
mysql_character_set_name(MYSQL *mysql)

Description

Returns the default character set name for the current connection.

Return Values

The default character set name

Errors

None.

51

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unknown_com_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_access_denied_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_bad_db_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_dbaccess_denied_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_wrong_db_name

mysql_close()

5.4.6 mysql_close()

void
mysql_close(MYSQL *mysql)

Description

Closes a previously opened connection. mysql_close() also deallocates the connection handler pointed
to by mysql if the handler was allocated automatically by mysql_init() or mysql_connect(). Do not
use the handler after it has been closed.

Return Values

None.

Errors

None.

5.4.7 mysql_commit()

bool
mysql_commit(MYSQL *mysql)

Description

Commits the current transaction.

The action of this function is subject to the value of the completion_type system variable. In particular,
if the value of completion_type is RELEASE (or 2), the server performs a release after terminating a
transaction and closes the client connection. Call mysql_close() from the client program to close the
connection from the client side.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

5.4.8 mysql_connect()

MYSQL *
mysql_connect(MYSQL *mysql,
 const char *host,
 const char *user,
 const char *passwd)

Description

This function is deprecated. Use mysql_real_connect() instead.

5.4.9 mysql_create_db()

int

52

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_completion_type
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_completion_type

mysql_data_seek()

mysql_create_db(MYSQL *mysql,
 const char *db)

Description

Creates the database named by the db parameter.

This function is deprecated. Use mysql_real_query() or mysql_query() to issue an SQL CREATE
DATABASE statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

if(mysql_create_db(&mysql, "my_database"))
{
 fprintf(stderr, "Failed to create new database. Error: %s\n",
 mysql_error(&mysql));
}

5.4.10 mysql_data_seek()
void
mysql_data_seek(MYSQL_RES *result,
 uint64_t offset)

Description

Seeks to an arbitrary row in a query result set. The offset value is a row number. Specify a value in the
range from 0 to mysql_num_rows(result)-1.

This function requires that the result set structure contains the entire result of the query, so
mysql_data_seek() may be used only in conjunction with mysql_store_result(), not with
mysql_use_result().

Return Values

None.

53

https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/refman/8.0/en/create-database.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_debug()

Errors

None.

5.4.11 mysql_debug()
void
mysql_debug(const char *debug)

Description

Does a DBUG_PUSH with the given string. mysql_debug() uses the Fred Fish debug library. To use this
function, you must compile the client library to support debugging. See The DBUG Package.

Return Values

None.

Errors

None.

Example

The call shown here causes the client library to generate a trace file in /tmp/client.trace on the client
machine:

mysql_debug("d:t:O,/tmp/client.trace");

5.4.12 mysql_drop_db()
int
mysql_drop_db(MYSQL *mysql,
 const char *db)

Description

Drops the database named by the db parameter.

This function is deprecated. Use mysql_real_query() or mysql_query() to issue an SQL DROP
DATABASE statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

54

https://dev.mysql.com/doc/refman/8.0/en/dbug-package.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/refman/8.0/en/drop-database.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost

mysql_dump_debug_info()

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

if(mysql_drop_db(&mysql, "my_database"))
 fprintf(stderr, "Failed to drop the database: Error: %s\n",
 mysql_error(&mysql));

5.4.13 mysql_dump_debug_info()
int
mysql_dump_debug_info(MYSQL *mysql)

Description

Instructs the server to write debugging information to the error log. The connected user must have the
SUPER privilege.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.14 mysql_eof()
bool
mysql_eof(MYSQL_RES *result)

Description

This function is deprecated. mysql_errno() or mysql_error() may be used instead.

mysql_eof() determines whether the last row of a result set has been read.

If you acquire a result set from a successful call to mysql_store_result(), the client receives the
entire set in one operation. In this case, a NULL return from mysql_fetch_row() always means the

55

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_super
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_errno()

end of the result set has been reached and it is unnecessary to call mysql_eof(). When used with
mysql_store_result(), mysql_eof() always returns true.

On the other hand, if you use mysql_use_result() to initiate a result set retrieval, the rows of the
set are obtained from the server one by one as you call mysql_fetch_row() repeatedly. Because an
error may occur on the connection during this process, a NULL return value from mysql_fetch_row()
does not necessarily mean the end of the result set was reached normally. In this case, you can use
mysql_eof() to determine what happened. mysql_eof() returns a nonzero value if the end of the result
set was reached and zero if an error occurred.

Historically, mysql_eof() predates the standard MySQL error functions mysql_errno() and
mysql_error(). Because those error functions provide the same information, their use is preferred over
mysql_eof(), which is deprecated. (In fact, they provide more information, because mysql_eof()
returns only a boolean value whereas the error functions indicate a reason for the error when one occurs.)

Return Values

Zero for success. Nonzero if the end of the result set has been reached.

Errors

None.

Example

The following example shows how you might use mysql_eof():

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{
 // do something with data
}
if(!mysql_eof(result)) // mysql_fetch_row() failed due to an error
{
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

However, you can achieve the same effect with the standard MySQL error functions:

mysql_query(&mysql,"SELECT * FROM some_table");
result = mysql_use_result(&mysql);
while((row = mysql_fetch_row(result)))
{
 // do something with data
}
if(mysql_errno(&mysql)) // mysql_fetch_row() failed due to an error
{
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
}

5.4.15 mysql_errno()
unsigned int
mysql_errno(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_errno() returns the error code for the most recently
invoked API function that can succeed or fail. A return value of zero means that no error occurred. Client

56

mysql_error()

error message numbers are listed in the MySQL errmsg.h header file. Server error message numbers
are listed in mysqld_error.h. Errors also are listed at Error Messages and Common Problems.

Note

Some functions such as mysql_fetch_row() do not set mysql_errno() if
they succeed. A rule of thumb is that all functions that have to ask the server for
information reset mysql_errno() if they succeed.

MySQL-specific error numbers returned by mysql_errno() differ from SQLSTATE values returned by
mysql_sqlstate(). For example, the mysql client program displays errors using the following format,
where 1146 is the mysql_errno() value and '42S02' is the corresponding mysql_sqlstate() value:

$> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Return Values

An error code value for the last mysql_xxx() call, if it failed. zero means no error occurred.

Errors

None.

5.4.16 mysql_error()
const char *
mysql_error(MYSQL *mysql)

Description

For the connection specified by mysql, mysql_error() returns a null-terminated string containing the
error message for the most recently invoked API function that failed. If a function did not fail, the return
value of mysql_error() may be the previous error or an empty string to indicate no error.

A rule of thumb is that all functions that have to ask the server for information reset mysql_error() if
they succeed.

For functions that reset mysql_error(), either of these two tests can be used to check for an error:

if(*mysql_error(&mysql))
{
 // an error occurred
}

if(mysql_error(&mysql)[0])
{
 // an error occurred
}

The language of the client error messages may be changed by recompiling the MySQL client library. You
can choose error messages in several different languages. See Setting the Error Message Language.

Return Values

A null-terminated character string that describes the error. An empty string if no error occurred.

Errors

None.

57

https://dev.mysql.com/doc/refman/8.0/en/error-handling.html
https://dev.mysql.com/doc/refman/8.0/en/error-message-language.html

mysql_escape_string()

5.4.17 mysql_escape_string()

Note

Do not use this function. mysql_escape_string() does not have arguments
that enable it to respect the current character set or the quoting context. Use
mysql_real_escape_string_quote() instead.

5.4.18 mysql_fetch_field()

MYSQL_FIELD *
mysql_fetch_field(MYSQL_RES *result)

Description

Returns the definition of one column of a result set as a MYSQL_FIELD structure. Call this function
repeatedly to retrieve information about all columns in the result set. mysql_fetch_field() returns
NULL when no more fields are left.

For metadata-optional connections, this function returns NULL when the resultset_metadata
system variable is set to NONE. To check whether a result set has metadata, use the
mysql_result_metadata() function. For details about managing result set metadata transfer, see
Section 3.6.7, “Optional Result Set Metadata”.

mysql_fetch_field() is reset to return information about the first field each time you execute
a new SELECT query. The field returned by mysql_fetch_field() is also affected by calls to
mysql_field_seek().

If you've called mysql_real_query() or mysql_query() to perform a SELECT on a table but
have not called mysql_store_result(), MySQL returns the default blob length (8KB) if you call
mysql_fetch_field() to ask for the length of a BLOB field. (The 8KB size is chosen because MySQL
does not know the maximum length for the BLOB. This should be made configurable sometime.) Once
you've retrieved the result set, field->max_length contains the length of the largest value for this
column in the specific query.

Return Values

The MYSQL_FIELD structure for the current column. NULL if no columns are left or the result set has no
metadata.

Errors

None.

Example

MYSQL_FIELD *field;

while((field = mysql_fetch_field(result)))
{
 printf("field name %s\n", field->name);
}

5.4.19 mysql_fetch_field_direct()

MYSQL_FIELD *

58

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html

mysql_fetch_fields()

mysql_fetch_field_direct(MYSQL_RES *result,
 unsigned int fieldnr)

Description

Given a field number fieldnr for a column within a result set, returns that column's field definition as a
MYSQL_FIELD structure. Use this function to retrieve the definition for an arbitrary column. Specify a value
for fieldnr in the range from 0 to mysql_num_fields(result)-1.

For metadata-optional connections, this function returns NULL when the resultset_metadata
system variable is set to NONE. To check whether a result set has metadata, use the
mysql_result_metadata() function. For details about managing result set metadata transfer, see
Section 3.6.7, “Optional Result Set Metadata”.

Return Values

The MYSQL_FIELD structure for the specified column. NULL if the result set has no metadata.

Errors

None.

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *field;

num_fields = mysql_num_fields(result);
for(i = 0; i < num_fields; i++)
{
 field = mysql_fetch_field_direct(result, i);
 printf("Field %u is %s\n", i, field->name);
}

5.4.20 mysql_fetch_fields()

MYSQL_FIELD *
mysql_fetch_fields(MYSQL_RES *result)

Description

Returns an array of all MYSQL_FIELD structures for a result set. Each structure provides the field definition
for one column of the result set.

For metadata-optional connections, this function returns NULL when the resultset_metadata
system variable is set to NONE. To check whether a result set has metadata, use the
mysql_result_metadata() function. For details about managing result set metadata transfer, see
Section 3.6.7, “Optional Result Set Metadata”.

Return Values

An array of MYSQL_FIELD structures for all columns of a result set. NULL if the result set has no metadata.

Errors

None.

59

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata

mysql_fetch_lengths()

Example

unsigned int num_fields;
unsigned int i;
MYSQL_FIELD *fields;

num_fields = mysql_num_fields(result);
fields = mysql_fetch_fields(result);
for(i = 0; i < num_fields; i++)
{
 printf("Field %u is %s\n", i, fields[i].name);
}

5.4.21 mysql_fetch_lengths()
unsigned long *
mysql_fetch_lengths(MYSQL_RES *result)

Description

Returns the lengths of the columns of the current row within a result set. If you plan to copy field values,
this length information is also useful for optimization, because you can avoid calling strlen(). In addition,
if the result set contains binary data, you must use this function to determine the size of the data, because
strlen() returns incorrect results for any field containing null characters.

The length for empty columns and for columns containing NULL values is zero. To see how to distinguish
these two cases, see the description for mysql_fetch_row().

Return Values

An array of unsigned long integers representing the size of each column (not including any terminating null
bytes). NULL if an error occurred.

Errors

mysql_fetch_lengths() is valid only for the current row of the result set. It returns NULL if you call it
before calling mysql_fetch_row() or after retrieving all rows in the result.

Example

MYSQL_ROW row;
unsigned long *lengths;
unsigned int num_fields;
unsigned int i;

row = mysql_fetch_row(result);
if (row)
{
 num_fields = mysql_num_fields(result);
 lengths = mysql_fetch_lengths(result);
 for(i = 0; i < num_fields; i++)
 {
 printf("Column %u is %lu bytes in length.\n",
 i, lengths[i]);
 }
}

5.4.22 mysql_fetch_row()
MYSQL_ROW
mysql_fetch_row(MYSQL_RES *result)

60

mysql_fetch_row()

Description

Note

mysql_fetch_row() is a synchronous function. Its asynchronous counterpart
is mysql_fetch_row_nonblocking(), for use by applications that require
asynchronous communication with the server. See Chapter 7, C API Asynchronous
Interface.

mysql_fetch_row() retrieves the next row of a result set:

• When used after mysql_store_result() or mysql_store_result_nonblocking(),
mysql_fetch_row() returns NULL if there are no more rows to retrieve.

• When used after mysql_use_result(), mysql_fetch_row() returns NULL if there are no more
rows to retrieve or an error occurred.

The number of values in the row is given by mysql_num_fields(result). If row holds the
return value from a call to mysql_fetch_row(), pointers to the values are accessed as row[0] to
row[mysql_num_fields(result)-1]. NULL values in the row are indicated by NULL pointers.

The lengths of the field values in the row may be obtained by calling mysql_fetch_lengths(). Empty
fields and fields containing NULL both have length 0; you can distinguish these by checking the pointer for
the field value. If the pointer is NULL, the field is NULL; otherwise, the field is empty.

Return Values

A MYSQL_ROW structure for the next row, or NULL. The meaning of a NULL return depends on which
function was called preceding mysql_fetch_row():

• When used after mysql_store_result() or mysql_store_result_nonblocking(),
mysql_fetch_row() returns NULL if there are no more rows to retrieve.

• When used after mysql_use_result(), mysql_fetch_row() returns NULL if there are no
more rows to retrieve or an error occurred. To determine whether an error occurred, check whether
mysql_error() returns a nonempty string or mysql_errno() returns nonzero.

Errors

Errors are not reset between calls to mysql_fetch_row()

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

MYSQL_ROW row;
unsigned int num_fields;
unsigned int i;

num_fields = mysql_num_fields(result);
while ((row = mysql_fetch_row(result)))
{
 unsigned long *lengths;

61

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_field_count()

 lengths = mysql_fetch_lengths(result);
 for(i = 0; i < num_fields; i++)
 {
 printf("[%.*s] ", (int) lengths[i],
 row[i] ? row[i] : "NULL");
 }
 printf("\n");
}

5.4.23 mysql_field_count()
unsigned int
mysql_field_count(MYSQL *mysql)

Description

Returns the number of columns for the most recent query on the connection.

The normal use of this function is when mysql_store_result() returned NULL (and thus you
have no result set pointer). In this case, you can call mysql_field_count() to determine whether
mysql_store_result() should have produced a nonempty result. This enables the client program to
take proper action without knowing whether the query was a SELECT (or SELECT-like) statement. The
example shown here illustrates how this may be done.

See Section 3.6.9, “NULL mysql_store_result() Return After mysql_query() Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{
 // error
}
else // query succeeded, process any data returned by it
{
 result = mysql_store_result(&mysql);
 if (result) // there are rows
 {
 num_fields = mysql_num_fields(result);
 // retrieve rows, then call mysql_free_result(result)
 }
 else // mysql_store_result() returned nothing; should it have?
 {
 if(mysql_field_count(&mysql) == 0)
 {
 // query does not return data
 // (it was not a SELECT)
 num_rows = mysql_affected_rows(&mysql);
 }
 else // mysql_store_result() should have returned data
 {
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));

62

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

mysql_field_seek()

 }
 }
}

An alternative is to replace the mysql_field_count(&mysql) call with mysql_errno(&mysql). In
this case, you are checking directly for an error from mysql_store_result() rather than inferring from
the value of mysql_field_count() whether the statement was a SELECT.

5.4.24 mysql_field_seek()
MYSQL_FIELD_OFFSET
mysql_field_seek(MYSQL_RES *result,
 MYSQL_FIELD_OFFSET offset)

Description

Sets the field cursor to the given offset. The next call to mysql_fetch_field() retrieves the field
definition of the column associated with that offset.

To seek to the beginning of a row, pass an offset value of zero.

Return Values

The previous value of the field cursor.

Errors

None.

5.4.25 mysql_field_tell()
MYSQL_FIELD_OFFSET
mysql_field_tell(MYSQL_RES *result)

Description

Returns the position of the field cursor used for the last mysql_fetch_field(). This value can be used
as an argument to mysql_field_seek().

Return Values

The current offset of the field cursor.

Errors

None.

5.4.26 mysql_free_result()
void
mysql_free_result(MYSQL_RES *result)

Description

Note

mysql_free_result() is a synchronous function. Its asynchronous counterpart
is mysql_free_result_nonblocking(), for use by applications that require

63

https://dev.mysql.com/doc/refman/8.0/en/select.html

mysql_free_ssl_session_data()

asynchronous communication with the server. See Chapter 7, C API Asynchronous
Interface.

mysql_free_result() frees the memory allocated for a result set by mysql_store_result(),
mysql_use_result(), mysql_list_dbs(), and so forth. When you are done with a result set, you
must free the memory it uses by calling mysql_free_result().

Do not attempt to access a result set after freeing it.

Return Values

None.

Errors

None.

5.4.27 mysql_free_ssl_session_data()
bool
mysql_free_ssl_session_data(MYSQL *, void *data)

Description

mysql_free_ssl_session_data() disposes of a session data handle that was obtained
previously by calling mysql_get_ssl_session_data(). It frees the memory that was allocated.
Never call this function for any session that is still in use or if the handle was not obtained with
mysql_get_ssl_session_data(). The call you make to mysql_get_ssl_session_data() should
match exactly the call to mysql_free_ssl_session_data().

Do not attempt to use the session data handle after freeing it.

Return Values

FALSE on success. TRUE on failure.

Errors

None.

5.4.28 mysql_get_character_set_info()
void
mysql_get_character_set_info(MYSQL *mysql,
 MY_CHARSET_INFO *cs)

Description

This function provides information about the default client character set. The default character set may be
changed with the mysql_set_character_set() function.

Example

This example shows the fields that are available in the MY_CHARSET_INFO structure:

if (!mysql_set_character_set(&mysql, "utf8"))
{
 MY_CHARSET_INFO cs;
 mysql_get_character_set_info(&mysql, &cs);

64

mysql_get_client_info()

 printf("character set information:\n");
 printf("character set+collation number: %d\n", cs.number);
 printf("collation name: %s\n", cs.name);
 printf("character set name: %s\n", cs.csname);
 printf("comment: %s\n", cs.comment);
 printf("directory: %s\n", cs.dir);
 printf("multi byte character min. length: %d\n", cs.mbminlen);
 printf("multi byte character max. length: %d\n", cs.mbmaxlen);
}

5.4.29 mysql_get_client_info()
const char *
mysql_get_client_info(void)

Description

Returns a string that represents the MySQL client library version (for example, "8.0.45").

The function value is the version of MySQL that provides the client library. For more information, see
Section 3.6.12, “Obtaining the Server Version and Client Library Version”.

Return Values

A character string that represents the MySQL client library version.

Errors

None.

5.4.30 mysql_get_client_version()
unsigned long
mysql_get_client_version(void)

Description

Returns an integer that represents the MySQL client library version. The value has the format XYYZZ,
where X is the major version, YY is the release level (or minor version), and ZZ is the sub-version within the
release level:

major_version*10000 + release_level*100 + sub_version

For example, "8.0.45" is returned as 80045.

The function value is the version of MySQL that provides the client library. For more information, see
Section 3.6.12, “Obtaining the Server Version and Client Library Version”.

Return Values

An integer that represents the MySQL client library version.

Errors

None.

5.4.31 mysql_get_host_info()
const char *
mysql_get_host_info(MYSQL *mysql)

65

mysql_get_option()

Description

Returns a string describing the type of connection in use, including the server host name.

Return Values

A character string representing the server host name and the connection type.

Errors

None.

5.4.32 mysql_get_option()
int
mysql_get_option(MYSQL *mysql,
 enum mysql_option option,
 const void *arg)

Description

Returns the current value of an option settable using mysql_options(). The value should be treated as
read only.

The option argument is the option for which you want its value. The arg argument is a pointer to a
variable in which to store the option value. arg must be a pointer to a variable of the type appropriate for
the option argument. The following table shows which variable type to use for each option value.

For MYSQL_OPT_MAX_ALLOWED_PACKET, it is possible to set a session or global maximum buffer
size, depending on whether the mysql argument to mysql_options() is non-NULL or NULL,
mysql_get_option() similarly returns the session or global value depending on its mysql argument.

arg Type Applicable option Values

unsigned int MYSQL_OPT_CONNECT_TIMEOUT,
MYSQL_OPT_PROTOCOL,
MYSQL_OPT_READ_TIMEOUT,
MYSQL_OPT_RETRY_COUNT,
MYSQL_OPT_SSL_FIPS_MODE,
MYSQL_OPT_SSL_MODE,
MYSQL_OPT_WRITE_TIMEOUT,
MYSQL_OPT_ZSTD_COMPRESSION_LEVEL

unsigned long MYSQL_OPT_MAX_ALLOWED_PACKET,
MYSQL_OPT_NET_BUFFER_LENGTH

bool MYSQL_ENABLE_CLEARTEXT_PLUGIN,
MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS,
MYSQL_OPT_GET_SERVER_PUBLIC_KEY,
MYSQL_OPT_LOCAL_INFILE,
MYSQL_OPT_OPTIONAL_RESULTSET_METADATA,
MYSQL_OPT_RECONNECT (deprecated as of MySQL
8.0.34), MYSQL_REPORT_DATA_TRUNCATION

const char * MYSQL_DEFAULT_AUTH, MYSQL_OPT_BIND,
MYSQL_OPT_COMPRESSION_ALGORITHMS,
MYSQL_OPT_LOAD_DATA_LOCAL_DIR,
MYSQL_OPT_SSL_CA, MYSQL_OPT_SSL_CAPATH,

66

mysql_get_proto_info()

arg Type Applicable option Values
MYSQL_OPT_SSL_CERT,
MYSQL_OPT_SSL_CIPHER, MYSQL_OPT_SSL_CRL,
MYSQL_OPT_SSL_CRLPATH,
MYSQL_OPT_SSL_KEY,
MYSQL_OPT_TLS_CIPHERSUITES,
MYSQL_OPT_TLS_VERSION, MYSQL_PLUGIN_DIR,
MYSQL_READ_DEFAULT_FILE,
MYSQL_READ_DEFAULT_GROUP,
MYSQL_SERVER_PUBLIC_KEY,
MYSQL_SET_CHARSET_DIR,
MYSQL_SET_CHARSET_NAME,
MYSQL_SHARED_MEMORY_BASE_NAME

void MYSQL_OPT_SSL_SESSION_DATA

argument not used MYSQL_OPT_COMPRESS

cannot be queried (error is returned) MYSQL_INIT_COMMAND,
MYSQL_OPT_CONNECT_ATTR_DELETE,
MYSQL_OPT_CONNECT_ATTR_RESET,
MYSQL_OPT_NAMED_PIPE

Return Values

Zero for success. Nonzero if an error occurred; this occurs for option values that cannot be queried.

Example

The following call tests the MYSQL_OPT_LOCAL_INFILE option. After the call returns successfully, the
value of infile is true or false to indicate whether local_infile is enabled.

bool infile;

if (mysql_get_option(mysql, MYSQL_OPT_LOCAL_INFILE, &infile))
 fprintf(stderr, "mysql_get_option() failed\n");

5.4.33 mysql_get_proto_info()
unsigned int
mysql_get_proto_info(MYSQL *mysql)

Description

Returns the protocol version used by current connection.

Return Values

An unsigned integer representing the protocol version used by the current connection.

Errors

None.

5.4.34 mysql_get_server_info()
const char *
mysql_get_server_info(MYSQL *mysql)

67

mysql_get_server_version()

Description

Returns a string that represents the MySQL server version (for example, "8.0.45").

Return Values

A character string that represents the MySQL server version.

Errors

None.

5.4.35 mysql_get_server_version()
unsigned long
mysql_get_server_version(MYSQL *mysql)

Description

Returns an integer that represents the MySQL server version. The value has the format XYYZZ, where X
is the major version, YY is the release level (or minor version), and ZZ is the sub-version within the release
level:

major_version*10000 + release_level*100 + sub_version

For example, "8.0.45" is returned as 80045.

This function is useful in client programs for determining whether some version-specific server capability
exists.

Return Values

An integer that represents the MySQL server version.

Errors

None.

5.4.36 mysql_get_ssl_cipher()
const char *
mysql_get_ssl_cipher(MYSQL *mysql)

Description

mysql_get_ssl_cipher() returns the encryption cipher used for the given connection to the server.
mysql is the connection handler returned from mysql_init().

Return Values

A string naming the encryption cipher used for the connection, or NULL if the connection is not encrypted.

5.4.37 mysql_get_ssl_session_data()
void *
mysql_get_ssl_session_data(MYSQL *,
 unsigned int n_ticket,
 unsigned int *out_len)

68

mysql_get_ssl_session_reused()

Description

mysql_get_ssl_session_data() permits SSL session reuse by extracting a ticket from an established
session and submitting that ticket when connecting, provided the server still has the session in its runtime
cache. This function returns a session data string and provides the length of the string in out_len (if
non-NULL). Otherwise, it returns nullptr to indicate the expected session data is not possible or the
connection is not in the right state. To prevent leaks, you must release the session data handle by calling
mysql_free_ssl_session_data() when your application is finished with the pointer.

The format of the data is PEM serialization of the session. A session can be reused only if it was fetched
from a prior session to the same mysqld server on the same port. In addition, the SSL version of the new
session must match the SSL version of the original session.

n_ticket specifies which ticket or tickets to returned. For TLS 1.3, the server generates two session
tickets by default for new sessions and one when a session is reused. For TLS 1.2, the server generates
one session ticket by default. This should be considered when deciding on the size of the SSL session
cache on the server.

Note

Currently, only the last transmitted session is returned. Specifically, anything
other than 0 for n_ticket causes an error. OpenSSL version 1.0.2 imposes this
limitation.

Avoid reusing SSL sessions more than one time.

Return Values

None.

Errors

None.

5.4.38 mysql_get_ssl_session_reused()
bool
mysql_get_ssl_session_reused(MYSQL *mysql)

Description

Indicates whether the currently connected session is reusing a prior session.

Return Values

TRUE if a session was reused when establishing the TLS connection. FALSE if the session is not
connected, is not a TLS session, or there is insufficient memory.

Errors

None.

5.4.39 mysql_hex_string()
unsigned long
mysql_hex_string(char *to,

69

mysql_info()

 const char *from,
 unsigned long length)

Description

This function creates a legal SQL string for use in an SQL statement. See String Literals.

The string in the from argument is encoded in hexadecimal format, with each character encoded as two
hexadecimal digits. The result is placed in the to argument, followed by a terminating null byte.

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at least
length*2+1 bytes long. When mysql_hex_string() returns, the contents of to is a null-terminated
string. The return value is the length of the encoded string, not including the terminating null byte.

The return value can be placed into an SQL statement using either X'value' or 0xvalue format.
However, the return value does not include the X'...' or 0x. The caller must supply whichever of those is
desired.

Example

char query[1000],*end;

end = strmov(query,"INSERT INTO test_table values(");
end = strmov(end,"X'");
end += mysql_hex_string(end,"What is this",12);
end = strmov(end,"',X'");
end += mysql_hex_string(end,"binary data: \0\r\n",16);
end = strmov(end,"')");

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
 fprintf(stderr, "Failed to insert row, Error: %s\n",
 mysql_error(&mysql));
}

The strmov() function used in the example is included in the libmysqlclient library and works like
strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the encoded string that is placed into to, not including the terminating null character.

Errors

None.

5.4.40 mysql_info()
const char *
mysql_info(MYSQL *mysql)

Description

Retrieves a string providing information about the most recently executed statement, but only for the
statements listed here. For other statements, mysql_info() returns NULL. The format of the string
varies depending on the type of statement, as described here. The numbers are illustrative only; the string
contains values appropriate for the statement.

• INSERT INTO ... SELECT ...

70

https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html

mysql_init()

String format: Records: 100 Duplicates: 0 Warnings: 0

• INSERT INTO ... VALUES (...),(...),(...)...

String format: Records: 3 Duplicates: 0 Warnings: 0

• LOAD DATA

String format: Records: 1 Deleted: 0 Skipped: 0 Warnings: 0

• ALTER TABLE

String format: Records: 3 Duplicates: 0 Warnings: 0

• UPDATE

String format: Rows matched: 40 Changed: 40 Warnings: 0

mysql_info() returns a non-NULL value for INSERT ... VALUES only for the multiple-row form of the
statement (that is, only if multiple value lists are specified).

Return Values

A character string representing additional information about the most recently executed statement. NULL if
no information is available for the statement.

Errors

None.

5.4.41 mysql_init()
MYSQL *
mysql_init(MYSQL *mysql)

Description

Allocates or initializes a MYSQL object suitable for mysql_real_connect(). If mysql is a NULL
pointer, the function allocates, initializes, and returns a new object. Otherwise, the object is initialized
and the address of the object is returned. If mysql_init() allocates a new object, it is freed when
mysql_close() is called to close the connection.

In a nonmultithreaded environment, mysql_init() invokes mysql_library_init() automatically as
necessary. However, mysql_library_init() is not thread-safe in a multithreaded environment, and
thus neither is mysql_init(). Before calling mysql_init(), either call mysql_library_init() prior
to spawning any threads, or use a mutex to protect the mysql_library_init() call. This should be
done prior to any other client library call.

Return Values

An initialized MYSQL* handler. NULL if there was insufficient memory to allocate a new object.

Errors

In case of insufficient memory, NULL is returned.

5.4.42 mysql_insert_id()

71

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/alter-table.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

mysql_insert_id()

uint64_t
mysql_insert_id(MYSQL *mysql)

Description

Returns the value generated for an AUTO_INCREMENT column by the previous INSERT or UPDATE
statement. Use this function after you have performed an INSERT statement into a table that
contains an AUTO_INCREMENT field, or have used INSERT or UPDATE to set a column value with
LAST_INSERT_ID(expr).

The return value of mysql_insert_id() is always zero unless explicitly updated under one of the
following conditions:

• INSERT statements that store a value into an AUTO_INCREMENT column. This is true whether the value
is automatically generated by storing the special values NULL or 0 into the column, or is an explicit
nonspecial value.

• In the case of a multiple-row INSERT statement, mysql_insert_id() returns the first automatically
generated AUTO_INCREMENT value that was successfully inserted.

If no rows are successfully inserted, mysql_insert_id() returns 0.

• If an INSERT ... SELECT statement is executed, and no automatically generated value is successfully
inserted, mysql_insert_id() returns the ID of the last inserted row.

• If an INSERT ... SELECT statement uses LAST_INSERT_ID(expr), mysql_insert_id() returns
expr.

• INSERT statements that generate an AUTO_INCREMENT value by inserting LAST_INSERT_ID(expr)
into any column or by updating any column to LAST_INSERT_ID(expr).

• If the previous statement returned an error, the value of mysql_insert_id() is undefined.

The return value of mysql_insert_id() can be simplified to the following sequence:

1. If there is an AUTO_INCREMENT column, and an automatically generated value was successfully
inserted, return the first such value.

2. If LAST_INSERT_ID(expr) occurred in the statement, return expr, even if there was an
AUTO_INCREMENT column in the affected table.

3. The return value varies depending on the statement used. When called after an INSERT statement:

• If there is an AUTO_INCREMENT column in the table, and there were some explicit values for this
column that were successfully inserted into the table, return the last of the explicit values.

When called after an INSERT ... ON DUPLICATE KEY UPDATE statement:

• If there is an AUTO_INCREMENT column in the table and there were some explicit successfully
inserted values or some updated values, return the last of the inserted or updated values.

mysql_insert_id() returns 0 if the previous statement does not use an AUTO_INCREMENT value. If you
must save the value for later, be sure to call mysql_insert_id() immediately after the statement that
generates the value.

The value of mysql_insert_id() is affected only by statements issued within the current client
connection. It is not affected by statements issued by other clients.

72

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/insert-select.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/insert-on-duplicate.html

mysql_kill()

The LAST_INSERT_ID() SQL function will contain the value of the first automatically generated value
that was successfully inserted. LAST_INSERT_ID() is not reset between statements because the
value of that function is maintained in the server. Another difference from mysql_insert_id() is that
LAST_INSERT_ID() is not updated if you set an AUTO_INCREMENT column to a specific nonspecial
value. See Information Functions.

mysql_insert_id() returns 0 following a CALL statement for a stored procedure that generates
an AUTO_INCREMENT value because in this case mysql_insert_id() applies to CALL and not the
statement within the procedure. Within the procedure, you can use LAST_INSERT_ID() at the SQL level
to obtain the AUTO_INCREMENT value.

The reason for the differences between LAST_INSERT_ID() and mysql_insert_id() is that
LAST_INSERT_ID() is made easy to use in scripts while mysql_insert_id() tries to provide more
exact information about what happens to the AUTO_INCREMENT column.

Note

The OK packet used in the client/server protocol holds information such as is used
for session state tracking. When clients read the OK packet to know whether there
is a session state change, this resets values such as the last insert ID and the
number of affected rows. Such changes cause mysql_insert_id() to return 0
after execution of commands including but not necessarily limited to COM_PING,
COM_REFRESH, and COM_INIT_DB.

Return Values

Described in the preceding discussion.

Errors

• ER_AUTO_INCREMENT_CONFLICT

A user-specified AUTO_INCREMENT value in a multi INSERT statement falls within the range between
the current AUTO_INCREMENT value and the sum of the current and number of rows affected values.

5.4.43 mysql_kill()

int
mysql_kill(MYSQL *mysql,
 unsigned long pid)

Description

Note

mysql_kill() is deprecated and is subject to removal in a future version of
MySQL. Instead, use mysql_real_query() or mysql_query() to execute a
KILL statement.

Asks the server to kill the thread specified by pid.

mysql_kill() cannot handle values larger than 32 bits, but to guard against killing the wrong thread
returns an error in these cases:

• If given an ID larger than 32 bits, mysql_kill() returns a CR_INVALID_CONN_HANDLE error.

73

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_auto_increment_conflict
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/kill.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_conn_handle

mysql_library_end()

• After the server's internal thread ID counter reaches a value larger than 32 bits, it returns an
ER_DATA_OUT_OF_RANGE error for any mysql_kill() invocation and mysql_kill() fails.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_INVALID_CONN_HANDLE

The pid was larger than 32 bits.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• ER_DATA_OUT_OF_RANGE

The server's internal thread ID counter has reached a value larger than 32 bits, at which point it rejects
all mysql_kill() invocations.

5.4.44 mysql_library_end()
void
mysql_library_end(void)

Description

This function finalizes the MySQL client library. Call it when you are done using the library (for example,
after disconnecting from the server).

Note

To avoid memory leaks after the application is done using the library (for example,
after closing the connection to the server), be sure to call mysql_library_end()
explicitly. This enables memory managment to be performed to clean up and free
resources used by the library.

For usage information, see Chapter 4, C API Function Reference, and Section 5.4.45,
“mysql_library_init()”.

5.4.45 mysql_library_init()
int

74

https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_out_of_range
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_conn_handle
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_data_out_of_range

mysql_list_dbs()

mysql_library_init(int argc,
 char **argv,
 char **groups)

Description

Call this function to initialize the MySQL client library before you call any other MySQL function.

Note

To avoid memory leaks after the application is done using the library (for example,
after closing the connection to the server), be sure to call mysql_library_end()
explicitly. This enables memory managment to be performed to clean up and free
resources used by the library. See Section 5.4.44, “mysql_library_end()”.

In a nonmultithreaded environment, the call to mysql_library_init() may be omitted, because
mysql_init() invokes it automatically as necessary. However, mysql_library_init() is
not thread-safe in a multithreaded environment, and thus neither is mysql_init(), which calls
mysql_library_init(). You must either call mysql_library_init() prior to spawning any threads,
or else use a mutex to protect the call, whether you invoke mysql_library_init() or indirectly through
mysql_init(). Do this prior to any other client library call.

The argc, argv, and groups arguments are unused. In older MySQL versions, they were used for
applications linked against the embedded server, which is no longer supported. The call now should be
written as mysql_library_init(0, NULL, NULL).

#include <mysql.h>
#include <stdlib.h>

int main(void) {
 if (mysql_library_init(0, NULL, NULL)) {
 fprintf(stderr, "could not initialize MySQL client library\n");
 exit(1);
 }

 /* Use any MySQL API functions here */

 mysql_library_end();

 return EXIT_SUCCESS;
}

Return Values

Zero for success. Nonzero if an error occurred.

5.4.46 mysql_list_dbs()

MYSQL_RES *
mysql_list_dbs(MYSQL *mysql,
 const char *wild)

Description

Returns a result set consisting of database names on the server that match the simple regular expression
specified by the wild parameter. wild may contain the wildcard characters % or _, or may be a NULL
pointer to match all databases. Calling mysql_list_dbs() is similar to executing the query SHOW
DATABASES [LIKE wild].

75

mysql_list_fields()

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.47 mysql_list_fields()
MYSQL_RES *
mysql_list_fields(MYSQL *mysql,
 const char *table,
 const char *wild)

Description

Note

mysql_list_fields() is deprecated and is subject to removal in a future
version of MySQL. Instead, use mysql_real_query() or mysql_query() to
execute a SHOW COLUMNS statement.

Returns an empty result set for which the metadata provides information about the columns in the given
table that match the simple regular expression specified by the wild parameter. wild may contain the
wildcard characters % or _, or may be a NULL pointer to match all fields. Calling mysql_list_fields()
is similar to executing the query SHOW COLUMNS FROM tbl_name [LIKE wild].

The information obtained is roughly equivalent to that produced by executing the statement shown here
using the mysql client, like this:

$> mysql test --column-type-info -e "SELECT * FROM t LIMIT 0"
Field 1: `c1`
Catalog: `def`
Database: `test`
Table: `t`
Org_table: `t`
Type: LONG
Collation: binary (63)

76

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/show-columns.html

mysql_list_processes()

Length: 11
Max_length: 0
Decimals: 0
Flags: NUM

Field 2: `c2`
Catalog: `def`
Database: `test`
Table: `t`
Org_table: `t`
Type: LONG
Collation: binary (63)
Length: 11
Max_length: 0
Decimals: 0
Flags: NUM

$>

It is preferable to use SHOW COLUMNS FROM tbl_name instead of mysql_list_fields().

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

int i;
MYSQL_RES *tbl_cols = mysql_list_fields(mysql, "mytbl", "f%");

unsigned int field_cnt = mysql_num_fields(tbl_cols);
printf("Number of columns: %d\n", field_cnt);

for (i=0; i < field_cnt; ++i)
{
 /* col describes i-th column of the table */
 MYSQL_FIELD *col = mysql_fetch_field_direct(tbl_cols, i);
 printf ("Column %d: %s\n", i, col->name);
}
mysql_free_result(tbl_cols);

5.4.48 mysql_list_processes()

77

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_list_tables()

MYSQL_RES *
mysql_list_processes(MYSQL *mysql)

Description

Note

mysql_list_processes() is deprecated and is subject to removal in a future
version of MySQL. Instead, use mysql_real_query() or mysql_query() to
execute a SHOW PROCESSLIST statement.

Returns a result set describing the current server threads. This is the same kind of information as that
reported by mysqladmin processlist or a SHOW PROCESSLIST query.

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.49 mysql_list_tables()

MYSQL_RES *
mysql_list_tables(MYSQL *mysql,
 const char *wild)

Description

Returns a result set consisting of table names in the current database that match the simple regular
expression specified by the wild parameter. wild may contain the wildcard characters % or _, or may be
a NULL pointer to match all tables. Calling mysql_list_tables() is similar to executing the query SHOW
TABLES [LIKE wild].

You must free the result set with mysql_free_result().

Return Values

A MYSQL_RES result set for success. NULL if an error occurred.

78

https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/refman/8.0/en/show-processlist.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_more_results()

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.50 mysql_more_results()
bool
mysql_more_results(MYSQL *mysql)

Description

This function is used when you execute multiple statements specified as a single statement string, or when
you execute CALL statements, which can return multiple result sets.

mysql_more_results() true if more results exist from the currently executed statement, in which case
the application must call mysql_next_result() to fetch the results.

Return Values

TRUE (1) if more results exist. FALSE (0) if no more results exist.

In most cases, you can call mysql_next_result() instead to test whether more results exist and initiate
retrieval if so.

See Section 3.6.3, “Multiple Statement Execution Support”, and Section 5.4.51, “mysql_next_result()”.

Errors

None.

5.4.51 mysql_next_result()
int
mysql_next_result(MYSQL *mysql)

Description

Note

mysql_next_result() is a synchronous function. Its asynchronous counterpart
is mysql_next_result_nonblocking(), for use by applications that require
asynchronous communication with the server. See Chapter 7, C API Asynchronous
Interface.

79

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/call.html

mysql_next_result()

mysql_next_result() is used when you execute multiple statements specified as a single statement
string, or when you use CALL statements to execute stored procedures, which can return multiple result
sets.

mysql_next_result() reads the next statement result and returns a status to indicate whether more
results exist. If mysql_next_result() returns an error, there are no more results.

Before each call to mysql_next_result(), you must call mysql_free_result() for the current
statement if it is a statement that returned a result set (rather than just a result status).

After calling mysql_next_result() the state of the connection is as if you had called
mysql_real_query() or mysql_query() for the next statement. This means that you can call
mysql_store_result(), mysql_warning_count(), mysql_affected_rows(), and so forth.

If your program uses CALL statements to execute stored procedures, the CLIENT_MULTI_RESULTS flag
must be enabled. This is because each CALL returns a result to indicate the call status, in addition to any
result sets that might be returned by statements executed within the procedure. Because CALL can return
multiple results, process them using a loop that calls mysql_next_result() to determine whether there
are more results.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by
passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS
(which also enables CLIENT_MULTI_RESULTS). CLIENT_MULTI_RESULTS is enabled by default.

It is also possible to test whether there are more results by calling mysql_more_results().
However, this function does not change the connection state, so if it returns true, you must still call
mysql_next_result() to advance to the next result.

For an example that shows how to use mysql_next_result(), see Section 3.6.3, “Multiple Statement
Execution Support”.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results

>0 An error occurred

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order. For example, if you did not call mysql_use_result()
for a previous result set.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

80

https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_num_fields()

An unknown error occurred.

5.4.52 mysql_num_fields()
unsigned int
mysql_num_fields(MYSQL_RES *result)

To pass a MYSQL* argument instead, use unsigned int mysql_field_count(MYSQL *mysql).

Description

Returns the number of columns in a result set.

You can get the number of columns either from a pointer to a result set or to a connection handler. You
would use the connection handler if mysql_store_result() or mysql_use_result() returned
NULL (and thus you have no result set pointer). In this case, you can call mysql_field_count() to
determine whether mysql_store_result() should have produced a nonempty result. This enables the
client program to take proper action without knowing whether the query was a SELECT (or SELECT-like)
statement. The example shown here illustrates how this may be done.

See Section 3.6.9, “NULL mysql_store_result() Return After mysql_query() Success”.

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

Example

MYSQL_RES *result;
unsigned int num_fields;
unsigned int num_rows;

if (mysql_query(&mysql,query_string))
{
 // error
}
else // query succeeded, process any data returned by it
{
 result = mysql_store_result(&mysql);
 if (result) // there are rows
 {
 num_fields = mysql_num_fields(result);
 // retrieve rows, then call mysql_free_result(result)
 }
 else // mysql_store_result() returned nothing; should it have?
 {
 if (mysql_errno(&mysql))
 {
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
 }
 else if (mysql_field_count(&mysql) == 0)
 {
 // query does not return data
 // (it was not a SELECT)
 num_rows = mysql_affected_rows(&mysql);
 }
 }

81

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

mysql_num_rows()

}

An alternative (if you know that your query should have returned a result set) is to replace the
mysql_errno(&mysql) call with a check whether mysql_field_count(&mysql) returns 0. This
happens only if something went wrong.

5.4.53 mysql_num_rows()
uint64_t
mysql_num_rows(MYSQL_RES *result)

Description

Returns the number of rows in the result set.

The use of mysql_num_rows() depends on whether you use mysql_store_result()
or mysql_use_result() to return the result set. If you use mysql_store_result(),
mysql_num_rows() may be called immediately. If you use mysql_use_result(),
mysql_num_rows() does not return the correct value until all the rows in the result set have been
retrieved.

mysql_num_rows() is intended for use with statements that return a result set, such as SELECT. For
statements such as INSERT, UPDATE, or DELETE, the number of affected rows can be obtained with
mysql_affected_rows().

Return Values

The number of rows in the result set.

Errors

None.

5.4.54 mysql_options()
int
mysql_options(MYSQL *mysql,
 enum mysql_option option,
 const void *arg)

Description

Can be used to set extra connect options and affect behavior for a connection. This function may be called
multiple times to set several options. To retrieve option values, use mysql_get_option().

Call mysql_options() after mysql_init() and before mysql_connect() or
mysql_real_connect().

The option argument is the option that you want to set; the arg argument is the value for the option. If
the option is an integer, specify a pointer to the value of the integer as the arg argument.

Options for information such as SSL certificate and key files are used to establish an encrypted connection
if such connections are available, but do not enforce any requirement that the connection obtained be
encrypted. To require an encrypted connection, use the technique described in Section 3.6.1, “Support for
Encrypted Connections”.

The following list describes the possible options, their effect, and how arg is used for each option. For
option descriptions that indicate arg is unused, its value is irrelevant; it is conventional to pass 0.

82

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

mysql_options()

• MYSQL_DEFAULT_AUTH (argument type: char *)

The name of the authentication plugin to use.

• MYSQL_ENABLE_CLEARTEXT_PLUGIN (argument type: bool *)

Enable the mysql_clear_password cleartext authentication plugin. See Client-Side Cleartext
Pluggable Authentication.

• MYSQL_INIT_COMMAND (argument type: char *)

SQL statement to execute when connecting to the MySQL server. Automatically re-executed if
reconnection occurs.

• MYSQL_OPT_BIND (argument: char *)

The network interface from which to connect to the server. This is used when the client host has multiple
network interfaces. The argument is a host name or IP address (specified as a string).

• MYSQL_OPT_CAN_HANDLE_EXPIRED_PASSWORDS (argument type: bool *)

Indicate whether the client can handle expired passwords. See Server Handling of Expired Passwords.

• MYSQL_OPT_COMPRESS (argument: not used)

Compress all information sent between the client and the server if possible. See Connection
Compression Control.

As of MySQL 8.0.18, MYSQL_OPT_COMPRESS becomes a legacy option, due to the introduction of the
MYSQL_OPT_COMPRESSION_ALGORITHMS option for more control over connection compression (see
Configuring Connection Compression). The meaning of MYSQL_OPT_COMPRESS depends on whether
MYSQL_OPT_COMPRESSION_ALGORITHMS is specified:

• When MYSQL_OPT_COMPRESSION_ALGORITHMS is not specified, enabling MYSQL_OPT_COMPRESS is
equivalent to specifying a client-side algorithm set of zlib,uncompressed.

• When MYSQL_OPT_COMPRESSION_ALGORITHMS is specified, enabling MYSQL_OPT_COMPRESS
is equivalent to specifying an algorithm set of zlib and the full client-side algorithm set is the
union of zlib plus the algorithms specified by MYSQL_OPT_COMPRESSION_ALGORITHMS. For
example, with MYSQL_OPT_COMPRESS enabled and MYSQL_OPT_COMPRESSION_ALGORITHMS
set to zlib,zstd, the permitted-algorithm set is zlib plus zlib,zstd; that is, zlib,zstd.
With MYSQL_OPT_COMPRESS enabled and MYSQL_OPT_COMPRESSION_ALGORITHMS set to
zstd,uncompressed, the permitted-algorithm set is zlib plus zstd,uncompressed; that is,
zlib,zstd,uncompressed.

As of MySQL 8.0.18, MYSQL_OPT_COMPRESS is deprecated. It is subject to removal in a future MySQL
version. See Configuring Legacy Connection Compression.

• MYSQL_OPT_COMPRESSION_ALGORITHMS (argument type: const char *)

The permitted compression algorithms for connections to the server. The available algorithms are the
same as for the protocol_compression_algorithms system variable. If this option is not specified,
the default value is uncompressed.

For more information, see Connection Compression Control.

This option was added in MySQL 8.0.18. For asynchronous operations, the option has no effect until
MySQL 8.0.21.

83

https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/cleartext-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/expired-password-handling.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html#connection-compression-configuration
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html#connection-compression-legacy-configuration
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_protocol_compression_algorithms
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html

mysql_options()

• MYSQL_OPT_CONNECT_ATTR_DELETE (argument type: char *)

Given a key name, this option deletes a key-value pair from the current set of connection attributes to
pass to the server at connect time. The argument is a pointer to a null-terminated string naming the key.
Comparison of the key name with existing keys is case-sensitive.

See also the description for the MYSQL_OPT_CONNECT_ATTR_RESET option, as well as the description
for the MYSQL_OPT_CONNECT_ATTR_ADD option in the description of the mysql_options4() function.
That function description also includes a usage example.

The Performance Schema exposes connection attributes through the session_connect_attrs and
session_account_connect_attrs tables. See Performance Schema Connection Attribute Tables.

• MYSQL_OPT_CONNECT_ATTR_RESET (argument not used)

This option resets (clears) the current set of connection attributes to pass to the server at connect time.

See also the description for the MYSQL_OPT_CONNECT_ATTR_DELETE option, as well as the description
for the MYSQL_OPT_CONNECT_ATTR_ADD option in the description of the mysql_options4() function.
That function description also includes a usage example.

The Performance Schema exposes connection attributes through the session_connect_attrs and
session_account_connect_attrs tables. See Performance Schema Connection Attribute Tables.

• MYSQL_OPT_CONNECT_TIMEOUT (argument type: unsigned int *)

The connect timeout in seconds.

• MYSQL_OPT_GET_SERVER_PUBLIC_KEY (argument type: bool *)

Enables the client to request from the server the public key required for RSA key pair-based password
exchange. This option applies to clients that authenticate with the caching_sha2_password
authentication plugin. For that plugin, the server does not send the public key unless requested. This
option is ignored for accounts that do not authenticate with that plugin. It is also ignored if RSA-based
password exchange is not used, as is the case when the client connects to the server using a secure
connection.

If MYSQL_SERVER_PUBLIC_KEY is given and specifies a valid public key file, it takes precedence over
MYSQL_OPT_GET_SERVER_PUBLIC_KEY.

For information about the caching_sha2_password plugin, see Caching SHA-2 Pluggable
Authentication.

• MYSQL_OPT_LOAD_DATA_LOCAL_DIR (argument type: char *)

This option affects the client-side LOCAL capability for LOAD DATA operations. It specifies the
directory in which files named in LOAD DATA LOCAL statements must be located. The effect of
MYSQL_OPT_LOAD_DATA_LOCAL_DIR depends on whether LOCAL data loading is enabled or disabled:

• If LOCAL data loading is enabled, either by default in the MySQL client library or by explicitly enabling
MYSQL_OPT_LOCAL_INFILE, the MYSQL_OPT_LOAD_DATA_LOCAL_DIR option has no effect.

• If LOCAL data loading is disabled, either by default in the MySQL client library or by explicitly
disabling MYSQL_OPT_LOCAL_INFILE, the MYSQL_OPT_LOAD_DATA_LOCAL_DIR option
can be used to designate a permitted directory for locally loaded files. In this case, LOCAL data
loading is permitted but restricted to files located in the designated directory. Interpretation of the
MYSQL_OPT_LOAD_DATA_LOCAL_DIR value is as follows:

84

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-account-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-account-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

mysql_options()

• If the value is the null pointer (the default), it names no directory, with the result that no files are
permitted for LOCAL data loading.

• If the value is a directory path name, LOCAL data loading is permitted but restricted to files located in
the named directory. Comparison of the directory path name and the path name of files to be loaded
is case-sensitive regardless of the case-sensitivity of the underlying file system.

For example, to explicitly disable local data loading except for files located in the /my/local/data
directory, invoke mysql_options() like this:

unsigned int i = 0;
mysql_options(&mysql,MYSQL_OPT_LOCAL_INFILE,&i);
mysql_options(&mysql,MYSQL_OPT_LOAD_DATA_LOCAL_DIR,"/my/local/data");

The MYSQL_OPT_LOAD_DATA_LOCAL_DIR option can be set any time during the life of the mysql
connection handler. Once set, the value applies to all subsequent LOCAL load operations until such time
as the value is changed.

The ENABLED_LOCAL_INFILE CMake option controls the client library default for local data loading (see
MySQL Source-Configuration Options).

Successful use of LOCAL load operations by a client also requires that the server permits local loading;
see Security Considerations for LOAD DATA LOCAL

The MYSQL_OPT_LOAD_DATA_LOCAL_DIR option was added in MySQL 8.0.21.

• MYSQL_OPT_LOCAL_INFILE (argument type: optional pointer to unsigned int)

This option affects client-side LOCAL capability for LOAD DATA operations. By default, LOCAL capability
is determined by the default compiled into the MySQL client library. To control this capability explicitly,
invoke mysql_options() to enable or disable the MYSQL_OPT_LOCAL_INFILE option:

• To enable LOCAL data loading, set the pointer to point to an unsigned int that has a nonzero value,
or omit the pointer argument.

• To disable LOCAL data loading, set the pointer to point to an unsigned int that has a zero value.

If LOCAL capability is disabled, the MYSQL_OPT_LOAD_DATA_LOCAL_DIR option can be used to permit
restricted local loading of files located in a designated directory.

The ENABLED_LOCAL_INFILE CMake option controls the client library default for local data loading (see
MySQL Source-Configuration Options).

Successful use of LOCAL load operations by a client also requires that the server permits local loading;
see Security Considerations for LOAD DATA LOCAL

• MYSQL_OPT_MAX_ALLOWED_PACKET (argument: unsigned long *)

This option sets the client-side maximum size of the buffer for client/server communication. If the mysql
argument is non-NULL, the call sets the option value for that session. If mysql is NULL, the call sets the
option value globally for all subsequent sessions for which a session-specific value is not specified.

Because it is possible to set a session or global maximum buffer size, depending on whether the mysql
argument is non-NULL or NULL, mysql_get_option() similarly returns the session or global value
depending on its mysql argument.

• MYSQL_OPT_NAMED_PIPE (argument: not used)

85

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/load-data-local-security.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_enabled_local_infile
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/load-data-local-security.html

mysql_options()

Use a named pipe to connect to the MySQL server on Windows, if the server permits named-pipe
connections.

• MYSQL_OPT_NET_BUFFER_LENGTH (argument: unsigned long *)

This option sets the client-side buffer size for TCP/IP and socket communication.

• MYSQL_OPT_OPTIONAL_RESULTSET_METADATA (argument type: bool *)

This flag makes result set metadata optional. It is an alternative to setting the
CLIENT_OPTIONAL_RESULTSET_METADATA connection flag for the mysql_real_connect()
function. For details about managing result set metadata transfer, see Section 3.6.7, “Optional Result
Set Metadata”.

• MYSQL_OPT_PROTOCOL (argument type: unsigned int *)

Transport protocol to use for connection. Specify one of the enum values of mysql_protocol_type
defined in mysql.h.

• MYSQL_OPT_READ_TIMEOUT (argument type: unsigned int *)

The timeout in seconds for each attempt to read from the server. There are retries if necessary, so
the total effective timeout value is three times the option value. You can set the value so that a lost
connection can be detected earlier than the TCP/IP Close_Wait_Timeout value of 10 minutes.

• MYSQL_OPT_RECONNECT (argument type: bool *)

Note

The MYSQL_OPT_RECONNECT option is still available but is deprecated; expect it
to be removed in a future version of MySQL.

Enable or disable automatic reconnection to the server if the connection is found to have been lost.
Reconnect is off by default; this option provides a way to set reconnection behavior explicitly. See
Section 3.6.8, “Automatic Reconnection Control”.

• MYSQL_OPT_RETRY_COUNT (argument type: unsigned int *)

The retry count for I/O-related system calls that are interrupted while connecting to the server or
communicating with it. If this option is not specified, the default value is 1 (1 retry if the initial call is
interrupted for 2 tries total).

This option can be used only by clients that link against a C client library compiled with NDB Cluster
support.

• MYSQL_OPT_SSL_CA (argument type: char *)

The path name of the Certificate Authority (CA) certificate file. This option, if used, must specify the
same certificate used by the server.

• MYSQL_OPT_SSL_CAPATH (argument type: char *)

The path name of the directory that contains trusted SSL CA certificate files.

• MYSQL_OPT_SSL_CERT (argument type: char *)

The path name of the client public key certificate file.

86

mysql_options()

• MYSQL_OPT_SSL_CIPHER (argument type: char *)

The list of permissible ciphers for SSL encryption.

• MYSQL_OPT_SSL_CRL (argument type: char *)

The path name of the file containing certificate revocation lists.

• MYSQL_OPT_SSL_CRLPATH (argument type: char *)

The path name of the directory that contains files containing certificate revocation lists.

• MYSQL_OPT_SSL_FIPS_MODE (argument type: unsigned int *)

The MYSQL_OPT_SSL_FIPS_MODE option is deprecated as of MySQL 8.0.34 and is subject to removal
in a future version of MySQL.

Controls whether to enable FIPS mode on the client side. The MYSQL_OPT_SSL_FIPS_MODE option
differs from other MYSQL_OPT_SSL_xxx options in that it is not used to establish encrypted connections,
but rather to affect which cryptographic operations to permit. See FIPS Support.

Permitted option values are SSL_FIPS_MODE_OFF, SSL_FIPS_MODE_ON, and
SSL_FIPS_MODE_STRICT.

Note

If the OpenSSL FIPS Object Module is not available, the only permitted
value for MYSQL_OPT_SSL_FIPS_MODE is SSL_FIPS_MODE_OFF. In this
case, setting MYSQL_OPT_SSL_FIPS_MODE to SSL_FIPS_MODE_ON or
SSL_FIPS_MODE_STRICT causes the client to produce a warning at startup and
to operate in non-FIPS mode.

• MYSQL_OPT_SSL_KEY (argument type: char *)

The path name of the client private key file.

• MYSQL_OPT_SSL_MODE (argument type: unsigned int *)

The security state to use for the connection to the server: SSL_MODE_DISABLED,
SSL_MODE_PREFERRED, SSL_MODE_REQUIRED, SSL_MODE_VERIFY_CA,
SSL_MODE_VERIFY_IDENTITY. If this option is not specified, the default is SSL_MODE_PREFERRED.
These modes are the permitted values of the mysql_ssl_mode enumeration defined in mysql.h. For
more information about the security states, see the description of --ssl-mode in Command Options for
Encrypted Connections.

• MYSQL_OPT_SSL_SESSION_DATA (argument type: void *)

The session data to use for session reuse when establishing the next encrypted connection. It should
be set before mysql_real_connect() and after mysql_init(). It expects the PEM session data
as returned by mysql_get_ssl_session_data() and copies the result into the MYSQL handle. It is
reset to nullptr (the default) after mysql_real_connect(), unless specified otherwise through the
CLIENT_REMEMBER_OPTIONS flag.

If specified, an attempt is made to reuse the session at TLS establishment time. mysql_get_option()
returns the handle set by mysql_options(), if any, and it does not increase the number reference
counts.

This option was added in MySQL 8.0.29.

87

https://dev.mysql.com/doc/refman/8.0/en/fips-mode.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_ssl-mode
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#encrypted-connection-options

mysql_options()

• MYSQL_OPT_TLS_CIPHERSUITES (argument type: char *)

Which ciphersuites the client permits for encrypted connections that use TLSv1.3. The value is a
list of one or more colon-separated ciphersuite names. The ciphersuites that can be named for this
option depend on the SSL library used to compile MySQL. For details, see Encrypted Connection TLS
Protocols and Ciphers.

This option was added in MySQL 8.0.16.

• MYSQL_OPT_TLS_VERSION (argument type: char *)

Which protocols the client permits for encrypted connections. The value is a list of one or more comma-
separated protocol versions. The protocols that can be named for this option depend on the SSL library
used to compile MySQL. For details, see Encrypted Connection TLS Protocols and Ciphers.

• MYSQL_OPT_USE_RESULT (argument: not used)

This option is unused.

• MYSQL_OPT_WRITE_TIMEOUT (argument type: unsigned int *)

The timeout in seconds for each attempt to write to the server. There is a retry if necessary, so the total
effective timeout value is two times the option value.

• MYSQL_OPT_ZSTD_COMPRESSION_LEVEL (argument type: unsigned int *)

The compression level to use for connections to the server that use the zstd compression algorithm.
The permitted levels are from 1 to 22, with larger values indicating increasing levels of compression. If
this option is not specified, the default zstd compression level is 3. The compression level setting has
no effect on connections that do not use zstd compression.

For more information, see Connection Compression Control.

This option was added in MySQL 8.0.18. For asynchronous operations, the option has no effect until
MySQL 8.0.21.

• MYSQL_PLUGIN_DIR (argument type: char *)

The directory in which to look for client plugins.

• MYSQL_READ_DEFAULT_FILE (argument type: char *)

Read options from the named option file instead of from my.cnf.

• MYSQL_READ_DEFAULT_GROUP (argument type: char *)

Read options from the named group from my.cnf or the file specified with
MYSQL_READ_DEFAULT_FILE.

• MYSQL_REPORT_DATA_TRUNCATION (argument type: bool *)

Enable or disable reporting of data truncation errors for prepared statements using the error member
of MYSQL_BIND structures. (Default: enabled.)

• MYSQL_SERVER_PUBLIC_KEY (argument type: char *)

The path name to a file in PEM format containing a client-side copy of the public key required by the
server for RSA key pair-based password exchange. This option applies to clients that authenticate with

88

https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/8.0/en/encrypted-connection-protocols-ciphers.html
https://dev.mysql.com/doc/refman/8.0/en/connection-compression-control.html

mysql_options()

the sha256_password or caching_sha2_password authentication plugin. This option is ignored for
accounts that do not authenticate with one of those plugins. It is also ignored if RSA-based password
exchange is not used, as is the case when the client connects to the server using a secure connection.

If MYSQL_SERVER_PUBLIC_KEY is given and specifies a valid public key file, it takes precedence over
MYSQL_OPT_GET_SERVER_PUBLIC_KEY.

For information about the sha256_password and caching_sha2_password plugins, see SHA-256
Pluggable Authentication, and Caching SHA-2 Pluggable Authentication.

• MYSQL_SET_CHARSET_DIR (argument type: char *)

The path name of the directory that contains character set definition files.

• MYSQL_SET_CHARSET_NAME (argument type: char *)

The name of the character set to use as the default character set. The argument can be
MYSQL_AUTODETECT_CHARSET_NAME to cause the character set to be autodetected based on the
operating system setting (see Connection Character Sets and Collations).

• MYSQL_SHARED_MEMORY_BASE_NAME (argument type: char *)

The name of the shared-memory object for communication to the server on Windows, if
the server supports shared-memory connections. Specify the same value as used for the
shared_memory_base_name system variable. of the mysqld server you want to connect to.

The client group is always read if you use MYSQL_READ_DEFAULT_FILE or
MYSQL_READ_DEFAULT_GROUP.

The specified group in the option file may contain the following options.

Option Description

character-sets-dir=dir_name The directory where character sets are installed.

compress Use the compressed client/server protocol.

connect-timeout=seconds The connect timeout in seconds. On Linux this
timeout is also used for waiting for the first answer
from the server.

database=db_name Connect to this database if no database was
specified in the connect command.

debug Debug options.

default-character-set=charset_name The default character set to use.

disable-local-infile Disable use of LOAD DATA LOCAL.

enable-cleartext-plugin Enable the mysql_clear_password cleartext
authentication plugin.

host=host_name Default host name.

init-command=stmt Statement to execute when connecting to MySQL
server. Automatically re-executed if reconnection
occurs.

interactive-timeout=seconds Same as specifying CLIENT_INTERACTIVE to
mysql_real_connect(). See Section 5.4.58,
“mysql_real_connect()”.

89

https://dev.mysql.com/doc/refman/8.0/en/sha256-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/sha256-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/caching-sha2-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/charset-connection.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_shared_memory_base_name
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

mysql_options()

Option Description

local-infile[={0|1}] If no argument or nonzero argument, enable use of
LOAD DATA LOCAL; otherwise disable.

max_allowed_packet=bytes Maximum size of packet that client can read from
server.

multi-queries, multi-results Enable multiple result sets from multiple-statement
executions or stored procedures.

multi-statements Enable the client to send multiple statements in a
single string (separated by ; characters).

password=password Default password.

pipe Use named pipes to connect to a MySQL server on
Windows.

port=port_num Default port number.

protocol={TCP|SOCKET|PIPE|MEMORY} The protocol to use when connecting to the server.

return-found-rows Tell mysql_info() to return found rows instead of
updated rows when using UPDATE.

shared-memory-base-name=name Shared-memory name to use to connect to server.

socket={file_name|pipe_name} Default socket file.

ssl-ca=file_name Certificate Authority file.

ssl-capath=dir_name Certificate Authority directory.

ssl-cert=file_name Certificate file.

ssl-cipher=cipher_list Permissible SSL ciphers.

ssl-key=file_name Key file.

timeout=seconds Like connect-timeout.

user Default user.

timeout has been replaced by connect-timeout, but timeout is still supported for backward
compatibility.

For more information about option files used by MySQL programs, see Using Option Files.

Return Values

Zero for success. Nonzero if you specify an unknown option.

Example

The following mysql_options() calls request the use of compression in the client/server protocol, cause
options to be read from the [odbc] group in option files, and disable transaction autocommit mode:

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_COMPRESS,0);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"odbc");
mysql_options(&mysql,MYSQL_INIT_COMMAND,"SET autocommit=0");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));

90

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/option-files.html

mysql_options4()

}

5.4.55 mysql_options4()
int
mysql_options4(MYSQL *mysql,
 enum mysql_option option,
 const void *arg1,
 const void *arg2)

Description

mysql_options4() is similar to mysql_options() but has an extra fourth argument so that two values
can be passed for the option specified in the second argument.

The following list describes the permitted options, their effect, and how arg1 and arg2 are used.

• MYSQL_OPT_CONNECT_ATTR_ADD (argument types: char *, char *)

This option adds an attribute key-value pair to the current set of connection attributes to pass to the
server at connect time. Both arguments are pointers to null-terminated strings. The first and second
strings indicate the key and value, respectively. If the key is empty or already exists in the current set of
connection attributes, an error occurs. Comparison of the key name with existing keys is case-sensitive.

Key names that begin with an underscore (_) are reserved for internal use and should not be created
by application programs. This convention permits new attributes to be introduced by MySQL without
colliding with application attributes.

mysql_options4() imposes a limit of 64KB on the aggregate size of connection attribute data
it accepts. For calls that cause this limit to be exceeded, a CR_INVALID_PARAMETER_NO error
occurs. Attribute size-limit checks also occur on the server side. For details, see Performance Schema
Connection Attribute Tables, which also describes how the Performance Schema exposes connection
attributes through the session_connect_attrs and session_account_connect_attrs tables.

See also the descriptions for the MYSQL_OPT_CONNECT_ATTR_RESET and
MYSQL_OPT_CONNECT_ATTR_DELETE options in the description of the mysql_options() function.

• MYSQL_OPT_USER_PASSWORD (argument types: unsigned int *, char *)

This option specifies the password for a multifactor authentication factor (see Multifactor Authentication).

The first argument points to an unsigned int variable that should have a value of 1, 2, or 3 to indicate
the factor for which the password is being specified. The second argument points to a character string
that provides the password value.

This option was added in MySQL 8.0.27.

Return Values

Zero for success. Nonzero if you specify an unknown option.

Errors

• CR_DUPLICATE_CONNECTION_ATTR

A duplicate attribute name was specified.

• CR_INVALID_PARAMETER_NO

91

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_parameter_no
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-connection-attribute-tables.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/performance-schema-session-account-connect-attrs-table.html
https://dev.mysql.com/doc/refman/8.0/en/multifactor-authentication.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_duplicate_connection_attr
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_parameter_no

mysql_ping()

A key name was empty or the amount of key-value connection attribute data exceeds 64KB limit.

• CR_OUT_OF_MEMORY

Out of memory.

Example

This example demonstrates the calls that specify connection attributes:

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_OPT_CONNECT_ATTR_RESET, 0);
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_ADD, "key1", "value1");
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_ADD, "key2", "value2");
mysql_options4(&mysql,MYSQL_OPT_CONNECT_ATTR_ADD, "key3", "value3");
mysql_options(&mysql,MYSQL_OPT_CONNECT_ATTR_DELETE, "key1");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

5.4.56 mysql_ping()
int
mysql_ping(MYSQL *mysql)

Description

Checks whether the connection to the server is working. If the connection has gone down and auto-
reconnect is enabled an attempt to reconnect is made. If the connection is down and auto-reconnect is
disabled, mysql_ping() returns an error.

Auto-reconnect is disabled by default. To enable it, call mysql_options() with the
MYSQL_OPT_RECONNECT option (deprecated as of MySQL 8.0.34). For details, see Section 5.4.54,
“mysql_options()”.

mysql_ping() can be used by clients that remain idle for a long while, to check whether the server has
closed the connection and reconnect if necessary.

If mysql_ping()) does cause a reconnect, there is no explicit indication of it. To determine whether
a reconnect occurs, call mysql_thread_id() to get the original connection identifier before calling
mysql_ping(), then call mysql_thread_id() again to see whether the identifier has changed.

If reconnect occurs, some characteristics of the connection will have been reset. For details about these
characteristics, see Section 3.6.8, “Automatic Reconnection Control”.

Return Values

Zero if the connection to the server is active. Nonzero if an error occurred. A nonzero return does not
indicate whether the MySQL server itself is down; the connection might be broken for other reasons such
as network problems.

Errors

• CR_COMMANDS_OUT_OF_SYNC

92

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync

mysql_query()

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.57 mysql_query()
int
mysql_query(MYSQL *mysql,
 const char *stmt_str)

Description

Executes the SQL statement pointed to by the null-terminated string stmt_str. Normally, the string
must consist of a single SQL statement without a terminating semicolon (;) or \g. If multiple-statement
execution has been enabled, the string can contain several statements separated by semicolons. See
Section 3.6.3, “Multiple Statement Execution Support”.

mysql_query() cannot be used for statements that contain binary data; you must use
mysql_real_query() instead. (Binary data may contain the \0 character, which mysql_query()
interprets as the end of the statement string.)

To determine whether a statement returns a result set, call mysql_field_count(). See Section 5.4.23,
“mysql_field_count()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.58 mysql_real_connect()
MYSQL *
mysql_real_connect(MYSQL *mysql,
 const char *host,

93

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_real_connect()

 const char *user,
 const char *passwd,
 const char *db,
 unsigned int port,
 const char *unix_socket,
 unsigned long client_flag)

Description

Note

mysql_real_connect() is a synchronous function. Its asynchronous counterpart
is mysql_real_connect_nonblocking(), for use by applications that require
asynchronous communication with the server. See Chapter 7, C API Asynchronous
Interface.

To connect using a DNS SRV record, use mysql_real_connect_dns_srv().
See Section 5.4.59, “mysql_real_connect_dns_srv()”.

mysql_real_connect() attempts to establish a connection to a MySQL server running on host. Client
programs must successfully connect to a server before executing any other API functions that require a
valid MYSQL connection handler structure.

Specify the arguments as follows:

• For the first argument, specify the address of an existing MYSQL structure. Before calling
mysql_real_connect(), call mysql_init() to initialize the MYSQL structure. You can change a lot
of connect options with the mysql_options() call. See Section 5.4.54, “mysql_options()”.

• The value of host may be either a host name or an IP address. The client attempts to connect as
follows:

• If host is NULL or the string "localhost", a connection to the local host is assumed:

• On Windows, the client connects using a shared-memory connection, if the server has shared-
memory connections enabled.

• On Unix, the client connects using a Unix socket file. The unix_socket argument or the
MYSQL_UNIX_PORT environment variable may be used to specify the socket name.

• On Windows, if host is ".", or TCP/IP is not enabled and no unix_socket is specified or the host
is empty, the client connects using a named pipe, if the server has named-pipe connections enabled. If
named-pipe connections are not enabled, an error occurs.

• Otherwise, TCP/IP is used.

You can also influence the type of connection to use with the MYSQL_OPT_PROTOCOL or
MYSQL_OPT_NAMED_PIPE options to mysql_options(). The type of connection must be supported
by the server.

• The user argument contains the user's MySQL login ID. If user is NULL or the empty string "", the
current user is assumed. Under Unix, this is the current login name. Under Windows ODBC, the current
user name must be specified explicitly. See the Connector/ODBC section of Connectors and APIs.

• The passwd argument contains the password for user. If passwd is NULL, only entries in the user
table for the user that have a blank (empty) password field are checked for a match. This enables the
database administrator to set up the MySQL privilege system in such a way that users get different
privileges depending on whether they have specified a password.

94

https://dev.mysql.com/doc/refman/8.0/en/connectors-apis.html

mysql_real_connect()

Note

Do not attempt to encrypt the password before calling
mysql_real_connect(); password encryption is handled automatically by the
client API.

• The user and passwd arguments use whatever character set has been configured for the MYSQL
object. By default, this is utf8mb4, but can be changed by calling mysql_options(mysql,
MYSQL_SET_CHARSET_NAME, "charset_name") prior to connecting.

• db is the database name. If db is not NULL, the connection sets the default database to this value.

• If port is not 0, the value is used as the port number for the TCP/IP connection. Note that the host
argument determines the type of the connection.

• If unix_socket is not NULL, the string specifies the socket or named pipe to use. Note that the host
argument determines the type of the connection.

• The value of client_flag is usually 0, but can be set to a combination of the following flags to enable
certain features:

• CAN_HANDLE_EXPIRED_PASSWORDS: The client can handle expired passwords. For more
information, see Server Handling of Expired Passwords.

• CLIENT_COMPRESS: Use compression in the client/server protocol.

• CLIENT_FOUND_ROWS: Return the number of found (matched) rows, not the number of changed rows.

• CLIENT_IGNORE_SIGPIPE: Prevents the client library from installing a SIGPIPE signal handler. This
can be used to avoid conflicts with a handler that the application has already installed.

• CLIENT_IGNORE_SPACE: Permit spaces after function names. Makes all functions names reserved
words.

• CLIENT_INTERACTIVE: Permit interactive_timeout seconds of inactivity (rather than
wait_timeout seconds) before closing the connection. The client's session wait_timeout variable
is set to the value of the session interactive_timeout variable.

• CLIENT_LOCAL_FILES: Enable LOAD DATA LOCAL handling.

• CLIENT_MULTI_RESULTS: Tell the server that the client can handle multiple result sets
from multiple-statement executions or stored procedures. This flag is automatically enabled if
CLIENT_MULTI_STATEMENTS is enabled. See the note following this table for more information about
this flag.

• CLIENT_MULTI_STATEMENTS: Tell the server that the client may send multiple statements in a single
string (separated by ; characters). If this flag is not set, multiple-statement execution is disabled. See
the note following this table for more information about this flag.

• CLIENT_NO_SCHEMA: Do not permit db_name.tbl_name.col_name syntax. This is for ODBC. It
causes the parser to generate an error if you use that syntax, which is useful for trapping bugs in some
ODBC programs.

From MySQL 8.0.32, the CLIENT_NO_SCHEMA flag is deprecated. Client programs can omit this
flag and the db argument to have the connection set the database value to the current (or default)
database.

95

https://dev.mysql.com/doc/refman/8.0/en/expired-password-handling.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_interactive_timeout
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_wait_timeout
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_wait_timeout
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_interactive_timeout
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

mysql_real_connect()

• CLIENT_ODBC: Unused.

• CLIENT_OPTIONAL_RESULTSET_METADATA: This flag makes result set metadata optional.
Suppression of metadata transfer can improve performance, particularly for sessions that execute
many queries that return few rows each. For details about managing result set metadata transfer, see
Section 3.6.7, “Optional Result Set Metadata”.

• CLIENT_SSL: Use SSL (encrypted protocol). Do not set this option within an application
program; it is set internally in the client library. Instead, use mysql_options() before calling
mysql_real_connect().

• CLIENT_REMEMBER_OPTIONS: Remember options specified by calls to mysql_options(). Without
this option, if mysql_real_connect() fails, you must repeat the mysql_options() calls before
trying to connect again. With this option, the mysql_options() calls need not be repeated.

If your program uses CALL statements to execute stored procedures, the CLIENT_MULTI_RESULTS flag
must be enabled. This is because each CALL returns a result to indicate the call status, in addition to any
result sets that might be returned by statements executed within the procedure. Because CALL can return
multiple results, process them using a loop that calls mysql_next_result() to determine whether there
are more results.

CLIENT_MULTI_RESULTS can be enabled when you call mysql_real_connect(), either explicitly by
passing the CLIENT_MULTI_RESULTS flag itself, or implicitly by passing CLIENT_MULTI_STATEMENTS
(which also enables CLIENT_MULTI_RESULTS). CLIENT_MULTI_RESULTS is enabled by default.

If you enable CLIENT_MULTI_STATEMENTS or CLIENT_MULTI_RESULTS, process the result for every
call to mysql_real_query() or mysql_query() by using a loop that calls mysql_next_result()
to determine whether there are more results. For an example, see Section 3.6.3, “Multiple Statement
Execution Support”.

For some arguments, it is possible to have the value taken from an option file rather than from
an explicit value in the mysql_real_connect() call. To do this, call mysql_options() with
the MYSQL_READ_DEFAULT_FILE or MYSQL_READ_DEFAULT_GROUP option before calling
mysql_real_connect(). Then, in the mysql_real_connect() call, specify the “no-value” value for
each argument to be read from an option file:

• For host, specify a value of NULL or the empty string ("").

• For user, specify a value of NULL or the empty string.

• For passwd, specify a value of NULL. (For the password, a value of the empty string in the
mysql_real_connect() call cannot be overridden in an option file, because the empty string
indicates explicitly that the MySQL account must have an empty password.)

• For db, specify a value of NULL or the empty string.

• For port, specify a value of 0.

• For unix_socket, specify a value of NULL.

If no value is found in an option file for an argument, its default value is used as indicated in the
descriptions given earlier in this section.

Return Values

A MYSQL* connection handler if the connection was successful, NULL if the connection was unsuccessful.
For a successful connection, the return value is the same as the value of the first argument.

96

https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html

mysql_real_connect()

Errors

• CR_CONN_HOST_ERROR

Failed to connect to the MySQL server.

• CR_CONNECTION_ERROR

Failed to connect to the local MySQL server.

• CR_IPSOCK_ERROR

Failed to create an IP socket.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SOCKET_CREATE_ERROR

Failed to create a Unix socket.

• CR_UNKNOWN_HOST

Failed to find the IP address for the host name.

• CR_VERSION_ERROR

A protocol mismatch resulted from attempting to connect to a server with a client library that uses a
different protocol version.

• CR_NAMEDPIPEOPEN_ERROR

Failed to create a named pipe on Windows.

• CR_NAMEDPIPEWAIT_ERROR

Failed to wait for a named pipe on Windows.

• CR_NAMEDPIPESETSTATE_ERROR

Failed to get a pipe handler on Windows.

• CR_SERVER_LOST

If connect_timeout > 0 and it took longer than connect_timeout seconds to connect to the server
or if the server died while executing the init-command.

• CR_ALREADY_CONNECTED

The MYSQL connection handler is already connected.

Example

MYSQL mysql;

mysql_init(&mysql);
mysql_options(&mysql,MYSQL_READ_DEFAULT_GROUP,"your_prog_name");
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))

97

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_conn_host_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_connection_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_ipsock_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_socket_create_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_host
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_version_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_namedpipeopen_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_namedpipewait_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_namedpipesetstate_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_connect_timeout
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_connect_timeout
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_already_connected

mysql_real_connect_dns_srv()

{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

By using mysql_options() the MySQL client library reads the [client] and [your_prog_name]
sections in the my.cnf file. This enables you to add options to the [your_prog_name] section to ensure
that your program works, even if someone has set up MySQL in some nonstandard way.

5.4.59 mysql_real_connect_dns_srv()

MYSQL *
mysql_real_connect_dns_srv(MYSQL *mysql,
 const char *dns_srv_name,
 const char *user,
 const char *passwd,
 const char *db,
 unsigned long client_flag)

Description

Note

mysql_real_connect_dns_srv() is a synchronous function. Unlike
mysql_real_connect(), it has no asynchronous counterpart.

mysql_real_connect_dns_srv() is similar to mysql_real_connect(), except that the argument
list does not specify the particular host of the MySQL server to connect to. Instead, it names a DNS
SRV record that specifies a group of servers. For information about DNS SRV support in MySQL, see
Connecting to the Server Using DNS SRV Records.

The dns_srv_name argument for mysql_real_connect_dns_srv() takes the place of the host,
port, and unix_socket arguments for mysql_real_connect(). The dns_srv_name argument
names a DNS SRV record that determines the candidate hosts to use for establishing a connection to a
MySQL server.

The mysql, user, passwd, db, and client_flag arguments to mysql_real_connect_dns_srv()
have the same meanings as for mysql_real_connect(). For descriptions of their meanings, see
Section 5.4.58, “mysql_real_connect()”.

Suppose that DNS is configured with this SRV information for the example.com domain:

Name TTL Class Priority Weight Port Target
_mysql._tcp.example.com. 86400 IN SRV 0 5 3306 host1.example.com
_mysql._tcp.example.com. 86400 IN SRV 0 10 3306 host2.example.com
_mysql._tcp.example.com. 86400 IN SRV 10 5 3306 host3.example.com
_mysql._tcp.example.com. 86400 IN SRV 20 5 3306 host4.example.com

To use that DNS SRV record, pass "_mysql._tcp.example.com" as the dns_srv_name argument to
mysql_real_connect_dns_srv(), which then attempts a connection to each server in the group until a
successful connection is established. A failure to connect occurs only if a connection cannot be established
to any of the servers. The priority and weight values in the DNS SRV record determine the order in which
servers should be tried.

mysql_real_connect_dns_srv() attempts to establish TCP connections only.

The client library performs a DNS SRV lookup for each call to mysql_real_connect_dns_srv(). The
client library does no caching of lookup results.

98

https://dev.mysql.com/doc/refman/8.0/en/connecting-using-dns-srv.html

mysql_real_escape_string()

Return Values

A MYSQL* connection handler if the connection was successful, NULL if the connection was unsuccessful.
For a successful connection, the return value is the same as the value of the first argument.

Errors

The same that you can get from mysql_real_connect(), plus:

• CR_DNS_SRV_LOOKUP_FAILED

DNS SRV lookup failed.

Example

The following example uses the name of the DNS SRV record shown previously as the source of candidate
servers for establishing a connection.

MYSQL mysql;
const char *dns_srv_name = "_mysql._tcp.example.com";

mysql_init(&mysql);
if (!mysql_real_connect_dns_srv(&mysql,dns_srv_name,"user","passwd","database",0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

5.4.60 mysql_real_escape_string()
unsigned long
mysql_real_escape_string(MYSQL *mysql,
 char *to,
 const char *from,
 unsigned long length)

Description

This function creates a legal SQL string for use in an SQL statement. See String Literals.

Note

mysql_real_escape_string() fails and produces an CR_INSECURE_API_ERR
error if the NO_BACKSLASH_ESCAPES SQL mode is enabled. In this case, the
function cannot escape quote characters except by doubling them, and to do this
properly, it must know more information about the quoting context than is available.
Instead, use mysql_real_escape_string_quote(), which takes an extra
argument for specifying the quoting context.

The mysql argument must be a valid, open connection because character escaping depends on the
character set in use by the server.

The string in the from argument is encoded to produce an escaped SQL string, taking into account the
current character set of the connection. The result is placed in the to argument, followed by a terminating
null byte.

Characters encoded are \, ', ", NUL (ASCII 0), \n, \r, and Control+Z. Strictly speaking, MySQL
requires only that backslash and the quote character used to quote the string in the query be escaped.
mysql_real_escape_string() quotes the other characters to make them easier to read in log files.

99

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_dns_srv_lookup_failed
https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_insecure_api_err
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_backslash_escapes

mysql_real_escape_string_quote()

For comparison, see the quoting rules for literal strings and the QUOTE() SQL function in String Literals,
and String Functions and Operators.

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at least
length*2+1 bytes long. (In the worst case, each character may need to be encoded as using two bytes,
and there must be room for the terminating null byte.) When mysql_real_escape_string() returns,
the contents of to is a null-terminated string. The return value is the length of the encoded string, not
including the terminating null byte.

If you must change the character set of the connection, use the mysql_set_character_set()
function rather than executing a SET NAMES (or SET CHARACTER SET) statement.
mysql_set_character_set() works like SET NAMES but also affects the character set used by
mysql_real_escape_string(), which SET NAMES does not.

Example

The following example inserts two escaped strings into an INSERT statement, each within single quote
characters:

char query[1000],*end;

end = my_stpcpy(query,"INSERT INTO test_table VALUES('");
end += mysql_real_escape_string(&mysql,end,"What is this",12);
end = my_stpcpy(end,"','");
end += mysql_real_escape_string(&mysql,end,"binary data: \0\r\n",16);
end = my_stpcpy(end,"')");

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
 fprintf(stderr, "Failed to insert row, Error: %s\n",
 mysql_error(&mysql));
}

The my_stpcpy() function used in the example is included in the libmysqlclient library and works
like strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the encoded string that is placed into the to argument, not including the terminating null byte,
or -1 if an error occurs.

Because mysql_real_escape_string() returns an unsigned value, you can check for -1 by comparing
the return value to (unsigned long)-1 (or to (unsigned long)~0, which is equivalent).

Errors

• CR_INSECURE_API_ERR

This error occurs if the NO_BACKSLASH_ESCAPES SQL mode is enabled because, in that case,
mysql_real_escape_string() cannot be guaranteed to produce a properly encoded result. To
avoid this error, use mysql_real_escape_string_quote() instead.

5.4.61 mysql_real_escape_string_quote()
unsigned long
mysql_real_escape_string_quote(MYSQL *mysql,
 char *to,
 const char *from,
 unsigned long length,
 char quote)

100

https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_quote
https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_insecure_api_err
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_no_backslash_escapes

mysql_real_escape_string_quote()

Description

This function creates a legal SQL string for use in an SQL statement. See String Literals.

The mysql argument must be a valid, open connection because character escaping depends on the
character set in use by the server.

The string in the from argument is encoded to produce an escaped SQL string, taking into account the
current character set of the connection. The result is placed in the to argument, followed by a terminating
null byte.

Characters encoded are \, ', ", NUL (ASCII 0), \n, \r, Control+Z, and `. Strictly speaking, MySQL
requires only that backslash and the quote character used to quote the string in the query be escaped.
mysql_real_escape_string_quote() quotes the other characters to make them easier to read in
log files. For comparison, see the quoting rules for literal strings and the QUOTE() SQL function in String
Literals, and String Functions and Operators.

Note

If the ANSI_QUOTES SQL mode is enabled,
mysql_real_escape_string_quote() cannot be used to escape double quote
characters for use within double-quoted identifiers. (The function cannot tell whether
the mode is enabled to determine the proper escaping character.)

The string pointed to by from must be length bytes long. You must allocate the to buffer to be at least
length*2+1 bytes long. (In the worst case, each character may need to be encoded as using two bytes,
and there must be room for the terminating null byte.) When mysql_real_escape_string_quote()
returns, the contents of to is a null-terminated string. The return value is the length of the encoded string,
not including the terminating null byte.

The quote argument indicates the context in which the escaped string is to be placed. Suppose that you
intend to escape the from argument and insert the escaped string (designated here by str) into one of
the following statements:

1) SELECT * FROM table WHERE name = 'str'
2) SELECT * FROM table WHERE name = "str"
3) SELECT * FROM `str` WHERE id = 103

To perform escaping properly for each statement, call mysql_real_escape_string_quote() as
follows, where the final argument indicates the quoting context:

1) len = mysql_real_escape_string_quote(&mysql,to,from,from_len,'\'');
2) len = mysql_real_escape_string_quote(&mysql,to,from,from_len,'"');
3) len = mysql_real_escape_string_quote(&mysql,to,from,from_len,'`');

If you must change the character set of the connection, use the mysql_set_character_set()
function rather than executing a SET NAMES (or SET CHARACTER SET) statement.
mysql_set_character_set() works like SET NAMES but also affects the character set used by
mysql_real_escape_string_quote(), which SET NAMES does not.

Example

The following example inserts two escaped strings into an INSERT statement, each within single quote
characters:

char query[1000],*end;

end = my_stpcpy(query,"INSERT INTO test_table VALUES('");
end += mysql_real_escape_string_quote(&mysql,end,"What is this",12,'\'');

101

https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_quote
https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/refman/8.0/en/string-literals.html
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html
https://dev.mysql.com/doc/refman/8.0/en/sql-mode.html#sqlmode_ansi_quotes
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-character-set.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/set-names.html

mysql_real_query()

end = my_stpcpy(end,"','");
end += mysql_real_escape_string_quote(&mysql,end,"binary data: \0\r\n",16,'\'');
end = my_stpcpy(end,"')");

if (mysql_real_query(&mysql,query,(unsigned int) (end - query)))
{
 fprintf(stderr, "Failed to insert row, Error: %s\n",
 mysql_error(&mysql));
}

The my_stpcpy() function used in the example is included in the libmysqlclient library and works
like strcpy() but returns a pointer to the terminating null of the first parameter.

Return Values

The length of the encoded string that is placed into the to argument, not including the terminating null byte.

Errors

None.

5.4.62 mysql_real_query()
int
mysql_real_query(MYSQL *mysql,
 const char *stmt_str,
 unsigned long length)

Description

Note

mysql_real_query() is a synchronous function. Its asynchronous counterpart
is mysql_real_query_nonblocking(), for use by applications that require
asynchronous communication with the server. See Chapter 7, C API Asynchronous
Interface.

mysql_real_query() executes the SQL statement pointed to by stmt_str, a string length bytes
long. Normally, the string must consist of a single SQL statement without a terminating semicolon (;) or
\g. If multiple-statement execution has been enabled, the string can contain several statements separated
by semicolons. See Section 3.6.3, “Multiple Statement Execution Support”.

mysql_query() cannot be used for statements that contain binary data; you must use
mysql_real_query() instead. (Binary data may contain the \0 character, which mysql_query()
interprets as the end of the statement string.) In addition, mysql_real_query() is faster than
mysql_query() because it does not call strlen() on the statement string.

To determine whether a statement returns a result set, call mysql_field_count(). See Section 5.4.23,
“mysql_field_count()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

102

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync

mysql_refresh()

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.63 mysql_refresh()
int
mysql_refresh(MYSQL *mysql,
 unsigned int options)

Description

Note

mysql_refresh() is deprecated and is subject to removal in a future version of
MySQL. Instead, use mysql_real_query() or mysql_query() to execute a
FLUSH statement.

This function flushes tables or caches, or resets replication server information. The connected user must
have the RELOAD privilege.

The options argument is a bitmask composed from any combination of the following values. Multiple
values can be OR'ed together to perform multiple operations with a single call.

• REFRESH_GRANT

Refresh the grant tables, like FLUSH PRIVILEGES.

• REFRESH_LOG

Flush the logs, like FLUSH LOGS.

• REFRESH_TABLES

Flush the table cache, like FLUSH TABLES.

• REFRESH_HOSTS

Flush the host cache, like FLUSH HOSTS.

• REFRESH_STATUS

Reset status variables, like FLUSH STATUS.

• REFRESH_THREADS

Flush the thread cache.

• REFRESH_SLAVE

On a replica server, reset the source server information and restart the replica, like RESET SLAVE.

103

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/flush.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-logs
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-tables
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-hosts
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-status
https://dev.mysql.com/doc/refman/8.0/en/reset-slave.html

mysql_reload()

• REFRESH_MASTER

On a source server, remove the binary log files listed in the binary log index and truncate the index file,
like RESET MASTER.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.64 mysql_reload()
int
mysql_reload(MYSQL *mysql)

Description

Asks the MySQL server to reload the grant tables. The connected user must have the RELOAD privilege.

This function is deprecated. Use mysql_real_query() or mysql_query() to issue an SQL FLUSH
PRIVILEGES statement instead.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

104

https://dev.mysql.com/doc/refman/8.0/en/reset-master.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_reload
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/refman/8.0/en/flush.html#flush-privileges
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_reset_connection()

5.4.65 mysql_reset_connection()
int
mysql_reset_connection(MYSQL *mysql)

Description

Resets the connection to clear the session state.

mysql_reset_connection() has effects similar to mysql_change_user() or an auto-reconnect
except that the connection is not closed and reopened, and reauthentication is not done. The write
set session history is reset. See Section 5.4.4, “mysql_change_user()”, and Section 3.6.8, “Automatic
Reconnection Control”.

mysql_reset_connection() affects the connection-related state as follows:

• Rolls back any active transactions and resets autocommit mode.

• Releases all table locks.

• Closes (and drops) all TEMPORARY tables.

• Reinitializes session system variables to the values of the corresponding global system variables,
including system variables that are set implicitly by statements such as SET NAMES.

• Loses user-defined variable settings.

• Releases prepared statements.

• Closes HANDLER variables.

• Resets the value of LAST_INSERT_ID() to 0.

• Releases locks acquired with GET_LOCK().

• Clears any current query attributes defined as a result of calling mysql_bind_param().

Return Values

Zero for success. Nonzero if an error occurred.

5.4.66 mysql_reset_server_public_key()
void
mysql_reset_server_public_key(void)

Description

Clears from the client library any cached copy of the public key required by the server for RSA
key pair-based password exchange. This might be necessary when the server has been restarted
with a different RSA key pair after the client program had called mysql_options() with the
MYSQL_SERVER_PUBLIC_KEY option to specify the RSA public key. In such cases, connection failure can
occur due to key mismatch. To fix this problem, the client can use either of the following approaches:

• The client can call mysql_reset_server_public_key() to clear the cached key and try again, after
the public key file on the client side has been replaced with a file containing the new public key.

• The client can call mysql_reset_server_public_key() to clear the cached key, then
call mysql_options() with the MYSQL_OPT_GET_SERVER_PUBLIC_KEY option (instead of

105

https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/handler.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/locking-functions.html#function_get-lock

mysql_result_metadata()

MYSQL_SERVER_PUBLIC_KEY) to request the required public key from the server Do not use both
MYSQL_OPT_GET_SERVER_PUBLIC_KEY and MYSQL_SERVER_PUBLIC_KEY because in that case,
MYSQL_SERVER_PUBLIC_KEY takes precedence.

Return Values

None.

Errors

None.

5.4.67 mysql_result_metadata()
enum enum_resultset_metadata
mysql_result_metadata(MYSQL_RES *result)

Description

mysql_result_metadata() returns a value that indicates whether a result set has metadata. It
can be useful for metadata-optional connections when the client does not know in advance whether
particular result sets have metadata. For example, if a client executes a stored procedure that returns
multiple result sets and might change the resultset_metadata system variable, the client can invoke
mysql_result_metadata() for each result set to determine whether it has metadata.

For details about managing result set metadata transfer, see Section 3.6.7, “Optional Result Set
Metadata”.

Return Values

mysql_result_metadata() returns one of these values:

enum enum_resultset_metadata {
 RESULTSET_METADATA_NONE= 0,
 RESULTSET_METADATA_FULL= 1
};

5.4.68 mysql_rollback()
bool
mysql_rollback(MYSQL *mysql)

Description

Rolls back the current transaction.

The action of this function is subject to the value of the completion_type system variable. In particular,
if the value of completion_type is RELEASE (or 2), the server performs a release after terminating a
transaction and closes the client connection. Call mysql_close() from the client program to close the
connection from the client side.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

106

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_resultset_metadata
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_completion_type
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_completion_type

mysql_row_seek()

5.4.69 mysql_row_seek()
MYSQL_ROW_OFFSET
mysql_row_seek(MYSQL_RES *result,
 MYSQL_ROW_OFFSET offset)

Description

Sets the row cursor to an arbitrary row in a query result set. The offset value is a row offset, typically a
value returned from mysql_row_tell() or from mysql_row_seek(). This value is not a row number;
to seek to a row within a result set by number, use mysql_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_row_seek() may be used only in conjunction with mysql_store_result(), not with
mysql_use_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_row_seek().

Errors

None.

5.4.70 mysql_row_tell()
MYSQL_ROW_OFFSET
mysql_row_tell(MYSQL_RES *result)

Description

Returns the current position of the row cursor for the last mysql_fetch_row(). This value can be used
as an argument to mysql_row_seek().

Use mysql_row_tell() only after mysql_store_result(), not after mysql_use_result().

Return Values

The current offset of the row cursor.

Errors

None.

5.4.71 mysql_select_db()
int
mysql_select_db(MYSQL *mysql,
 const char *db)

Description

Causes the database specified by db to become the default (current) database on the connection specified
by mysql. In subsequent queries, this database is the default for table references that include no explicit
database specifier.

107

mysql_server_end()

mysql_select_db() fails unless the connected user can be authenticated as having permission to use
the database or some object within it.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.72 mysql_server_end()
void
mysql_server_end(void)

Description

This function finalizes the MySQL client library, which should be done when you are done using the library.
However, mysql_server_end() is deprecated and mysql_library_end() should be used instead.
See Section 5.4.44, “mysql_library_end()”.

Note

To avoid memory leaks after the application is done using the library (for example,
after closing the connection to the server), be sure to call mysql_server_end()
(or mysql_library_end()) explicitly. This enables memory managment to be
performed to clean up and free resources used by the library.

Return Values

None.

5.4.73 mysql_server_init()
int
mysql_server_init(int argc,
 char **argv,
 char **groups)

Description

This function initializes the MySQL client library, which must be done before you call any other MySQL
function. However, mysql_server_init() is deprecated and you should call mysql_library_init()
instead. See Section 5.4.45, “mysql_library_init()”.

108

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_session_track_get_first()

Note

To avoid memory leaks after the application is done using the library (for example,
after closing the connection to the server), be sure to call mysql_server_end()
(or mysql_library_end()) explicitly. This enables memory managment to be
performed to clean up and free resources used by the library. See Section 5.4.44,
“mysql_library_end()”.

Return Values

Zero for success. Nonzero if an error occurred.

5.4.74 mysql_session_track_get_first()
int
mysql_session_track_get_first(MYSQL *mysql,
 enum enum_session_state_type type,
 const char **data,
 size_t *length)

Description

MySQL implements a session tracker mechanism whereby the server returns information
about session state changes to clients. To control which notifications the server provides
about state changes, client applications set system variables having names of the form
session_track_xxx, such as session_track_state_change, session_track_schema, and
session_track_system_variables. See Server Tracking of Client Session State.

Change notification occurs in the MySQL client/server protocol, which includes tracker information in OK
packets so that session state changes can be detected. To enable client applications to extract state-
change information from OK packets, the MySQL C API provides a pair of functions:

• mysql_session_track_get_first() fetches the first part of the state-change information received
from the server.

• mysql_session_track_get_next() fetches any remaining state-change information received from
the server. Following a successful call to mysql_session_track_get_first(), call this function
repeatedly as long as it returns success.

The mysql_session_track_get_first() parameters are used as follows. These descriptions also
apply to mysql_session_track_get_next(), which takes the same parameters.

• mysql: The connection handler.

• type: The tracker type indicating what kind of information to retrieve. Permitted tracker values are the
members of the enum_session_state_type enumeration defined in mysql_com.h:

enum enum_session_state_type
{
 SESSION_TRACK_SYSTEM_VARIABLES, /* Session system variables */
 SESSION_TRACK_SCHEMA, /* Current schema */
 SESSION_TRACK_STATE_CHANGE, /* Session state changes */
 SESSION_TRACK_GTIDS, /* GTIDs */
 SESSION_TRACK_TRANSACTION_CHARACTERISTICS, /* Transaction characteristics */
 SESSION_TRACK_TRANSACTION_STATE /* Transaction state */
};

The members of that enumeration may change over time as MySQL implements additional session-
information trackers. To make it easy for applications to loop over all possible tracker types regardless
of the number of members, the SESSION_TRACK_BEGIN and SESSION_TRACK_END symbols are

109

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_state_change
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_schema
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_system_variables
https://dev.mysql.com/doc/refman/8.0/en/session-state-tracking.html

mysql_session_track_get_first()

defined to be equal to the first and last members of the enum_session_state_type enumeration. The
example code shown later in this section demonstrates this technique. (Of course, if the enumeration
members change, you must recompile your application to enable it to take account of new trackers.)

• data: The address of a const char * variable. Following a successful call, this variable points to the
returned data, which should be considered read only.

• length: The address of a size_t variable. Following a successful call, this variable contains the length
of the data pointed to by the data parameter.

The following discussion describes how to interpret the data and length values according to the type
value. It also indicates which system variable enables notifications for each tracker type.

• SESSION_TRACK_SCHEMA: This tracker type indicates that the default schema has been set. data is a
string containing the new default schema name. length is the string length.

To enable notifications for this tracker type, enable the session_track_schema system variable.

• SESSION_TRACK_SYSTEM_VARIABLES: This tracker type indicates that one or more tracked session
system variables have been assigned a value. When a session system variable is assigned, two values
per variable are returned (in separate calls). For the first call, data is a string containing the variable
name and length is the string length. For the second call, data is a string containing the variable value
and length is the string length.

By default, notification is enabled for these session system variables:

• autocommit

• character_set_client

• character_set_connection

• character_set_results

• time_zone

To change the default notification for this tracker type, set the session_track_schema
system variable to a list of comma-separated variables for which to track changes, or * to
track changes for all variables. To disable notification of session variable assignments, set
session_track_system_variables to the empty string.

• SESSION_TRACK_STATE_CHANGE: This tracker type indicates a change to some tracked attribute of
session state. data is a byte containing a boolean flag that indicates whether session state changes
occurred. length should be 1. The flag is represented as an ASCII value, not a binary (for example,
'1', not 0x01).

To enable notifications for this tracker type, enable the session_track_state_change system
variable.

This tracker reports changes for these attributes of session state:

• The default schema (database).

• Session-specific values for system variables.

• User-defined variables.

• Temporary tables.

110

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_schema
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_connection
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_results
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_time_zone
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_schema
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_system_variables
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_state_change

mysql_session_track_get_first()

• Prepared statements.

• SESSION_TRACK_GTIDS: This tracker type indicates that GTIDs are available. data contains the GTID
string. length is the string length. The GTID string is in the standard format for specifying a set of GTID
values; see GTID Sets.

To enable notifications for this tracker type, set the session_track_gtids system variable.

• SESSION_TRACK_TRANSACTION_CHARACTERISTICS: This tracker type indicates that transaction
characteristics are available. data is a string containing the characteristics data. length is the string
length. The characteristics tracker data string may be empty, or it may contain one or more SQL
statements, each terminated by a semicolon:

• If no characteristics apply, the string is empty. The session defaults apply. (For isolation level and
access mode, these defaults are given by the session values of the transaction_isolation and
transaction_read_only system variables.)

• If a transaction was explicitly started, the string contains the statement or statements required to
restart the transaction with the same characteristics. As a general rule, this is a START TRANSACTION
statement (possibly with one or more of READ ONLY, READ WRITE, and WITH CONSISTENT
SNAPSHOT). If any characteristics apply that cannot be passed to START TRANSACTION, such as
ISOLATION LEVEL, a suitable SET TRANSACTION statement is prepended (for example, SET
TRANSACTION ISOLATION LEVEL SERIALIZABLE; START TRANSACTION READ WRITE;).

• If a transaction was not explicitly started, but one-shot characteristics that apply only to the next
transaction were set up, a SET TRANSACTION statement suitable for replicating that setup is
generated (for example, SET TRANSACTION READ ONLY;).

Next-transaction characteristics can be set using SET TRANSACTION without any GLOBAL or
SESSION keyword, or by setting the transaction_isolation and transaction_read_only
system variables using the syntax that applies only to the next transaction:

SET @@transaction_isolation = value;
SET @@transaction_read_only = value;

For more information about transaction characteristic scope levels and how they are set, see
Transaction Characteristic Scope.

To enable notifications for this tracker type, set the session_track_transaction_info system
variable to CHARACTERISTICS (which also enables the SESSION_TRACK_TRANSACTION_STATE
tracker type).

Transaction characteristics tracking enables the client to determine how to restart a transaction in
another session so it has the same characteristics as in the original session.

Because characteristics may be set using SET TRANSACTION before a transaction is started, it is not
safe for the client to assume that there are no transaction characteristics if no transaction is active.
It is therefore unsafe not to track transaction characteristics and just switch the connection when
no transaction is active (whether this is detected by the transaction state tracker or the traditional
SERVER_STATUS_IN_TRANS flag). A client must subscribe to the transaction characteristics tracker if it
may wish to switch its session to another connection at some point and transactions may be used.

The characteristics tracker tracks changes to the one-shot characteristics that apply only to the next
transaction. It does not track changes to the session variables. Therefore, the client additionally must
track the transaction_isolation and transaction_read_only system variables to correctly
determine the session defaults that apply when next-transaction characteristic values are empty. (To

111

https://dev.mysql.com/doc/refman/8.0/en/replication-gtids-concepts.html#replication-gtids-concepts-gtid-sets
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_gtids
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_isolation
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_read_only
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/commit.html
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_isolation
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_read_only
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html#set-transaction-scope
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_transaction_info
https://dev.mysql.com/doc/refman/8.0/en/set-transaction.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_isolation
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_transaction_read_only

mysql_session_track_get_first()

track these variables, list them in the value of the session_track_system_variables system
variable.)

112

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_system_variables

mysql_session_track_get_first()

• SESSION_TRACK_TRANSACTION_STATE: This tracker type indicates that transaction state information
is available. data is a string containing ASCII characters, each of which indicates some aspect of the
transaction state. length is the string length (always 8).

To enable notifications for this tracker type, set the session_track_transaction_info system
variable to STATE.

Transaction state tracking enables the client to determine whether a transaction is in progress and
whether it could be moved to a different session without being rolled back.

The scope of the tracker item is the transaction. All state-indicating flags persist until the transaction
is committed or rolled back. As statements are added to the transaction, additional flags may be set in
successive tracker data values. However, no flags are cleared until the transaction ends.

Transaction state is reported as a string containing a sequence of ASCII characters. Each active state
has a unique character assigned to it as well as a fixed position in the sequence. The following list
describes the permitted values for positions 1 through 8 of the sequence:

• Position 1: Whether an active transaction is ongoing.

• T: An explicitly started transaction is ongoing.

• I: An implicitly started transaction (autocommit=0) is ongoing.

• _: There is no active transaction.

• Position 2: Whether nontransactional tables were read in the context of the current transaction.

• r: One or more nontransactional tables were read.

• _: No nontransactional tables were read so far.

• Position 3: Whether transactional tables were read in the context of the current transaction.

• R: One or more transactional tables were read.

• _: No transactional tables were read so far.

• Position 4: Whether unsafe writes (writes to nontransactional tables) were performed in the context of
the current transaction.

• w: One or more nontransactional tables were written.

• _: No nontransactional tables were written so far.

• Position 5: Whether any transactional tables were written in the context of the current transaction.

• W: One or more transactional tables were written.

• _: No transactional tables were written so far.

• Position 6: Whether any unsafe statements were executed in the context of the current transaction.
Statements containing nondeterministic constructs such as RAND() or UUID() are unsafe for
statement-based replication.

• s: One or more unsafe statements were executed.

113

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_session_track_transaction_info
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_autocommit
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_rand
https://dev.mysql.com/doc/refman/8.0/en/miscellaneous-functions.html#function_uuid

mysql_session_track_get_first()

• _: No unsafe statements were executed so far.

• Position 7: Whether a result set was sent to the client during the current transaction.

• S: A result set was sent.

• _: No result sets were sent so far.

• Position 8: Whether a LOCK TABLES statement is in effect.

• L: Tables are explicitly locked with LOCK TABLES.

• _: LOCK TABLES is not active in the session.

Consider a session consisting of the following statements, including one to enable the transaction state
tracker:

1. SET @@SESSION.session_track_transaction_info='STATE';
2. START TRANSACTION;
3. SELECT 1;
4. INSERT INTO t1 () VALUES();
5. INSERT INTO t1 () VALUES(1, RAND());
6. COMMIT;

With transaction state tracking enabled, the following data values result from those statements:

1. ________
2. T_______
3. T_____S_
4. T___W_S_
5. T___WsS_
6. ________

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

Example

The following example shows how to call mysql_session_track_get_first() and
mysql_session_track_get_next() to retrieve and display all available session state-change
information following successful execution of an SQL statement string (represented by stmt_str). It
is assumed that the application has set the session_track_xxx system variables that enable the
notifications it wishes to receive.

printf("Execute: %s\n", stmt_str);

if (mysql_query(mysql, stmt_str) != 0)
{
 fprintf(stderr, "Error %u: %s\n",
 mysql_errno(mysql), mysql_error(mysql));
 return;
}

MYSQL_RES *result = mysql_store_result(mysql);

114

https://dev.mysql.com/doc/refman/8.0/en/lock-tables.html
https://dev.mysql.com/doc/refman/8.0/en/lock-tables.html
https://dev.mysql.com/doc/refman/8.0/en/lock-tables.html

mysql_session_track_get_next()

if (result) /* there is a result set to fetch */
{
 /* ... process rows here ... */
 printf("Number of rows returned: %lu\n",
 (unsigned long) mysql_num_rows(result));
 mysql_free_result(result);
}
else /* there is no result set */
{
 if (mysql_field_count(mysql) == 0)
 {
 printf("Number of rows affected: %lu\n",
 (unsigned long) mysql_affected_rows(mysql));
 }
 else /* an error occurred */
 {
 fprintf(stderr, "Error %u: %s\n",
 mysql_errno(mysql), mysql_error(mysql));
 }
}

/* extract any available session state-change information */
enum enum_session_state_type type;
for (type = SESSION_TRACK_BEGIN; type <= SESSION_TRACK_END; type++)
{
 const char *data;
 size_t length;

 if (mysql_session_track_get_first(mysql, type, &data, &length) == 0)
 {
 /* print info type and initial data */
 printf("Type=%d:\n", type);
 printf("mysql_session_track_get_first(): length=%d; data=%*.*s\n",
 (int) length, (int) length, (int) length, data);

 /* check for more data */
 while (mysql_session_track_get_next(mysql, type, &data, &length) == 0)
 {
 printf("mysql_session_track_get_next(): length=%d; data=%*.*s\n",
 (int) length, (int) length, (int) length, data);
 }
 }
}

5.4.75 mysql_session_track_get_next()

int
mysql_session_track_get_next(MYSQL *mysql,
 enum enum_session_state_type type,
 const char **data,
 size_t *length)

Description

This function fetches additional session state-change information received from the server,
following that retrieved by mysql_session_track_get_first(). The parameters for
mysql_session_track_get_next() are the same as for mysql_session_track_get_first().

Following a successful call to mysql_session_track_get_first(), call
mysql_session_track_get_next() repeatedly until it returns nonzero to indicate no more information
is available. The calling sequence for mysql_session_track_get_next() is similar to that for
mysql_session_track_get_first(). For more information and an example that demonstrates both
functions, see Section 5.4.74, “mysql_session_track_get_first()”.

115

mysql_set_character_set()

Return Values

Zero for success. Nonzero if an error occurred.

Errors

None.

5.4.76 mysql_set_character_set()
int
mysql_set_character_set(MYSQL *mysql,
 const char *csname)

Description

This function is used to set the default character set for the current connection. The string csname
specifies a valid character set name. The connection collation becomes the default collation of the
character set. This function works like the SET NAMES statement, but also sets the value of mysql-
>charset, and thus affects the character set used by mysql_real_escape_string()

Return Values

Zero for success. Nonzero if an error occurred.

Example

MYSQL mysql;

mysql_init(&mysql);
if (!mysql_real_connect(&mysql,"host","user","passwd","database",0,NULL,0))
{
 fprintf(stderr, "Failed to connect to database: Error: %s\n",
 mysql_error(&mysql));
}

if (!mysql_set_character_set(&mysql, "utf8"))
{
 printf("New client character set: %s\n",
 mysql_character_set_name(&mysql));
}

5.4.77 mysql_set_local_infile_default()
void
mysql_set_local_infile_default(MYSQL *mysql);

Description

Sets the LOAD DATA LOCAL callback functions to the defaults used internally by the C client library. The
library calls this function automatically if mysql_set_local_infile_handler() has not been called or
does not supply valid functions for each of its callbacks.

Return Values

None.

Errors

None.

116

https://dev.mysql.com/doc/refman/8.0/en/set-names.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html

mysql_set_local_infile_handler()

5.4.78 mysql_set_local_infile_handler()

void
mysql_set_local_infile_handler(MYSQL *mysql,
 int (*local_infile_init)(void **, const char *, void *),
 int (*local_infile_read)(void *, char *, unsigned int),
 void (*local_infile_end)(void *),
 int (*local_infile_error)(void *, char*, unsigned int),
 void *userdata);

Description

This function installs callbacks to be used during the execution of LOAD DATA LOCAL statements. It
enables application programs to exert control over local (client-side) data file reading. The arguments
are the connection handler, a set of pointers to callback functions, and a pointer to a data area that the
callbacks can use to share information.

To use mysql_set_local_infile_handler(), you must write the following callback functions:

int
local_infile_init(void **ptr, const char *filename, void *userdata);

The initialization function. This is called once to do any setup necessary, open the data file, allocate data
structures, and so forth. The first void** argument is a pointer to a pointer. You can set the pointer (that
is, *ptr) to a value that will be passed to each of the other callbacks (as a void*). The callbacks can
use this pointed-to value to maintain state information. The userdata argument is the same value that is
passed to mysql_set_local_infile_handler().

Make the initialization function return zero for success, nonzero for an error.

int
local_infile_read(void *ptr, char *buf, unsigned int buf_len);

The data-reading function. This is called repeatedly to read the data file. buf points to the buffer where the
read data is stored, and buf_len is the maximum number of bytes that the callback can read and store in
the buffer. (It can read fewer bytes, but should not read more.)

The return value is the number of bytes read, or zero when no more data could be read (this indicates
EOF). Return a value less than zero if an error occurs.

void
local_infile_end(void *ptr)

The termination function. This is called once after local_infile_read() has returned zero (EOF) or an
error. Within this function, deallocate any memory allocated by local_infile_init() and perform any
other cleanup necessary. It is invoked even if the initialization function returns an error.

int
local_infile_error(void *ptr,
 char *error_msg,
 unsigned int error_msg_len);

The error-handling function. This is called to get a textual error message to return to the user in case any
of your other functions returns an error. error_msg points to the buffer into which the message is written,
and error_msg_len is the length of the buffer. Write the message as a null-terminated string, at most
error_msg_len−1 bytes long.

The return value is the error number.

117

https://dev.mysql.com/doc/refman/8.0/en/load-data.html

mysql_set_server_option()

Typically, the other callbacks store the error message in the data structure pointed to by ptr, so that
local_infile_error() can copy the message from there into error_msg.

After calling mysql_set_local_infile_handler() in your C code and passing pointers to
your callback functions, you can then issue a LOAD DATA LOCAL statement (for example, by using
mysql_real_query() or mysql_query()). The client library automatically invokes your callbacks.
The file name specified in LOAD DATA LOCAL will be passed as the second parameter to the
local_infile_init() callback.

Return Values

None.

Errors

None.

5.4.79 mysql_set_server_option()

int
mysql_set_server_option(MYSQL *mysql, enum
 enum_mysql_set_option option)

Description

Enables or disables an option for the connection. option can have one of the following values.

Option Description

MYSQL_OPTION_MULTI_STATEMENTS_ON Enable multiple-statement support

MYSQL_OPTION_MULTI_STATEMENTS_OFF Disable multiple-statement support

If you enable multiple-statement support, you should retrieve results from calls to mysql_real_query()
or mysql_query() by using a loop that calls mysql_next_result() to determine whether there are
more results. For an example, see Section 3.6.3, “Multiple Statement Execution Support”.

Enabling multiple-statement support with MYSQL_OPTION_MULTI_STATEMENTS_ON does not
have quite the same effect as enabling it by passing the CLIENT_MULTI_STATEMENTS flag to
mysql_real_connect(): CLIENT_MULTI_STATEMENTS also enables CLIENT_MULTI_RESULTS. If
you are using the CALL SQL statement in your programs, multiple-result support must be enabled; this
means that MYSQL_OPTION_MULTI_STATEMENTS_ON by itself is insufficient to permit the use of CALL.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

118

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error

mysql_shutdown()

• CR_SERVER_LOST

The connection to the server was lost during the query.

• ER_UNKNOWN_COM_ERROR

The server did not support mysql_set_server_option() (which is the case that the server is older
than 4.1.1) or the server did not support the option one tried to set.

5.4.80 mysql_shutdown()

int
mysql_shutdown(MYSQL *mysql,
 enum mysql_enum_shutdown_level shutdown_level)

Description

Note

mysql_shutdown() is deprecated and will be removed in a future version of
MySQL. Instead, use mysql_real_query() or mysql_query() to execute a
SHUTDOWN statement.

Asks the database server to shut down. The connected user must have the SHUTDOWN privilege. MySQL
servers support only one type of shutdown; shutdown_level must be equal to SHUTDOWN_DEFAULT.
Dynamically linked executables that have been compiled with older versions of the libmysqlclient
headers and call mysql_shutdown() must be used with the old libmysqlclient dynamic library.

An alternative to mysql_shutdown() is to use the SHUTDOWN SQL statement.

The shutdown process is described in The Server Shutdown Process.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.81 mysql_sqlstate()

const char *

119

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/server-error-reference.html#error_er_unknown_com_error
https://dev.mysql.com/doc/refman/8.0/en/shutdown.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_shutdown
https://dev.mysql.com/doc/refman/8.0/en/shutdown.html
https://dev.mysql.com/doc/refman/8.0/en/server-shutdown.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_ssl_set()

mysql_sqlstate(MYSQL *mysql)

Description

Returns a null-terminated string containing the SQLSTATE error code for the most recently executed SQL
statement. The error code consists of five characters. '00000' means “no error.” The values are specified
by ANSI SQL and ODBC. For a list of possible values, see Error Messages and Common Problems.

SQLSTATE values returned by mysql_sqlstate() differ from MySQL-specific error numbers returned
by mysql_errno(). For example, the mysql client program displays errors using the following format,
where 1146 is the mysql_errno() value and '42S02' is the corresponding mysql_sqlstate() value:

$> SELECT * FROM no_such_table;
ERROR 1146 (42S02): Table 'test.no_such_table' doesn't exist

Not all MySQL error numbers are mapped to SQLSTATE error codes. The value 'HY000' (general error)
is used for unmapped error numbers.

If you call mysql_sqlstate() after mysql_real_connect() fails, mysql_sqlstate() might not
return a useful value. For example, this happens if a host is blocked by the server and the connection is
closed without any SQLSTATE value being sent to the client.

Return Values

A null-terminated character string containing the SQLSTATE error code.

See Also

See Section 5.4.15, “mysql_errno()”, Section 5.4.16, “mysql_error()”, and Section 6.4.27,
“mysql_stmt_sqlstate()”.

5.4.82 mysql_ssl_set()
bool
mysql_ssl_set(MYSQL *mysql,
 const char *key,
 const char *cert,
 const char *ca,
 const char *capath,
 const char *cipher)

Description

Note

As of MySQL 8.0.35, mysql_ssl_set() is deprecated and subject to removal in a
future MySQL release. There are equivalent mysql_options() TLS options for all
mysql_ssl_set() parameters.

mysql_ssl_set() is used for establishing encrypted connections using SSL. The mysql argument must
be a valid connection handler. Any unused SSL arguments may be given as NULL.

If used, mysql_ssl_set() must be called before mysql_real_connect(). mysql_ssl_set() does
nothing unless SSL support is enabled in the client library.

It is optional to call mysql_ssl_set() to obtain an encrypted connection because by default, MySQL
programs attempt to connect using encryption if the server supports encrypted connections, falling back
to an unencrypted connection if an encrypted connection cannot be established (see Configuring MySQL

120

https://dev.mysql.com/doc/refman/8.0/en/error-handling.html
https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html

mysql_stat()

to Use Encrypted Connections). mysql_ssl_set() may be useful to applications that must specify
particular certificate and key files, encryption ciphers, and so forth.

mysql_ssl_set() specifies SSL information such as certificate and key files for establishing an
encrypted connection if such connections are available, but does not enforce any requirement that the
connection obtained be encrypted. To require an encrypted connection, use the technique described in
Section 3.6.1, “Support for Encrypted Connections”.

For additional security relative to that provided by the default encryption, clients can supply a CA certificate
matching the one used by the server and enable host name identity verification. In this way, the server and
client place their trust in the same CA certificate and the client verifies that the host to which it connected is
the one intended. For details, see Section 3.6.1, “Support for Encrypted Connections”.

mysql_ssl_set() is a convenience function that is essentially equivalent to this set of
mysql_options() calls:

mysql_options(mysql, MYSQL_OPT_SSL_KEY, key);
mysql_options(mysql, MYSQL_OPT_SSL_CERT, cert);
mysql_options(mysql, MYSQL_OPT_SSL_CA, ca);
mysql_options(mysql, MYSQL_OPT_SSL_CAPATH, capath);
mysql_options(mysql, MYSQL_OPT_SSL_CIPHER, cipher);

Because of that equivalence, applications can, instead of calling mysql_ssl_set(), call
mysql_options() directly, omitting calls for those options for which the option value is NULL. Moreover,
mysql_options() offers encrypted-connection options not available using mysql_ssl_set(), such as
MYSQL_OPT_SSL_MODE to specify the security state of the connection, and MYSQL_OPT_TLS_VERSION to
specify the protocols the client permits for encrypted connections.

Arguments:

• mysql: The connection handler returned from mysql_init().

• key: The path name of the client private key file.

• cert: The path name of the client public key certificate file.

• ca: The path name of the Certificate Authority (CA) certificate file. This option, if used, must specify the
same certificate used by the server.

• capath: The path name of the directory that contains trusted SSL CA certificate files.

• cipher: The list of permissible ciphers for SSL encryption.

Return Values

This function returns 0 if the operation is successful, else it returns false. If SSL setup is incorrect, a
subsequent mysql_real_connect() call returns an error when you attempt to connect.

5.4.83 mysql_stat()
const char *
mysql_stat(MYSQL *mysql)

Description

Returns a character string containing information similar to that provided by the mysqladmin status
command. This includes uptime in seconds and the number of running threads, questions, reloads, and
open tables.

121

https://dev.mysql.com/doc/refman/8.0/en/using-encrypted-connections.html

mysql_store_result()

Return Values

A character string describing the server status. NULL if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.84 mysql_store_result()
MYSQL_RES *
mysql_store_result(MYSQL *mysql)

Description

Note

mysql_store_result() is a synchronous function. Its asynchronous counterpart
is mysql_store_result_nonblocking(), for use by applications that require
asynchronous communication with the server. See Chapter 7, C API Asynchronous
Interface.

After invoking mysql_real_query() or mysql_query(), you must call mysql_store_result()
or mysql_use_result() for every statement that successfully produces a result set (SELECT, SHOW,
DESCRIBE, EXPLAIN, CHECK TABLE, and so forth). You must also call mysql_free_result() after you
are done with the result set.

You need not call mysql_store_result() or mysql_use_result() for other statements, but it does
not do any harm or cause any notable performance degradation if you call mysql_store_result()
in all cases. You can detect whether the statement has a result set by checking whether
mysql_store_result() returns a nonzero value (more about this later).

If you enable multiple-statement support, you should retrieve results from calls to mysql_real_query()
or mysql_query() by using a loop that calls mysql_next_result() to determine whether there are
more results. For an example, see Section 3.6.3, “Multiple Statement Execution Support”.

To determine whether a statement returns a result set, call mysql_field_count(). See Section 5.4.23,
“mysql_field_count()”.

mysql_store_result() reads the entire result of a query to the client, allocates a MYSQL_RES
structure, and places the result into this structure.

mysql_store_result() returns NULL if the statement did not return a result set (for example, if it was
an INSERT statement), or an error occurred and reading of the result set failed.

122

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/describe.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/check-table.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

mysql_thread_id()

An empty result set is returned if there are no rows returned. (An empty result set differs from a null pointer
as a return value.)

After you have called mysql_store_result() and gotten back a result that is not a null pointer, you can
call mysql_num_rows() to find out how many rows are in the result set.

You can call mysql_fetch_row() to fetch rows from the result set, or mysql_row_seek() and
mysql_row_tell() to obtain or set the current row position within the result set.

See Section 3.6.9, “NULL mysql_store_result() Return After mysql_query() Success”.

Return Values

A pointer to a MYSQL_RES result structure with the results. NULL if the statement did not return a result set
or an error occurred. To determine whether an error occurred, check whether mysql_error() returns a
nonempty string, mysql_errno() returns nonzero, or mysql_field_count() returns zero.

Errors

mysql_store_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.85 mysql_thread_id()
unsigned long
mysql_thread_id(MYSQL *mysql)

Description

Returns the thread ID of the current connection. This value can be used as an argument to
mysql_kill() to kill the thread.

If the connection is lost and you reconnect with mysql_ping(), the thread ID changes. This means you
should not get the thread ID and store it for later. You should get it when you need it.

Note

This function does not work correctly if thread IDs become larger than 32 bits, which
can occur on some systems. To avoid problems with mysql_thread_id(), do not

123

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_use_result()

use it. To get the connection ID, execute a SELECT CONNECTION_ID() query and
retrieve the result.

Return Values

The thread ID of the current connection.

Errors

None.

5.4.86 mysql_use_result()
MYSQL_RES *
mysql_use_result(MYSQL *mysql)

Description

After invoking mysql_real_query() or mysql_query(), you must call mysql_store_result()
or mysql_use_result() for every statement that successfully produces a result set (SELECT, SHOW,
DESCRIBE, EXPLAIN, CHECK TABLE, and so forth). You must also call mysql_free_result() after you
are done with the result set.

mysql_use_result() initiates a result set retrieval but does not actually read the result set into the
client like mysql_store_result() does. Instead, each row must be retrieved individually by making
calls to mysql_fetch_row(). This reads the result of a query directly from the server without storing
it in a temporary table or local buffer, which is somewhat faster and uses much less memory than
mysql_store_result(). The client allocates memory only for the current row and a communication
buffer that may grow up to max_allowed_packet bytes.

On the other hand, you should not use mysql_use_result() for locking reads if you are doing a lot of
processing for each row on the client side, or if the output is sent to a screen on which the user may type a
^S (stop scroll). This ties up the server and prevent other threads from updating any tables from which the
data is being fetched.

When using mysql_use_result(), you must execute mysql_fetch_row() until a NULL value is
returned, otherwise, the unfetched rows are returned as part of the result set for your next query. The C
API gives the error Commands out of sync; you can't run this command now if you forget to
do this!

You may not use mysql_data_seek(), mysql_row_seek(), mysql_row_tell(),
mysql_num_rows(), or mysql_affected_rows() with a result returned from mysql_use_result(),
nor may you issue other queries until mysql_use_result() has finished. (However, after you have
fetched all the rows, mysql_num_rows() accurately returns the number of rows fetched.)

You must call mysql_free_result() once you are done with the result set.

Return Values

A MYSQL_RES result structure. NULL if an error occurred.

Errors

mysql_use_result() resets mysql_error() and mysql_errno() if it succeeds.

• CR_COMMANDS_OUT_OF_SYNC

124

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/describe.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html
https://dev.mysql.com/doc/refman/8.0/en/check-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync

mysql_warning_count()

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

5.4.87 mysql_warning_count()
unsigned int
mysql_warning_count(MYSQL *mysql)

Description

Returns the number of errors, warnings, and notes generated during execution of the previous SQL
statement.

Return Values

The warning count.

Errors

None.

125

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

126

Chapter 6 C API Prepared Statement Interface

Table of Contents
6.1 Overview of the C API Prepared Statement Interface ... 128
6.2 C API Prepared Statement Data Structures ... 129

6.2.1 C API Prepared Statement Type Codes .. 133
6.2.2 C API Prepared Statement Type Conversions ... 135

6.3 C API Prepared Statement Function Reference .. 136
6.4 C API Prepared Statement Function Descriptions ... 137

6.4.1 mysql_stmt_affected_rows() .. 138
6.4.2 mysql_stmt_attr_get() ... 138
6.4.3 mysql_stmt_attr_set() ... 138
6.4.4 mysql_stmt_bind_param() ... 140
6.4.5 mysql_stmt_bind_result() .. 140
6.4.6 mysql_stmt_close() ... 141
6.4.7 mysql_stmt_data_seek() ... 142
6.4.8 mysql_stmt_errno() ... 142
6.4.9 mysql_stmt_error() ... 143
6.4.10 mysql_stmt_execute() ... 143
6.4.11 mysql_stmt_fetch() ... 147
6.4.12 mysql_stmt_fetch_column() ... 152
6.4.13 mysql_stmt_field_count() .. 153
6.4.14 mysql_stmt_free_result() ... 153
6.4.15 mysql_stmt_init() .. 153
6.4.16 mysql_stmt_insert_id() .. 154
6.4.17 mysql_stmt_next_result() .. 154
6.4.18 mysql_stmt_num_rows() ... 155
6.4.19 mysql_stmt_param_count() ... 156
6.4.20 mysql_stmt_param_metadata() ... 156
6.4.21 mysql_stmt_prepare() ... 156
6.4.22 mysql_stmt_reset() ... 157
6.4.23 mysql_stmt_result_metadata() ... 158
6.4.24 mysql_stmt_row_seek() .. 159
6.4.25 mysql_stmt_row_tell() ... 160
6.4.26 mysql_stmt_send_long_data() ... 160
6.4.27 mysql_stmt_sqlstate() ... 162
6.4.28 mysql_stmt_store_result() ... 162

The MySQL client/server protocol provides for the use of prepared statements. This capability uses
the MYSQL_STMT statement handler data structure returned by the mysql_stmt_init() initialization
function. Prepared execution is an efficient way to execute a statement more than once. The statement
is first parsed to prepare it for execution. Then it is executed one or more times at a later time, using the
statement handler returned by the initialization function.

Prepared execution is faster than direct execution for statements executed more than once, primarily
because the query is parsed only once. In the case of direct execution, the query is parsed every time it is
executed. Prepared execution also can provide a reduction of network traffic because for each execution of
the prepared statement, it is necessary only to send the data for the parameters.

127

Overview of the C API Prepared Statement Interface

Prepared statements might not provide a performance increase in some situations. For best results,
test your application both with prepared and nonprepared statements and choose whichever yields best
performance.

Another advantage of prepared statements is that it uses a binary protocol that makes data transfer
between client and server more efficient.

For a list of SQL statements that can be used as prepared statements, see Prepared Statements.

Metadata changes to tables or views referred to by prepared statements are detected and cause automatic
repreparation of the statement when it is next executed. For more information, see Caching of Prepared
Statements and Stored Programs.

6.1 Overview of the C API Prepared Statement Interface
To prepare and execute a statement, an application follows these steps:

1. Create a prepared statement handler with mysql_stmt_init(). To prepare the statement on the
server, call mysql_stmt_prepare() and pass it a string containing the SQL statement.

2. Set the values of any parameters using mysql_stmt_bind_param(). All parameters must be set.
Otherwise, statement execution returns an error or produces unexpected results.

If there are large text or binary data values to be sent, you can send them in chunks to the server using
mysql_stmt_send_long_data().

3. Call mysql_stmt_execute() to execute the statement.

4. If the statement is a SELECT or any other statement that produces a result set, call
mysql_stmt_result_metadata() if it is desired to obtain the result set metadata. This metadata
is itself in the form of a MYSQL_RES result set, albeit a separate one from the one that contains the
rows returned by the query. The metadata result set indicates the number of columns in the result and
contains information about each one.

5. If the statement produces a result set, bind the data buffers to use for retrieving the row values by
calling mysql_stmt_bind_result().

6. Fetch the data into the buffers row by row by calling mysql_stmt_fetch() repeatedly until no more
rows are found.

7. Repeat steps 3 through 6 as necessary. You can repeat the mysql_stmt_execute() to re-
execute the statement by changing parameter values in the respective buffers supplied through
mysql_stmt_bind_param().

8. When statement execution has been completed, close the statement handler using
mysql_stmt_close() so that all resources associated with it can be freed. At that point the handler
becomes invalid and should no longer be used.

9. If you obtained a SELECT statement's result set metadata by calling
mysql_stmt_result_metadata(), you should also free the metadata using
mysql_free_result().

When mysql_stmt_prepare() is called, the MySQL client/server protocol performs these actions:

• The server parses the statement and sends the okay status back to the client by assigning a statement
ID. It also sends total number of parameters, a column count, and its metadata if it is a result set oriented
statement. All syntax and semantics of the statement are checked by the server during this call.

128

https://dev.mysql.com/doc/refman/8.0/en/sql-prepared-statements.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

Prepared Statement Logging

• The client uses this statement ID for the further operations, so that the server can identify the statement
from among its pool of statements.

When mysql_stmt_execute() is called, the MySQL client/server protocol performs these actions:

• The client uses the statement handler and sends the parameter data to the server.

• The server identifies the statement using the ID provided by the client, replaces the parameter markers
with the newly supplied data, and executes the statement. If the statement produces a result set, the
server sends the data back to the client. Otherwise, it sends an okay status and the number of rows
changed, deleted, or inserted.

When mysql_stmt_fetch() is called, the MySQL client/server protocol performs these actions:

• The client reads the data from the current row of the result set and places it into the application data
buffers by doing the necessary conversions. If the application buffer type is same as that of the field type
returned from the server, the conversions are straightforward.

If an error occurs, you can get the statement error number, error message, and SQLSTATE code using
mysql_stmt_errno(), mysql_stmt_error(), and mysql_stmt_sqlstate(), respectively.

Prepared Statement Logging

For prepared statements that are executed with the mysql_stmt_prepare() and
mysql_stmt_execute() C API functions, the server writes Prepare and Execute lines to the general
query log so that you can tell when statements are prepared and executed.

Suppose that you prepare and execute a statement as follows:

1. Call mysql_stmt_prepare() to prepare the statement string "SELECT ?".

2. Call mysql_stmt_bind_param() to bind the value 3 to the parameter in the prepared statement.

3. Call mysql_stmt_execute() to execute the prepared statement.

As a result of the preceding calls, the server writes the following lines to the general query log:

Prepare [1] SELECT ?
Execute [1] SELECT 3

Each Prepare and Execute line in the log is tagged with a [N] statement identifier so that you can keep
track of which prepared statement is being logged. N is a positive integer. If there are multiple prepared
statements active simultaneously for the client, N may be greater than 1. Each Execute lines shows a
prepared statement after substitution of data values for ? parameters.

6.2 C API Prepared Statement Data Structures
Prepared statements use several data structures:

• To obtain a statement handler, pass a MYSQL connection handler to mysql_stmt_init(), which
returns a pointer to a MYSQL_STMT data structure. This structure is used for further operations with the
statement. To specify the statement to prepare, pass the MYSQL_STMT pointer and the statement string
to mysql_stmt_prepare().

• To provide input parameters for a prepared statement, set up MYSQL_BIND structures and pass them to
mysql_stmt_bind_param(). To receive output column values, set up MYSQL_BIND structures and
pass them to mysql_stmt_bind_result().

129

C API Prepared Statement Data Structures

MYSQL_BIND structures are also used with mysql_bind_param(), which enables defining attributes
that apply to the next query sent to the server.

• The MYSQL_TIME structure is used to transfer temporal data in both directions.

The following discussion describes the prepared statement data types in detail. For examples that show
how to use them, see Section 6.4.10, “mysql_stmt_execute()”, and Section 6.4.11, “mysql_stmt_fetch()”.

• MYSQL_STMT

This structure is a handler for a prepared statement. A handler is created by calling
mysql_stmt_init(), which returns a pointer to a MYSQL_STMT. The handler is used for all
subsequent operations with the statement until you close it with mysql_stmt_close(), at which point
the handler becomes invalid and should no longer be used.

The MYSQL_STMT structure has no members intended for application use. Applications should not try to
copy a MYSQL_STMT structure. There is no guarantee that such a copy will be usable.

Multiple statement handlers can be associated with a single connection. The limit on the number of
handlers depends on the available system resources.

• MYSQL_BIND

This structure is used both for statement input (data values sent to the server) and output (result values
returned from the server):

• For input, use MYSQL_BIND structures with mysql_bind_param() to define attributes for a query.
(In the following discussion, treat any mention of statement parameters for prepared statements as
also applying to query attributes.)

• For output, use MYSQL_BIND structures with mysql_stmt_bind_result() to bind buffers to result
set columns, for use in fetching rows with mysql_stmt_fetch().

To use a MYSQL_BIND structure, zero its contents to initialize it, then set its members appropriately. For
example, to declare and initialize an array of three MYSQL_BIND structures, use this code:

MYSQL_BIND bind[3];
memset(bind, 0, sizeof(bind));

The MYSQL_BIND structure contains the following members for use by application programs. For several
of the members, the manner of use depends on whether the structure is used for input or output.

• enum enum_field_types buffer_type

The type of the buffer. This member indicates the data type of the C language variable bound to a
statement parameter or result set column. For input, buffer_type indicates the type of the variable
containing the value to be sent to the server. For output, it indicates the type of the variable into
which a value received from the server should be stored. For permissible buffer_type values, see
Section 6.2.1, “C API Prepared Statement Type Codes”.

• void *buffer

A pointer to the buffer to be used for data transfer. This is the address of a C language variable.

For input, buffer is a pointer to the variable in which you store the data value for a statement
parameter. When you call mysql_stmt_execute(), MySQL use the value stored in the variable

130

C API Prepared Statement Data Structures

in place of the corresponding parameter marker in the statement (specified with ? in the statement
string).

For output, buffer is a pointer to the variable in which to return a result set column value. When you
call mysql_stmt_fetch(), MySQL stores a column value from the current row of the result set in
this variable. You can access the value when the call returns.

To minimize the need for MySQL to perform type conversions between C language values on the
client side and SQL values on the server side, use C variables that have types similar to those of the
corresponding SQL values:

• For numeric data types, buffer should point to a variable of the proper numeric C type. For integer
variables (which can be char for single-byte values or an integer type for larger values), you
should also indicate whether the variable has the unsigned attribute by setting the is_unsigned
member, described later.

• For character (nonbinary) and binary string data types, buffer should point to a character buffer.

• For date and time data types, buffer should point to a MYSQL_TIME structure.

For guidelines about mapping between C types and SQL types and notes about type conversions,
see Section 6.2.1, “C API Prepared Statement Type Codes”, and Section 6.2.2, “C API Prepared
Statement Type Conversions”.

• unsigned long buffer_length

The actual size of *buffer in bytes. This indicates the maximum amount of data that can be
stored in the buffer. For character and binary C data, the buffer_length value specifies the
length of *buffer when used with mysql_stmt_bind_param() to specify input values, or

131

C API Prepared Statement Data Structures

the maximum number of output data bytes that can be fetched into the buffer when used with
mysql_stmt_bind_result().

• unsigned long *length

A pointer to an unsigned long variable that indicates the actual number of bytes of data stored in
*buffer. length is used for character or binary C data.

For input parameter data binding, set *length to indicate the actual length of the parameter value
stored in *buffer. This is used by mysql_stmt_execute().

For output value binding, MySQL sets *length when you call mysql_stmt_fetch(). The
mysql_stmt_fetch() return value determines how to interpret the length:

• If the return value is 0, *length indicates the actual length of the parameter value.

• If the return value is MYSQL_DATA_TRUNCATED, *length indicates the nontruncated length of the
parameter value. In this case, the minimum of *length and buffer_length indicates the actual
length of the value.

length is ignored for numeric and temporal data types because the buffer_type value determines
the length of the data value.

If you must determine the length of a returned value before fetching it, see Section 6.4.11,
“mysql_stmt_fetch()”, for some strategies.

• bool *is_null

This member points to a bool variable that is true if a value is NULL, false if it is not NULL. For input,
set *is_null to true to indicate that you are passing a NULL value as a statement parameter.

is_null is a pointer to a boolean scalar, not a boolean scalar, to provide flexibility in how you specify
NULL values:

• If your data values are always NULL, use MYSQL_TYPE_NULL as the buffer_type value when
you bind the column. The other MYSQL_BIND members, including is_null, do not matter.

• If your data values are always NOT NULL, set is_null = (bool*) 0, and set the other members
appropriately for the variable you are binding.

• In all other cases, set the other members appropriately and set is_null to the address of a bool
variable. Set that variable's value to true or false appropriately between executions to indicate
whether the corresponding data value is NULL or NOT NULL, respectively.

For output, when you fetch a row, MySQL sets the value pointed to by is_null to true or false
according to whether the result set column value returned from the statement is or is not NULL.

• bool is_unsigned

This member applies for C variables with data types that can be unsigned (char, short int, int,
long long int). Set is_unsigned to true if the variable pointed to by buffer is unsigned and
false otherwise. For example, if you bind a signed char variable to buffer, specify a type code of
MYSQL_TYPE_TINY and set is_unsigned to false. If you bind an unsigned char instead, the type

132

C API Prepared Statement Type Codes

code is the same but is_unsigned should be true. (For char, it is not defined whether it is signed or
unsigned, so it is best to be explicit about signedness by using signed char or unsigned char.)

is_unsigned applies only to the C language variable on the client side. It indicates nothing about
the signedness of the corresponding SQL value on the server side. For example, if you use an int
variable to supply a value for a BIGINT UNSIGNED column, is_unsigned should be false because
int is a signed type. If you use an unsigned int variable to supply a value for a BIGINT column,
is_unsigned should be true because unsigned int is an unsigned type. MySQL performs the
proper conversion between signed and unsigned values in both directions, although a warning occurs
if truncation results.

• bool *error

For output, set this member to point to a bool variable to have truncation information for the
parameter stored there after a row fetching operation. When truncation reporting is enabled,
mysql_stmt_fetch() returns MYSQL_DATA_TRUNCATED and *error is true in the MYSQL_BIND
structures for parameters in which truncation occurred. Truncation indicates loss of sign or significant
digits, or that a string was too long to fit in a column. Truncation reporting is enabled by default, but
can be controlled by calling mysql_options() with the MYSQL_REPORT_DATA_TRUNCATION
option.

• MYSQL_TIME

This structure is used to send and receive DATE, TIME, DATETIME, and TIMESTAMP data directly
to and from the server. Set the buffer member to point to a MYSQL_TIME structure, and set the
buffer_type member of a MYSQL_BIND structure to one of the temporal types (MYSQL_TYPE_TIME,
MYSQL_TYPE_DATE, MYSQL_TYPE_DATETIME, MYSQL_TYPE_TIMESTAMP).

The MYSQL_TIME structure contains the members listed in the following table.

Member Description

unsigned int year The year

unsigned int month The month of the year

unsigned int day The day of the month

unsigned int hour The hour of the day

unsigned int minute The minute of the hour

unsigned int second The second of the minute

bool neg A boolean flag indicating whether the time is
negative

unsigned long second_part The fractional part of the second in microseconds

Only those parts of a MYSQL_TIME structure that apply to a given type of temporal value are used.
The year, month, and day elements are used for DATE, DATETIME, and TIMESTAMP values. The
hour, minute, and second elements are used for TIME, DATETIME, and TIMESTAMP values. See
Section 3.6.4, “Prepared Statement Handling of Date and Time Values”.

6.2.1 C API Prepared Statement Type Codes

The buffer_type member of MYSQL_BIND structures indicates the data type of the C language variable
bound to a statement parameter or result set column. For input, buffer_type indicates the type of the
variable containing the value to be sent to the server. For output, it indicates the type of the variable into
which a value received from the server should be stored.

133

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

C API Prepared Statement Type Codes

The following table shows the permissible values for the buffer_type member of MYSQL_BIND
structures for input values sent to the server. The table shows the C variable types that you can use, the
corresponding type codes, and the SQL data types for which the supplied value can be used without
conversion. Choose the buffer_type value according to the data type of the C language variable that
you are binding. For the integer types, you should also set the is_unsigned member to indicate whether
the variable is signed or unsigned.

Table 6.1 Permissible Input Data Types for MYSQL_BIND Structures

Input Variable C Type buffer_type Value SQL Type of Destination Value

signed char MYSQL_TYPE_TINY TINYINT

short int MYSQL_TYPE_SHORT SMALLINT

int MYSQL_TYPE_LONG INT

long long int MYSQL_TYPE_LONGLONG BIGINT

float MYSQL_TYPE_FLOAT FLOAT

double MYSQL_TYPE_DOUBLE DOUBLE

MYSQL_TIME MYSQL_TYPE_TIME TIME

MYSQL_TIME MYSQL_TYPE_DATE DATE

MYSQL_TIME MYSQL_TYPE_DATETIME DATETIME

MYSQL_TIME MYSQL_TYPE_TIMESTAMP TIMESTAMP

char[] MYSQL_TYPE_STRING TEXT, CHAR, VARCHAR

char[] MYSQL_TYPE_BLOB BLOB, BINARY, VARBINARY

MYSQL_TYPE_NULL NULL

Use MYSQL_TYPE_NULL as indicated in the description for the is_null member in Section 6.2, “C API
Prepared Statement Data Structures”.

For input string data, use MYSQL_TYPE_STRING or MYSQL_TYPE_BLOB depending on whether the value
is a character (nonbinary) or binary string:

• MYSQL_TYPE_STRING indicates character input string data. The value is assumed to be in the character
set indicated by the character_set_client system variable. If the server stores the value into a
column with a different character set, it converts the value to that character set.

• MYSQL_TYPE_BLOB indicates binary input string data. The value is treated as having the binary
character set. That is, it is treated as a byte string and no conversion occurs.

The following table shows the permissible values for the buffer_type member of MYSQL_BIND
structures for output values received from the server. The table shows the SQL types of received values,
the corresponding type codes that such values have in result set metadata, and the recommended C
language data types to bind to the MYSQL_BIND structure to receive the SQL values without conversion.
Choose the buffer_type value according to the data type of the C language variable that you are
binding. For the integer types, you should also set the is_unsigned member to indicate whether the
variable is signed or unsigned.

Table 6.2 Permissible Output Data Types for MYSQL_BIND Structures

SQL Type of Received Value buffer_type Value Output Variable C Type

TINYINT MYSQL_TYPE_TINY signed char

134

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_character_set_client
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html

C API Prepared Statement Type Conversions

SQL Type of Received Value buffer_type Value Output Variable C Type

SMALLINT MYSQL_TYPE_SHORT short int

MEDIUMINT MYSQL_TYPE_INT24 int

INT MYSQL_TYPE_LONG int

BIGINT MYSQL_TYPE_LONGLONG long long int

FLOAT MYSQL_TYPE_FLOAT float

DOUBLE MYSQL_TYPE_DOUBLE double

DECIMAL MYSQL_TYPE_NEWDECIMAL char[]

YEAR MYSQL_TYPE_SHORT short int

TIME MYSQL_TYPE_TIME MYSQL_TIME

DATE MYSQL_TYPE_DATE MYSQL_TIME

DATETIME MYSQL_TYPE_DATETIME MYSQL_TIME

TIMESTAMP MYSQL_TYPE_TIMESTAMP MYSQL_TIME

CHAR, BINARY MYSQL_TYPE_STRING char[]

VARCHAR, VARBINARY MYSQL_TYPE_VAR_STRING char[]

TINYBLOB, TINYTEXT MYSQL_TYPE_TINY_BLOB char[]

BLOB, TEXT MYSQL_TYPE_BLOB char[]

MEDIUMBLOB, MEDIUMTEXT MYSQL_TYPE_MEDIUM_BLOB char[]

LONGBLOB, LONGTEXT MYSQL_TYPE_LONG_BLOB char[]

BIT MYSQL_TYPE_BIT char[]

6.2.2 C API Prepared Statement Type Conversions

Prepared statements transmit data between the client and server using C language variables on the client
side that correspond to SQL values on the server side. If there is a mismatch between the C variable type
on the client side and the corresponding SQL value type on the server side, MySQL performs implicit type
conversions in both directions.

MySQL knows the type code for the SQL value on the server side. The buffer_type value in the
MYSQL_BIND structure indicates the type code of the C variable that holds the value on the client side. The
two codes together tell MySQL what conversion must be performed, if any. Here are some examples:

• If you use MYSQL_TYPE_LONG with an int variable to pass an integer value to the server that is to be
stored into a FLOAT column, MySQL converts the value to floating-point format before storing it.

• If you fetch an SQL MEDIUMINT column value, but specify a buffer_type value of
MYSQL_TYPE_LONGLONG and use a C variable of type long long int as the destination buffer,
MySQL converts the MEDIUMINT value (which requires less than 8 bytes) for storage into the long
long int (an 8-byte variable).

• If you fetch a numeric column with a value of 255 into a char[4] character array and specify a
buffer_type value of MYSQL_TYPE_STRING, the resulting value in the array is a 4-byte string
'255\0'.

• MySQL returns DECIMAL values as the string representation of the original server-side value, which is
why the corresponding C type is char[]. For example, 12.345 is returned to the client as '12.345'.
If you specify MYSQL_TYPE_NEWDECIMAL and bind a string buffer to the MYSQL_BIND structure,
mysql_stmt_fetch() stores the value in the buffer as a string without conversion. If instead you

135

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/year.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/bit-type.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html

C API Prepared Statement Function Reference

specify a numeric variable and type code, mysql_stmt_fetch() converts the string-format DECIMAL
value to numeric form.

• For the MYSQL_TYPE_BIT type code, BIT values are returned into a string buffer, which is why the
corresponding C type is char[]. The value represents a bit string that requires interpretation on the
client side. To return the value as a type that is easier to deal with, you can cause the value to be cast to
integer using either of the following types of expressions:

SELECT bit_col + 0 FROM t
SELECT CAST(bit_col AS UNSIGNED) FROM t

To retrieve the value, bind an integer variable large enough to hold the value and specify the appropriate
corresponding integer type code.

Before binding variables to the MYSQL_BIND structures that are to be used for fetching column values,
you can check the type codes for each column of the result set. This might be desirable if you want to
determine which variable types would be best to use to avoid type conversions. To get the type codes,
call mysql_stmt_result_metadata() after executing the statement with mysql_stmt_execute().
The metadata provides access to the type codes for the result set as described in Section 6.4.23,
“mysql_stmt_result_metadata()”, and Section 5.2, “C API Basic Data Structures”.

To determine whether output string values in a result set returned from the server contain binary or
nonbinary data, check whether the charsetnr value of the result set metadata is 63 (see Section 5.2,
“C API Basic Data Structures”). If so, the character set is binary, which indicates binary rather than
nonbinary data. This enables you to distinguish BINARY from CHAR, VARBINARY from VARCHAR, and the
BLOB types from the TEXT types.

If you cause the max_length member of the MYSQL_FIELD column metadata structures to be set
(by calling mysql_stmt_attr_set()), be aware that the max_length values for the result set
indicate the lengths of the longest string representation of the result values, not the lengths of the binary
representation. That is, max_length does not necessarily correspond to the size of the buffers needed
to fetch the values with the binary protocol used for prepared statements. Choose the size of the buffers
according to the types of the variables into which you fetch the values. For example, a TINYINT column
containing the value -128 might have a max_length value of 4. But the binary representation of any
TINYINT value requires only 1 byte for storage, so you can supply a signed char variable in which to
store the value and set is_unsigned to indicate that values are signed.

Metadata changes to tables or views referred to by prepared statements are detected and cause automatic
repreparation of the statement when it is next executed. For more information, see Caching of Prepared
Statements and Stored Programs.

6.3 C API Prepared Statement Function Reference
The following table summarizes the functions available for prepared statement processing. For greater
detail, see the descriptions in Section 6.4, “C API Prepared Statement Function Descriptions”.

Table 6.3 C API Prepared Statement Functions

Name Description

mysql_stmt_affected_rows() Number of rows changed/deleted/inserted by last
prepared UPDATE, DELETE, or INSERT statement

mysql_stmt_attr_get() Get attribute value for prepared statement

mysql_stmt_attr_set() Set attribute value for prepared statement

mysql_stmt_bind_param() Associate application data buffers with parameter
markers in prepared statement

136

https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/bit-type.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/binary-varbinary.html
https://dev.mysql.com/doc/refman/8.0/en/char.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html

C API Prepared Statement Function Descriptions

Name Description

mysql_stmt_bind_result() Associate application data buffers with columns in
result set

mysql_stmt_close() Free memory used by prepared statement

mysql_stmt_data_seek() Seek to arbitrary row number in prepared statement
result set

mysql_stmt_errno() Error number for most recently invoked MySQL
prepared-statement function

mysql_stmt_error() Error message for most recently invoked MySQL
prepared-statement function

mysql_stmt_execute() Execute prepared statement

mysql_stmt_fetch() Fetch next result set row and return data for all
bound columns

mysql_stmt_fetch_column() Fetches data for one column of current result set
row

mysql_stmt_field_count() Number of result columns for most recent prepared
statement

mysql_stmt_free_result() Free resources allocated to statement handler

mysql_stmt_init() Allocate and initialize memory for MYSQL_STMT
structure

mysql_stmt_insert_id() ID generated for an AUTO_INCREMENT column by
previous prepared statement

mysql_stmt_next_result() Return/initiate next result in multiple-result prepared
statement execution

mysql_stmt_num_rows() Row count from buffered statement result set

mysql_stmt_param_count() Number of parameters in prepared statement

mysql_stmt_param_metadata() Return parameter metadata as result set

mysql_stmt_prepare() Prepare statement for execution

mysql_stmt_reset() Reset statement buffers on server side

mysql_stmt_result_metadata() Return prepared statement metadata as result set

mysql_stmt_row_seek() Seek to row offset in prepared statement result set

mysql_stmt_row_tell() Current position within prepared statement result set
row

mysql_stmt_send_long_data() Send long data in chunks to server

mysql_stmt_sqlstate() SQLSTATE value for most recently invoked MySQL
prepared-statement function

mysql_stmt_store_result() Retrieve and store entire result set

6.4 C API Prepared Statement Function Descriptions
To prepare and execute queries, use the functions described in detail in the following sections.

All functions that operate with a MYSQL_STMT structure begin with the prefix mysql_stmt_.

To create a MYSQL_STMT handler, use the mysql_stmt_init() function.

137

mysql_stmt_affected_rows()

6.4.1 mysql_stmt_affected_rows()

uint64_t
mysql_stmt_affected_rows(MYSQL_STMT *stmt)

Description

mysql_stmt_affected_rows() may be called immediately after executing a statement with
mysql_stmt_execute(). It is like mysql_affected_rows() but for prepared statements. For
a description of what the affected-rows value returned by this function means, See Section 5.4.1,
“mysql_affected_rows()”.

Errors

None.

Example

See the Example in Section 6.4.10, “mysql_stmt_execute()”.

6.4.2 mysql_stmt_attr_get()

bool
mysql_stmt_attr_get(MYSQL_STMT *stmt,
 enum enum_stmt_attr_type option,
 void *arg)

Description

Can be used to get the current value for a statement attribute.

The option argument is the option that you want to get; the arg should point to a variable that should
contain the option value. If the option is an integer, arg should point to the value of the integer.

See Section 6.4.3, “mysql_stmt_attr_set()”, for a list of options and option types.

Return Values

Zero for success. Nonzero if option is unknown.

Errors

None.

6.4.3 mysql_stmt_attr_set()

bool
mysql_stmt_attr_set(MYSQL_STMT *stmt,
 enum enum_stmt_attr_type option,
 const void *arg)

Description

Can be used to affect behavior for a prepared statement. This function may be called multiple times to set
several options.

138

mysql_stmt_attr_set()

The option argument is the option that you want to set. The arg argument is the value for the option. arg
should point to a variable that is set to the desired attribute value. The variable type is as indicated in the
following table.

The following table shows the possible option values.

Option Argument Type Function

STMT_ATTR_UPDATE_MAX_LENGTHbool * If set to 1, causes
mysql_stmt_store_result()
to update the metadata
MYSQL_FIELD->max_length
value.

STMT_ATTR_CURSOR_TYPE unsigned long * Type of cursor to open
for statement when
mysql_stmt_execute()
is invoked. *arg can be
CURSOR_TYPE_NO_CURSOR
(the default) or
CURSOR_TYPE_READ_ONLY.

STMT_ATTR_PREFETCH_ROWS unsigned long * Number of rows to fetch from
server at a time when using a
cursor. *arg can be in the range
from 1 to the maximum value of
unsigned long. The default is
1.

If you use the STMT_ATTR_CURSOR_TYPE option with CURSOR_TYPE_READ_ONLY, a cursor is
opened for the statement when you invoke mysql_stmt_execute(). If there is already an open
cursor from a previous mysql_stmt_execute() call, it closes the cursor before opening a new one.
mysql_stmt_reset() also closes any open cursor before preparing the statement for re-execution.
mysql_stmt_free_result() closes any open cursor.

If you open a cursor for a prepared statement, mysql_stmt_store_result() is unnecessary, because
that function causes the result set to be buffered on the client side.

Return Values

Zero for success. Nonzero if option is unknown.

Errors

None.

Example

The following example opens a cursor for a prepared statement and sets the number of rows to fetch at a
time to 5:

MYSQL_STMT *stmt;
int rc;
unsigned long type;
unsigned long prefetch_rows = 5;

stmt = mysql_stmt_init(mysql);
type = (unsigned long) CURSOR_TYPE_READ_ONLY;

139

mysql_stmt_bind_param()

rc = mysql_stmt_attr_set(stmt, STMT_ATTR_CURSOR_TYPE, (void*) &type);
/* ... check return value ... */
rc = mysql_stmt_attr_set(stmt, STMT_ATTR_PREFETCH_ROWS,
 (void*) &prefetch_rows);
/* ... check return value ... */

6.4.4 mysql_stmt_bind_param()
bool
mysql_stmt_bind_param(MYSQL_STMT *stmt,
 MYSQL_BIND *bind)

Description

mysql_stmt_bind_param() is used to bind input data for the parameter markers in the SQL statement
that was passed to mysql_stmt_prepare(). It uses MYSQL_BIND structures to supply the data. bind
is the address of an array of MYSQL_BIND structures. The client library expects the array to contain one
element for each ? parameter marker that is present in the query.

Suppose that you prepare the following statement:

INSERT INTO mytbl VALUES(?,?,?)

When you bind the parameters, the array of MYSQL_BIND structures must contain three elements, and can
be declared like this:

MYSQL_BIND bind[3];

For a description of the members of the MYSQL_BIND structure and how they should be set to provide
input values, see Section 6.2, “C API Prepared Statement Data Structures”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is invalid or is not one of the
supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 6.4.10, “mysql_stmt_execute()”.

6.4.5 mysql_stmt_bind_result()
bool
mysql_stmt_bind_result(MYSQL_STMT *stmt,
 MYSQL_BIND *bind)

140

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_close()

Description

mysql_stmt_bind_result() is used to associate (that is, bind) output columns in the result set to data
buffers and length buffers. When mysql_stmt_fetch() is called to fetch data, the MySQL client/server
protocol places the data for the bound columns into the specified buffers.

All columns must be bound to buffers prior to calling mysql_stmt_fetch(). bind is the address of
an array of MYSQL_BIND structures. The client library expects the array to contain one element for each
column of the result set. If you do not bind columns to MYSQL_BIND structures, mysql_stmt_fetch()
simply ignores the data fetch. The buffers should be large enough to hold the data values, because the
protocol does not return data values in chunks.

A column can be bound or rebound at any time, even after a result set has been partially retrieved. The
new binding takes effect the next time mysql_stmt_fetch() is called. Suppose that an application binds
the columns in a result set and calls mysql_stmt_fetch(). The client/server protocol returns data in
the bound buffers. Then suppose that the application binds the columns to a different set of buffers. The
protocol places data into the newly bound buffers when the next call to mysql_stmt_fetch() occurs.

To bind a column, an application calls mysql_stmt_bind_result() and passes the type, address, and
length of the output buffer into which the value should be stored. Section 6.2, “C API Prepared Statement
Data Structures”, describes the members of each MYSQL_BIND element and how they should be set to
receive output values.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_UNSUPPORTED_PARAM_TYPE

The conversion is not supported. Possibly the buffer_type value is invalid or is not one of the
supported types.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 6.4.11, “mysql_stmt_fetch()”.

6.4.6 mysql_stmt_close()
bool
mysql_stmt_close(MYSQL_STMT *stmt)

Description

Closes the prepared statement. mysql_stmt_close() also deallocates the statement handler
pointed to by stmt, which at that point becomes invalid and should no longer be used. For a failed
mysql_stmt_close() call, do not call mysql_stmt_error(), or mysql_stmt_errno(), or

141

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_data_seek()

mysql_stmt_sqlstate() to obtain error information because mysql_stmt_close() makes the
statement handler invalid. Call mysql_error(), mysql_errno(), or mysql_sqlstate() instead.

If the current statement has pending or unread results, this function cancels them so that the next query
can be executed.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 6.4.10, “mysql_stmt_execute()”.

6.4.7 mysql_stmt_data_seek()

void
mysql_stmt_data_seek(MYSQL_STMT *stmt,
 uint64_t offset)

Description

Seeks to an arbitrary row in a statement result set. The offset value is a row number and should be in
the range from 0 to mysql_stmt_num_rows(stmt)-1.

This function requires that the statement result set structure contains the entire result of the
last executed query, so mysql_stmt_data_seek() may be used only in conjunction with
mysql_stmt_store_result().

Return Values

None.

Errors

None.

6.4.8 mysql_stmt_errno()

unsigned int
mysql_stmt_errno(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_errno() returns the error code for the most recently
invoked statement API function that can succeed or fail. A return value of zero means that no error

142

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_error()

occurred. Client error message numbers are listed in the MySQL errmsg.h header file. Server error
message numbers are listed in mysqld_error.h. Errors also are listed at Error Messages and Common
Problems.

If the failed statement API function was mysql_stmt_close(), do not call or mysql_stmt_errno()
to obtain error information because mysql_stmt_close() makes the statement handler invalid. Call
mysql_errno() instead.

Return Values

An error code value. Zero if no error occurred.

Errors

None.

6.4.9 mysql_stmt_error()

const char *
mysql_stmt_error(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_error() returns a null-terminated string containing
the error message for the most recently invoked statement API function that can succeed or fail. An empty
string ("") is returned if no error occurred. Either of these two tests can be used to check for an error:

if(*mysql_stmt_errno(stmt))
{
 // an error occurred
}

if (mysql_stmt_error(stmt)[0])
{
 // an error occurred
}

If the failed statement API function was mysql_stmt_close(), do not call mysql_stmt_error()
to obtain error information because mysql_stmt_close() makes the statement handler invalid. Call
mysql_error() instead.

The language of the client error messages may be changed by recompiling the MySQL client library. You
can choose error messages in several different languages.

Return Values

A character string that describes the error. An empty string if no error occurred.

Errors

None.

6.4.10 mysql_stmt_execute()

int
mysql_stmt_execute(MYSQL_STMT *stmt)

143

https://dev.mysql.com/doc/refman/8.0/en/error-handling.html
https://dev.mysql.com/doc/refman/8.0/en/error-handling.html

mysql_stmt_execute()

Description

mysql_stmt_execute() executes the prepared query associated with the statement handler. The
currently bound parameter marker values are sent to server during this call, and the server replaces the
markers with this newly supplied data.

Statement processing following mysql_stmt_execute() depends on the type of statement:

• For an UPDATE, DELETE, or INSERT, the number of changed, deleted, or inserted rows can be found by
calling mysql_stmt_affected_rows().

• For a statement such as SELECT that generates a result set, you must call mysql_stmt_fetch() to
fetch the data prior to calling any other functions that result in query processing. For more information on
how to fetch the results, refer to Section 6.4.11, “mysql_stmt_fetch()”.

Do not follow invocation of mysql_stmt_execute() with a call to mysql_store_result() or
mysql_use_result(). Those functions are not intended for processing results from prepared
statements.

For statements that generate a result set, you can request that mysql_stmt_execute() open a cursor
for the statement by calling mysql_stmt_attr_set() before executing the statement. If you execute a
statement multiple times, mysql_stmt_execute() closes any open cursor before opening a new one.

Metadata changes to tables or views referred to by prepared statements are detected and cause automatic
repreparation of the statement when it is next executed. For more information, see Caching of Prepared
Statements and Stored Programs.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to create and populate a table using mysql_stmt_init(),
mysql_stmt_prepare(), mysql_stmt_param_count(), mysql_stmt_bind_param(),
mysql_stmt_execute(), and mysql_stmt_affected_rows(). The mysql variable is assumed

144

https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_execute()

to be a valid connection handler. For an example that shows how to retrieve data, see Section 6.4.11,
“mysql_stmt_fetch()”.

#define STRING_SIZE 50

#define DROP_SAMPLE_TABLE "DROP TABLE IF EXISTS test_table"
#define CREATE_SAMPLE_TABLE "CREATE TABLE test_table(col1 INT,\
 col2 VARCHAR(40),\
 col3 SMALLINT,\
 col4 TIMESTAMP)"
#define INSERT_SAMPLE "INSERT INTO \
 test_table(col1,col2,col3) \
 VALUES(?,?,?)"

MYSQL_STMT *stmt;
MYSQL_BIND bind[3];
uint64_t affected_rows;
int param_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
unsigned long str_length;
bool is_null;

if (mysql_query(mysql, DROP_SAMPLE_TABLE))
{
 fprintf(stderr, " DROP TABLE failed\n");
 fprintf(stderr, " %s\n", mysql_error(mysql));
 exit(0);
}

if (mysql_query(mysql, CREATE_SAMPLE_TABLE))
{
 fprintf(stderr, " CREATE TABLE failed\n");
 fprintf(stderr, " %s\n", mysql_error(mysql));
 exit(0);
}

/* Prepare an INSERT query with 3 parameters */
/* (the TIMESTAMP column is not named; the server */
/* sets it to the current date and time) */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
}
if (mysql_stmt_prepare(stmt, INSERT_SAMPLE, strlen(INSERT_SAMPLE)))
{
 fprintf(stderr, " mysql_stmt_prepare(), INSERT failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}
fprintf(stdout, " prepare, INSERT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in INSERT: %d\n", param_count);

if (param_count != 3) /* validate parameter count */
{
 fprintf(stderr, " invalid parameter count returned by MySQL\n");
 exit(0);
}

/* Bind the data for all 3 parameters */

145

mysql_stmt_execute()

memset(bind, 0, sizeof(bind));

/* INTEGER PARAM */
/* This is a number type, so there is no need
 to specify buffer_length */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= 0;
bind[0].length= 0;

/* STRING PARAM */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= 0;
bind[1].length= &str_length;

/* SMALLINT PARAM */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null;
bind[2].length= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
 fprintf(stderr, " mysql_stmt_bind_param() failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Specify the data values for the first row */
int_data= 10; /* integer */
strncpy(str_data, "MySQL", STRING_SIZE); /* string */
str_length= strlen(str_data);

/* INSERT SMALLINT data as NULL */
is_null= 1;

/* Execute the INSERT statement - 1*/
if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, " mysql_stmt_execute(), 1 failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Get the number of affected rows */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 1): %lu\n",
 (unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
 fprintf(stderr, " invalid affected rows by MySQL\n");
 exit(0);
}

/* Specify data values for second row,
 then re-execute the statement */
int_data= 1000;
strncpy(str_data, "
 The most popular Open Source database",
 STRING_SIZE);
str_length= strlen(str_data);
small_data= 1000; /* smallint */
is_null= 0; /* reset */

146

mysql_stmt_fetch()

/* Execute the INSERT statement - 2*/
if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, " mysql_stmt_execute, 2 failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Get the total rows affected */
affected_rows= mysql_stmt_affected_rows(stmt);
fprintf(stdout, " total affected rows(insert 2): %lu\n",
 (unsigned long) affected_rows);

if (affected_rows != 1) /* validate affected rows */
{
 fprintf(stderr, " invalid affected rows by MySQL\n");
 exit(0);
}

/* Close the statement */
if (mysql_stmt_close(stmt))
{
 /* mysql_stmt_close() invalidates stmt, so call */
 /* mysql_error(mysql) rather than mysql_stmt_error(stmt) */
 fprintf(stderr, " failed while closing the statement\n");
 fprintf(stderr, " %s\n", mysql_error(mysql));
 exit(0);
}

Note

For complete examples on the use of prepared statement functions, refer to the file
tests/mysql_client_test.c. This file can be obtained from a MySQL source
distribution or from the source repository (see Installing MySQL from Source).

6.4.11 mysql_stmt_fetch()
int
mysql_stmt_fetch(MYSQL_STMT *stmt)

Description

mysql_stmt_fetch() returns the next row in the result set. It can be called only while the result set
exists; that is, after a call to mysql_stmt_execute() for a statement such as SELECT that produces a
result set.

mysql_stmt_fetch() returns row data using the buffers bound by mysql_stmt_bind_result(). It
returns the data in those buffers for all the columns in the current row set and the lengths are returned to
the length pointer. All columns must be bound by the application before it calls mysql_stmt_fetch().

mysql_stmt_fetch() typically occurs within a loop, to ensure that all result set rows are fetched. For
example:

int status;

while (1)
{
 status = mysql_stmt_fetch(stmt);

 if (status == 1 || status == MYSQL_NO_DATA)
 break;

147

https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/select.html

mysql_stmt_fetch()

 /* handle current row here */
}

/* if desired, handle status == 1 case and display error here */

By default, result sets are fetched unbuffered a row at a time from the server. To buffer the entire result
set on the client, call mysql_stmt_store_result() after binding the data buffers and before calling
mysql_stmt_fetch().

If a fetched data value is a NULL value, the *is_null value of the corresponding MYSQL_BIND structure
contains TRUE (1). Otherwise, the data and its length are returned in the *buffer and *length elements
based on the buffer type specified by the application. Each numeric and temporal type has a fixed length,
as listed in the following table. The length of the string types depends on the length of the actual data
value, as indicated by data_length.

Type Length

MYSQL_TYPE_TINY 1

MYSQL_TYPE_SHORT 2

MYSQL_TYPE_LONG 4

MYSQL_TYPE_LONGLONG 8

MYSQL_TYPE_FLOAT 4

MYSQL_TYPE_DOUBLE 8

MYSQL_TYPE_TIME sizeof(MYSQL_TIME)

MYSQL_TYPE_DATE sizeof(MYSQL_TIME)

MYSQL_TYPE_DATETIME sizeof(MYSQL_TIME)

MYSQL_TYPE_STRING data length

MYSQL_TYPE_BLOB data_length

In some cases, you might want to determine the length of a column value before fetching it with
mysql_stmt_fetch(). For example, the value might be a long string or BLOB value for which you want
to know how much space must be allocated. To accomplish this, use one of these strategies:

• Before invoking mysql_stmt_fetch() to retrieve individual rows, pass
STMT_ATTR_UPDATE_MAX_LENGTH to mysql_stmt_attr_set(), then invoke
mysql_stmt_store_result() to buffer the entire result on the client side. Setting
the STMT_ATTR_UPDATE_MAX_LENGTH attribute causes the maximal length of column
values to be indicated by the max_length member of the result set metadata returned by
mysql_stmt_result_metadata().

• Invoke mysql_stmt_fetch() with a zero-length buffer for the column in question and a pointer in
which the real length can be stored. Then use the real length with mysql_stmt_fetch_column().

real_length= 0;

bind[0].buffer= 0;
bind[0].buffer_length= 0;
bind[0].length= &real_length
mysql_stmt_bind_result(stmt, bind);

mysql_stmt_fetch(stmt);
if (real_length > 0)
{
 data= malloc(real_length);
 bind[0].buffer= data;

148

https://dev.mysql.com/doc/refman/8.0/en/blob.html

mysql_stmt_fetch()

 bind[0].buffer_length= real_length;
 mysql_stmt_fetch_column(stmt, bind, 0, 0);
}

Return Values

Return Value Description

0 Success, the data has been fetched to application
data buffers.

1 Error occurred. Error code and message can be
obtained by calling mysql_stmt_errno() and
mysql_stmt_error().

MYSQL_NO_DATA Success, no more data exists

MYSQL_DATA_TRUNCATED Data truncation occurred

MYSQL_DATA_TRUNCATED is returned when truncation reporting is enabled. To determine which column
values were truncated when this value is returned, check the error members of the MYSQL_BIND
structures used for fetching values. Truncation reporting is enabled by default, but can be controlled by
calling mysql_options() with the MYSQL_REPORT_DATA_TRUNCATION option.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

Although mysql_stmt_fetch() can produce this error, it is more likely to occur for the following C API
call if mysql_stmt_fetch() is not called enough times to read the entire result set (that is, enough
times to return MYSQL_NO_DATA).

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

• CR_UNSUPPORTED_PARAM_TYPE

The buffer type is MYSQL_TYPE_DATE, MYSQL_TYPE_TIME, MYSQL_TYPE_DATETIME, or
MYSQL_TYPE_TIMESTAMP, but the data type is not DATE, TIME, DATETIME, or TIMESTAMP.

• All other unsupported conversion errors are returned from mysql_stmt_bind_result().

Example

The following example demonstrates how to fetch data from a table using
mysql_stmt_result_metadata(), mysql_stmt_bind_result(), and mysql_stmt_fetch().

149

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unsupported_param_type
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/time.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html
https://dev.mysql.com/doc/refman/8.0/en/datetime.html

mysql_stmt_fetch()

(This example expects to retrieve the two rows inserted by the example shown in Section 6.4.10,
“mysql_stmt_execute()”.) The mysql variable is assumed to be a valid connection handler.

#define STRING_SIZE 50

#define SELECT_SAMPLE "SELECT col1, col2, col3, col4 \
 FROM test_table"

MYSQL_STMT *stmt;
MYSQL_BIND bind[4];
MYSQL_RES *prepare_meta_result;
MYSQL_TIME ts;
unsigned long length[4];
int param_count, column_count, row_count;
short small_data;
int int_data;
char str_data[STRING_SIZE];
bool is_null[4];
bool error[4];

/* Prepare a SELECT query to fetch data from test_table */
stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
}
if (mysql_stmt_prepare(stmt, SELECT_SAMPLE, strlen(SELECT_SAMPLE)))
{
 fprintf(stderr, " mysql_stmt_prepare(), SELECT failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}
fprintf(stdout, " prepare, SELECT successful\n");

/* Get the parameter count from the statement */
param_count= mysql_stmt_param_count(stmt);
fprintf(stdout, " total parameters in SELECT: %d\n", param_count);

if (param_count != 0) /* validate parameter count */
{
 fprintf(stderr, " invalid parameter count returned by MySQL\n");
 exit(0);
}

/* Execute the SELECT query */
if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, " mysql_stmt_execute(), failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Fetch result set meta information */
prepare_meta_result = mysql_stmt_result_metadata(stmt);
if (!prepare_meta_result)
{
 fprintf(stderr,
 " mysql_stmt_result_metadata(), \
 returned no meta information\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Get total columns in the query */
column_count= mysql_num_fields(prepare_meta_result);
fprintf(stdout,

150

mysql_stmt_fetch()

 " total columns in SELECT statement: %d\n",
 column_count);

if (column_count != 4) /* validate column count */
{
 fprintf(stderr, " invalid column count returned by MySQL\n");
 exit(0);
}

/* Bind the result buffers for all 4 columns before fetching them */

memset(bind, 0, sizeof(bind));

/* INTEGER COLUMN */
bind[0].buffer_type= MYSQL_TYPE_LONG;
bind[0].buffer= (char *)&int_data;
bind[0].is_null= &is_null[0];
bind[0].length= &length[0];
bind[0].error= &error[0];

/* STRING COLUMN */
bind[1].buffer_type= MYSQL_TYPE_STRING;
bind[1].buffer= (char *)str_data;
bind[1].buffer_length= STRING_SIZE;
bind[1].is_null= &is_null[1];
bind[1].length= &length[1];
bind[1].error= &error[1];

/* SMALLINT COLUMN */
bind[2].buffer_type= MYSQL_TYPE_SHORT;
bind[2].buffer= (char *)&small_data;
bind[2].is_null= &is_null[2];
bind[2].length= &length[2];
bind[2].error= &error[2];

/* TIMESTAMP COLUMN */
bind[3].buffer_type= MYSQL_TYPE_TIMESTAMP;
bind[3].buffer= (char *)&ts;
bind[3].is_null= &is_null[3];
bind[3].length= &length[3];
bind[3].error= &error[3];

/* Bind the result buffers */
if (mysql_stmt_bind_result(stmt, bind))
{
 fprintf(stderr, " mysql_stmt_bind_result() failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Now buffer all results to client (optional step) */
if (mysql_stmt_store_result(stmt))
{
 fprintf(stderr, " mysql_stmt_store_result() failed\n");
 fprintf(stderr, " %s\n", mysql_stmt_error(stmt));
 exit(0);
}

/* Fetch all rows */
row_count= 0;
fprintf(stdout, "Fetching results ...\n");
while (!mysql_stmt_fetch(stmt))
{
 row_count++;
 fprintf(stdout, " row %d\n", row_count);

 /* column 1 */

151

mysql_stmt_fetch_column()

 fprintf(stdout, " column1 (integer) : ");
 if (is_null[0])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %d(%ld)\n", int_data, length[0]);

 /* column 2 */
 fprintf(stdout, " column2 (string) : ");
 if (is_null[1])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %s(%ld)\n", str_data, length[1]);

 /* column 3 */
 fprintf(stdout, " column3 (smallint) : ");
 if (is_null[2])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %d(%ld)\n", small_data, length[2]);

 /* column 4 */
 fprintf(stdout, " column4 (timestamp): ");
 if (is_null[3])
 fprintf(stdout, " NULL\n");
 else
 fprintf(stdout, " %04d-%02d-%02d %02d:%02d:%02d (%ld)\n",
 ts.year, ts.month, ts.day,
 ts.hour, ts.minute, ts.second,
 length[3]);
 fprintf(stdout, "\n");
}

/* Validate rows fetched */
fprintf(stdout, " total rows fetched: %d\n", row_count);
if (row_count != 2)
{
 fprintf(stderr, " MySQL failed to return all rows\n");
 exit(0);
}

/* Free the prepared result metadata */
mysql_free_result(prepare_meta_result);

/* Close the statement */
if (mysql_stmt_close(stmt))
{
 /* mysql_stmt_close() invalidates stmt, so call */
 /* mysql_error(mysql) rather than mysql_stmt_error(stmt) */
 fprintf(stderr, " failed while closing the statement\n");
 fprintf(stderr, " %s\n", mysql_error(mysql));
 exit(0);
}

6.4.12 mysql_stmt_fetch_column()
int
mysql_stmt_fetch_column(MYSQL_STMT *stmt,
 MYSQL_BIND *bind,
 unsigned int column,
 unsigned long offset)

Description

Fetches one column from the current result set row. bind provides the buffer where data should be
placed. It should be set up the same way as for mysql_stmt_bind_result(). column indicates which

152

mysql_stmt_field_count()

column to fetch. The first column is numbered 0. offset is the offset within the data value at which to
begin retrieving data. This can be used for fetching the data value in pieces. The beginning of the value is
offset 0.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_INVALID_PARAMETER_NO

Invalid column number.

• CR_NO_DATA

The end of the result set has already been reached.

6.4.13 mysql_stmt_field_count()
unsigned int
mysql_stmt_field_count(MYSQL_STMT *stmt)

Description

Returns the number of columns for the most recent statement for the statement handler. This value is zero
for statements such as INSERT or DELETE that do not produce result sets.

mysql_stmt_field_count() can be called after you have prepared a statement by invoking
mysql_stmt_prepare().

Return Values

An unsigned integer representing the number of columns in a result set.

Errors

None.

6.4.14 mysql_stmt_free_result()
bool
mysql_stmt_free_result(MYSQL_STMT *stmt)

Description

Releases memory associated with the result set produced by execution of the prepared statement. If there
is a cursor open for the statement, mysql_stmt_free_result() closes it.

Return Values

Zero for success. Nonzero if an error occurred.

6.4.15 mysql_stmt_init()
MYSQL_STMT *

153

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_parameter_no
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_no_data
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

mysql_stmt_insert_id()

mysql_stmt_init(MYSQL *mysql)

Description

Creates and returns a MYSQL_STMT handler. The handler should be freed with mysql_stmt_close(), at
which point the handler becomes invalid and should no longer be used.

See also Section 6.2, “C API Prepared Statement Data Structures”, for more information.

Return Values

A pointer to a MYSQL_STMT structure in case of success. NULL if out of memory.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

6.4.16 mysql_stmt_insert_id()
uint64_t
mysql_stmt_insert_id(MYSQL_STMT *stmt)

Description

Returns the value generated for an AUTO_INCREMENT column by the prepared INSERT or UPDATE
statement. Use this function after you have executed a prepared INSERT statement on a table which
contains an AUTO_INCREMENT field.

See Section 5.4.42, “mysql_insert_id()”, for more information.

Return Values

Value for AUTO_INCREMENT column which was automatically generated or explicitly set during execution
of prepared statement, or value generated by LAST_INSERT_ID(expr) function. Return value is
undefined if statement does not set AUTO_INCREMENT value.

Errors

None.

6.4.17 mysql_stmt_next_result()
int
mysql_stmt_next_result(MYSQL_STMT *mysql)

Description

This function is used when you use prepared CALL statements to execute stored procedures, which can
return multiple result sets. Use a loop that calls mysql_stmt_next_result() to determine whether
there are more results. If a procedure has OUT or INOUT parameters, their values will be returned as a
single-row result set following any other result sets. The values will appear in the order in which they are
declared in the procedure parameter list.

For information about the effect of unhandled conditions on procedure parameters, see Condition Handling
and OUT or INOUT Parameters.

154

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_last-insert-id
https://dev.mysql.com/doc/refman/8.0/en/call.html
https://dev.mysql.com/doc/refman/8.0/en/conditions-and-parameters.html
https://dev.mysql.com/doc/refman/8.0/en/conditions-and-parameters.html

mysql_stmt_num_rows()

mysql_stmt_next_result() returns a status to indicate whether more results exist. If
mysql_stmt_next_result() returns an error, there are no more results.

Before each call to mysql_stmt_next_result(), you must call mysql_stmt_free_result() for the
current result if it produced a result set (rather than just a result status).

After calling mysql_stmt_next_result() the state of the connection is as if you had called
mysql_stmt_execute(). This means that you can call mysql_stmt_bind_result(),
mysql_stmt_affected_rows(), and so forth.

It is also possible to test whether there are more results by calling mysql_more_results().
However, this function does not change the connection state, so if it returns true, you must still call
mysql_stmt_next_result() to advance to the next result.

For an example that shows how to use mysql_stmt_next_result(), see Section 3.6.5, “Prepared
CALL Statement Support”.

Return Values

Return Value Description

0 Successful and there are more results

-1 Successful and there are no more results

>0 An error occurred

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

6.4.18 mysql_stmt_num_rows()
uint64_t
mysql_stmt_num_rows(MYSQL_STMT *stmt)

Description

Returns the number of rows in the result set.

The use of mysql_stmt_num_rows() depends on whether you used mysql_stmt_store_result()
to buffer the entire result set in the statement handler. If you use mysql_stmt_store_result(),
mysql_stmt_num_rows() may be called immediately. Otherwise, the row count is unavailable unless
you count the rows as you fetch them.

155

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_param_count()

mysql_stmt_num_rows() is intended for use with statements that return a result set, such as SELECT.
For statements such as INSERT, UPDATE, or DELETE, the number of affected rows can be obtained with
mysql_stmt_affected_rows().

Return Values

The number of rows in the result set.

Errors

None.

6.4.19 mysql_stmt_param_count()
unsigned long
mysql_stmt_param_count(MYSQL_STMT *stmt)

Description

Returns the number of parameter markers present in the prepared statement.

Return Values

An unsigned long integer representing the number of parameters in a statement.

Errors

None.

Example

See the Example in Section 6.4.10, “mysql_stmt_execute()”.

6.4.20 mysql_stmt_param_metadata()
MYSQL_RES *
mysql_stmt_param_metadata(MYSQL_STMT *stmt)

This function currently does nothing.

6.4.21 mysql_stmt_prepare()
int
mysql_stmt_prepare(MYSQL_STMT *stmt,
 const char *stmt_str,
 unsigned long length)

Description

Given the statement handler returned by mysql_stmt_init(), prepares the SQL statement pointed
to by the string stmt_str and returns a status value. The string length should be given by the length
argument. The string must consist of a single SQL statement. You should not add a terminating semicolon
(;) or \g to the statement.

The application can include one or more parameter markers in the SQL statement by embedding question
mark (?) characters into the SQL string at the appropriate positions.

156

https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/update.html
https://dev.mysql.com/doc/refman/8.0/en/delete.html

mysql_stmt_reset()

The markers are legal only in certain places in SQL statements. For example, they are permitted in the
VALUES() list of an INSERT statement (to specify column values for a row), or in a comparison with a
column in a WHERE clause to specify a comparison value. However, they are not permitted for identifiers
(such as table or column names), or to specify both operands of a binary operator such as the = equal
sign. The latter restriction is necessary because it would be impossible to determine the parameter type.
In general, parameters are legal only in Data Manipulation Language (DML) statements, and not in Data
Definition Language (DDL) statements.

The parameter markers must be bound to application variables using mysql_stmt_bind_param()
before executing the statement.

Metadata changes to tables or views referred to by prepared statements are detected and cause automatic
repreparation of the statement when it is next executed. For more information, see Caching of Prepared
Statements and Stored Programs.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

An unknown error occurred.

If the prepare operation was unsuccessful (that is, mysql_stmt_prepare() returns nonzero), the error
message can be obtained by calling mysql_stmt_error().

Example

See the Example in Section 6.4.10, “mysql_stmt_execute()”.

6.4.22 mysql_stmt_reset()
bool
mysql_stmt_reset(MYSQL_STMT *stmt)

Description

Resets a prepared statement on client and server to state after prepare. It resets the statement on the
server, data sent using mysql_stmt_send_long_data(), unbuffered result sets and current errors.

157

https://dev.mysql.com/doc/refman/8.0/en/insert.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/refman/8.0/en/statement-caching.html
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_result_metadata()

It does not clear bindings or stored result sets. Stored result sets will be cleared when executing the
prepared statement (or closing it).

To re-prepare the statement with another query, use mysql_stmt_prepare().

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query

• CR_UNKNOWN_ERROR

An unknown error occurred.

6.4.23 mysql_stmt_result_metadata()
MYSQL_RES *
mysql_stmt_result_metadata(MYSQL_STMT *stmt)

Description

mysql_stmt_result_metadata() is used to obtain result set metadata for a prepared statement. Its
use requires that the statement when executed by mysql_stmt_execute() does produce a result set.

mysql_stmt_result_metadata() may be called after preparing the statement with
mysql_stmt_prepare() and before closing the statement handler. The result set metadata returned
by mysql_stmt_result_metadata() is in the form of a pointer to a MYSQL_RES structure that can be
used to process the meta information such as number of fields and individual field information. This result
set pointer can be passed as an argument to any of the field-based API functions that process result set
metadata, such as:

• mysql_num_fields()

• mysql_fetch_field()

• mysql_fetch_field_direct()

• mysql_fetch_fields()

• mysql_field_count()

• mysql_field_seek()

• mysql_field_tell()

• mysql_free_result()

158

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_row_seek()

If the client has suppressed metadata (as described in Section 3.6.7, “Optional Result Set Metadata”), the
MYSQL_RES structure has the field count filled in but is no field information.

When you are done with the metadata result set structure, free it by passing it to mysql_free_result().
This is similar to the way you free a result set structure obtained from a call to mysql_store_result().

If you call mysql_stmt_result_metadata() after mysql_stmt_prepare() but before
mysql_stmt_execute(), the column types in the metadata are as determined by the optimizer. If
you call mysql_stmt_result_metadata() after mysql_stmt_execute(), the column types in the
metadata are as actually present in the result set. In most cases, these should be the same.

If the executed statement is a CALL statement, it may produce multiple result sets. In this case, do not call
mysql_stmt_result_metadata() immediately after mysql_stmt_prepare(). Instead, check the
metadata for each result set separately after calling mysql_stmt_execute(). For an example of this
technique, see Section 3.6.5, “Prepared CALL Statement Support”.

The result set returned by mysql_stmt_result_metadata() contains only metadata. It does not
contain any row results. To obtain the row results, use the statement handler with mysql_stmt_fetch()
after executing the statement with mysql_stmt_execute(), as usual.

Return Values

A MYSQL_RES result structure. NULL if no meta information exists for the prepared statement.

Errors

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

See the Example in Section 6.4.11, “mysql_stmt_fetch()”.

6.4.24 mysql_stmt_row_seek()
MYSQL_ROW_OFFSET
mysql_stmt_row_seek(MYSQL_STMT *stmt,
 MYSQL_ROW_OFFSET offset)

Description

Sets the row cursor to an arbitrary row in a statement result set. The offset value is a row offset that
should be a value returned from mysql_stmt_row_tell() or from mysql_stmt_row_seek().
This value is not a row number; if you want to seek to a row within a result set by number, use
mysql_stmt_data_seek() instead.

This function requires that the result set structure contains the entire result of the query, so
mysql_stmt_row_seek() may be used only in conjunction with mysql_stmt_store_result().

Return Values

The previous value of the row cursor. This value may be passed to a subsequent call to
mysql_stmt_row_seek().

159

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

mysql_stmt_row_tell()

Errors

None.

6.4.25 mysql_stmt_row_tell()
MYSQL_ROW_OFFSET
mysql_stmt_row_tell(MYSQL_STMT *stmt)

Description

Returns the current position of the row cursor for the last mysql_stmt_fetch(). This value can be used
as an argument to mysql_stmt_row_seek().

You should use mysql_stmt_row_tell() only after mysql_stmt_store_result().

Return Values

The current offset of the row cursor.

Errors

None.

6.4.26 mysql_stmt_send_long_data()
bool
mysql_stmt_send_long_data(MYSQL_STMT *stmt,
 unsigned int parameter_number,
 const char *data,
 unsigned long length)

Description

Enables an application to send parameter data to the server in pieces (or “chunks”). Call this function after
mysql_stmt_bind_param() and before mysql_stmt_execute(). It can be called multiple times to
send the parts of a character or binary data value for a column, which must be one of the TEXT or BLOB
data types.

parameter_number indicates which parameter to associate the data with. Parameters are numbered
beginning with 0. data is a pointer to a buffer containing data to be sent, and length indicates the
number of bytes in the buffer.

Note

The next mysql_stmt_execute() call ignores the bind buffer for all parameters
that have been used with mysql_stmt_send_long_data() since last
mysql_stmt_execute() or mysql_stmt_reset().

To reset/forget the sent data, call mysql_stmt_reset(). See Section 6.4.22, “mysql_stmt_reset()”.

The max_allowed_packet system variable controls the maximum size of parameter values that can be
sent with mysql_stmt_send_long_data().

Return Values

Zero for success. Nonzero if an error occurred.

160

https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/blob.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_max_allowed_packet

mysql_stmt_send_long_data()

Errors

• CR_INVALID_BUFFER_USE

The parameter does not have a string or binary type.

• CR_INVALID_PARAMETER_NO

Invalid parameter number.

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_UNKNOWN_ERROR

An unknown error occurred.

Example

The following example demonstrates how to send the data for a TEXT column in chunks. It inserts the data
value 'MySQL - The most popular Open Source database' into the text_column column. The
mysql variable is assumed to be a valid connection handler.

#define INSERT_QUERY "INSERT INTO \
 test_long_data(text_column) VALUES(?)"

MYSQL_BIND bind[1];
long length;

stmt = mysql_stmt_init(mysql);
if (!stmt)
{
 fprintf(stderr, " mysql_stmt_init(), out of memory\n");
 exit(0);
}
if (mysql_stmt_prepare(stmt, INSERT_QUERY, strlen(INSERT_QUERY)))
{
 fprintf(stderr, "\n mysql_stmt_prepare(), INSERT failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}
 memset(bind, 0, sizeof(bind));
 bind[0].buffer_type= MYSQL_TYPE_STRING;
 bind[0].length= &length;
 bind[0].is_null= 0;

/* Bind the buffers */
if (mysql_stmt_bind_param(stmt, bind))
{
 fprintf(stderr, "\n param bind failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

161

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_buffer_use
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_invalid_parameter_no
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error
https://dev.mysql.com/doc/refman/8.0/en/blob.html

mysql_stmt_sqlstate()

 /* Supply data in chunks to server */
 if (mysql_stmt_send_long_data(stmt,0,"MySQL",5))
{
 fprintf(stderr, "\n send_long_data failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

 /* Supply the next piece of data */
 if (mysql_stmt_send_long_data(stmt,0,
 " - The most popular Open Source database",40))
{
 fprintf(stderr, "\n send_long_data failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

 /* Now, execute the query */
 if (mysql_stmt_execute(stmt))
{
 fprintf(stderr, "\n mysql_stmt_execute failed");
 fprintf(stderr, "\n %s", mysql_stmt_error(stmt));
 exit(0);
}

6.4.27 mysql_stmt_sqlstate()
const char *
mysql_stmt_sqlstate(MYSQL_STMT *stmt)

Description

For the statement specified by stmt, mysql_stmt_sqlstate() returns a null-terminated string
containing the SQLSTATE error code for the most recently invoked prepared statement API function that
can succeed or fail. The error code consists of five characters. "00000" means “no error.” The values
are specified by ANSI SQL and ODBC. For a list of possible values, see Error Messages and Common
Problems.

Not all MySQL errors are mapped to SQLSTATE codes. The value "HY000" (general error) is used for
unmapped errors.

If the failed statement API function was mysql_stmt_close(), do not call mysql_stmt_sqlstate()
to obtain error information because mysql_stmt_close() makes the statement handler invalid. Call
mysql_sqlstate() instead.

Return Values

A null-terminated character string containing the SQLSTATE error code.

6.4.28 mysql_stmt_store_result()
int
mysql_stmt_store_result(MYSQL_STMT *stmt)

Description

Result sets are produced by calling mysql_stmt_execute() to executed prepared statements for SQL
statements such as SELECT, SHOW, DESCRIBE, and EXPLAIN. By default, result sets for successfully
executed prepared statements are not buffered on the client and mysql_stmt_fetch() fetches

162

https://dev.mysql.com/doc/refman/8.0/en/error-handling.html
https://dev.mysql.com/doc/refman/8.0/en/error-handling.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show.html
https://dev.mysql.com/doc/refman/8.0/en/describe.html
https://dev.mysql.com/doc/refman/8.0/en/explain.html

mysql_stmt_store_result()

them one at a time from the server. To cause the complete result set to be buffered on the client, call
mysql_stmt_store_result() after binding data buffers with mysql_stmt_bind_result()
and before calling mysql_stmt_fetch() to fetch rows. (For an example, see Section 6.4.11,
“mysql_stmt_fetch()”.)

mysql_stmt_store_result() is optional for result set processing, unless you will call
mysql_stmt_data_seek(), mysql_stmt_row_seek(), or mysql_stmt_row_tell(). Those
functions require a seekable result set.

It is unnecessary to call mysql_stmt_store_result() after executing an SQL statement that
does not produce a result set, but if you do, it does not harm or cause any notable performance
problem. You can detect whether the statement produced a result set by checking whether
mysql_stmt_result_metadata() returns NULL. For more information, refer to Section 6.4.23,
“mysql_stmt_result_metadata()”.

Note

MySQL does not by default calculate MYSQL_FIELD->max_length for all
columns in mysql_stmt_store_result() because calculating this would slow
down mysql_stmt_store_result() considerably and most applications do
not need max_length. If you want max_length to be updated, you can call
mysql_stmt_attr_set(MYSQL_STMT, STMT_ATTR_UPDATE_MAX_LENGTH,
&flag) to enable this. See Section 6.4.3, “mysql_stmt_attr_set()”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_COMMANDS_OUT_OF_SYNC

Commands were executed in an improper order.

• CR_OUT_OF_MEMORY

Out of memory.

• CR_SERVER_GONE_ERROR

The MySQL server has gone away.

• CR_SERVER_LOST

The connection to the server was lost during the query.

• CR_UNKNOWN_ERROR

An unknown error occurred.

163

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_commands_out_of_sync
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_gone_error
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_server_lost
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_unknown_error

164

Chapter 7 C API Asynchronous Interface

Table of Contents
7.1 Overview of the C API Asynchronous Interface .. 165
7.2 C API Asynchronous Interface Data Structures .. 170
7.3 C API Asynchronous Function Reference .. 170
7.4 C API Asynchronous Function Descriptions ... 171

7.4.1 mysql_fetch_row_nonblocking() .. 171
7.4.2 mysql_free_result_nonblocking() ... 172
7.4.3 mysql_next_result_nonblocking() ... 172
7.4.4 mysql_real_connect_nonblocking() .. 173
7.4.5 mysql_real_query_nonblocking() ... 173
7.4.6 mysql_store_result_nonblocking() ... 174

As of MySQL 8.0.16, the C API includes asynchronous functions that enable nonblocking communication
with the MySQL server. Asynchronous functions enable development of applications that differ from the
query processing model based on synchronous functions that block if reads from or writes to the server
connection must wait. Using the asynchronous functions, an application can check whether work on the
server connection is ready to proceed. If not, the application can perform other work before checking again
later.

For example, an application might open multiple connections to the server and use them to submit multiple
statements for execution. The application then can poll the connections to see which of them have results
to be fetched, while doing other work.

Note

As just indicated, execution of multiple simultaneous statements should be done
using multiple connections and executing one statement per connection. The
asynchronous interface is not intended for executing multiple simultaneous
statements per connection. What it enables is that applications can do other work
rather than waiting for server operations to complete.

7.1 Overview of the C API Asynchronous Interface
This section describes how to use the C API asynchronous interface. In this discussion, asynchronous and
nonblocking are used as synonyms, as are synchronous and blocking.

The asynchronous C API functions cover operations that might otherwise block when reading to or
writing from the server connection: The initial connection operation, sending a query, reading the result,
and so forth. Each asynchronous function has the same name as its synchronous counterpart, plus a
_nonblocking suffix:

• mysql_fetch_row_nonblocking(): Asynchronously fetches the next row from the result set.

• mysql_free_result_nonblocking(): Asynchronously frees memory used by a result set.

• mysql_next_result_nonblocking(): Asynchronously returns/initiates the next result in multiple-
result executions.

• mysql_real_connect_nonblocking(): Asynchronously connects to a MySQL server.

• mysql_real_query_nonblocking(): Asynchronously executes an SQL query specified as a
counted string.

165

Asynchronous Function Calling Conventions

• mysql_store_result_nonblocking(): Asynchronously retrieves a complete result set to the client.

Applications can mix asynchronous and synchronous functions if there are operations that need not be
done asynchronously or for which the asynchronous functions do not apply.

The following discussion describes in more detail how to use asynchronous C API functions.

• Asynchronous Function Calling Conventions

• Example Program

• Asynchronous Function Restrictions

Asynchronous Function Calling Conventions

All asynchronous C API functions return an enum net_async_status value. The return value can be
one of the following values to indicate operation status:

• NET_ASYNC_NOT_READY: The operation is still in progress and not yet complete.

• NET_ASYNC_COMPLETE: The operation completed successfully.

• NET_ASYNC_ERROR: The operation terminated in error.

• NET_ASYNC_COMPLETE_NO_MORE_RESULTS: The operation completed successfully and no more
results are available. This status applies only to mysql_next_result_nonblocking().

In general, to use an asynchronous function, do this:

• Call the function repeatedly until it no longer returns a status of NET_ASYNC_NOT_READY.

• Check whether the final status indicates successful completion (NET_ASYNC_COMPLETE) or an error
(NET_ASYNC_ERROR).

The following examples illustrate some typical calling patterns. function(args) represents an
asynchronous function and its argument list.

• If it is desirable to perform other processing while the operation is in progress:

enum net_async_status status;

status = function(args);
while (status == NET_ASYNC_NOT_READY) {
 /* perform other processing */
 other_processing ();
 /* invoke same function and arguments again */
 status = function(args);
}
if (status == NET_ASYNC_ERROR) {
 /* call failed; handle error */
} else {
 /* call successful; handle result */
}

• If there is no need to perform other processing while the operation is in progress:

enum net_async_status status;

while ((status = function(args)) == NET_ASYNC_NOT_READY)
 ; /* empty loop */
if (status == NET_ASYNC_ERROR) {
 /* call failed; handle error */
} else {
 /* call successful; handle result */

166

Example Program

}

• If the function success/failure result does not matter and you want to ensure only that the operation has
completed:

while (function (args) != NET_ASYNC_COMPLETE)
 ; /* empty loop */

For mysql_next_result_nonblocking(), it is also necessary to account for the
NET_ASYNC_COMPLETE_NO_MORE_RESULTS status, which indicates that the operation completed
successfully and no more results are available. Use it like this:

while ((status = mysql_next_result_nonblocking()) != NET_ASYNC_COMPLETE) {
 if (status == NET_ASYNC_COMPLETE_NO_MORE_RESULTS) {
 /* no more results */
 }
 else if (status == NET_ASYNC_ERROR) {
 /* handle error by calling mysql_error(); */
 break;
 }
}

In most cases, arguments for the asynchronous functions are the same as for the corresponding
synchronous functions. Exceptions are mysql_fetch_row_nonblocking() and
mysql_store_result_nonblocking(), each of which takes an extra argument compared to
its synchronous counterpart. For details, see Section 7.4.1, “mysql_fetch_row_nonblocking()”, and
Section 7.4.6, “mysql_store_result_nonblocking()”.

Example Program

This section shows an example C++ program that illustrates use of asynchronous C API functions.

To set up the SQL objects used by the program, execute the following statements. Substitute a different
database or user as desired; in this case, you will need to make some adjustments to the program as well.

CREATE DATABASE db;
USE db;
CREATE TABLE test_table (id INT NOT NULL);
INSERT INTO test_table VALUES (10), (20), (30);

CREATE USER 'testuser'@'localhost' IDENTIFIED BY 'testpass';
GRANT ALL ON db.* TO 'testuser'@'localhost';

Create a file named async_app.cc containing the following program. Adjust the connection parameters
as necessary.

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <mysql.h>
#include <mysqld_error.h>

using namespace std;

/* change following connection parameters as necessary */
static const char * c_host = "localhost";
static const char * c_user = "testuser";
static const char * c_auth = "testpass";
static int c_port = 3306;
static const char * c_sock = "/usr/local/mysql/mysql.sock";
static const char * c_dbnm = "db";

void perform_arithmetic() {
 cout<<"dummy function invoked\n";

167

Example Program

 for (int i = 0; i < 1000; i++)
 i*i;
}

int main(int argc, char ** argv)
{
 MYSQL *mysql_local;
 MYSQL_RES *result;
 MYSQL_ROW row;
 net_async_status status;
 const char *stmt_text;

 if (!(mysql_local = mysql_init(NULL))) {
 cout<<"mysql_init() failed\n";
 exit(1);
 }
 while ((status = mysql_real_connect_nonblocking(mysql_local, c_host, c_user,
 c_auth, c_dbnm, c_port,
 c_sock, 0))
 == NET_ASYNC_NOT_READY)
 ; /* empty loop */
 if (status == NET_ASYNC_ERROR) {
 cout<<"mysql_real_connect_nonblocking() failed\n";
 exit(1);
 }

 /* run query asynchronously */
 stmt_text = "SELECT * FROM test_table ORDER BY id";
 status = mysql_real_query_nonblocking(mysql_local, stmt_text,
 (unsigned long)strlen(stmt_text));
 /* do some other task before checking function result */
 perform_arithmetic();
 while (status == NET_ASYNC_NOT_READY) {
 status = mysql_real_query_nonblocking(mysql_local, stmt_text,
 (unsigned long)strlen(stmt_text));
 perform_arithmetic();
 }
 if (status == NET_ASYNC_ERROR) {
 cout<<"mysql_real_query_nonblocking() failed\n";
 exit(1);
 }

 /* retrieve query result asynchronously */
 status = mysql_store_result_nonblocking(mysql_local, &result);
 /* do some other task before checking function result */
 perform_arithmetic();
 while (status == NET_ASYNC_NOT_READY) {
 status = mysql_store_result_nonblocking(mysql_local, &result);
 perform_arithmetic();
 }
 if (status == NET_ASYNC_ERROR) {
 cout<<"mysql_store_result_nonblocking() failed\n";
 exit(1);
 }
 if (result == NULL) {
 cout<<"mysql_store_result_nonblocking() found 0 records\n";
 exit(1);
 }

 /* fetch a row synchronously */
 row = mysql_fetch_row(result);
 if (row != NULL && strcmp(row[0], "10") == 0)
 cout<<"ROW: " << row[0] << "\n";
 else
 cout<<"incorrect result fetched\n";

 /* fetch a row asynchronously, but without doing other work */

168

Asynchronous Function Restrictions

 while (mysql_fetch_row_nonblocking(result, &row) != NET_ASYNC_COMPLETE)
 ; /* empty loop */
 /* 2nd row fetched */
 if (row != NULL && strcmp(row[0], "20") == 0)
 cout<<"ROW: " << row[0] << "\n";
 else
 cout<<"incorrect result fetched\n";

 /* fetch a row asynchronously, doing other work while waiting */
 status = mysql_fetch_row_nonblocking(result, &row);
 /* do some other task before checking function result */
 perform_arithmetic();
 while (status != NET_ASYNC_COMPLETE) {
 status = mysql_fetch_row_nonblocking(result, &row);
 perform_arithmetic();
 }
 /* 3rd row fetched */
 if (row != NULL && strcmp(row[0], "30") == 0)
 cout<<"ROW: " << row[0] << "\n";
 else
 cout<<"incorrect result fetched\n";

 /* fetch a row asynchronously (no more rows expected) */
 while ((status = mysql_fetch_row_nonblocking(result, &row))
 != NET_ASYNC_COMPLETE)
 ; /* empty loop */
 if (row == NULL)
 cout <<"No more rows to process.\n";
 else
 cout <<"More rows found than expected.\n";

 /* free result set memory asynchronously */
 while (mysql_free_result_nonblocking(result) != NET_ASYNC_COMPLETE)
 ; /* empty loop */

 mysql_close(mysql_local);
}

Compile the program using a command similar to this; adjust the compiler and options as necessary:

gcc -g async_app.cc -std=c++11 \
 -I/usr/local/mysql/include \
 -o async_app -L/usr/lib64/ -lstdc++ \
 -L/usr/local/mysql/lib/ -lmysqlclient

Run the program. The results should be similar to what you see here, although you might see a varying
number of dummy function invoked instances.

dummy function invoked
dummy function invoked
ROW: 10
ROW: 20
dummy function invoked
ROW: 30
No more rows to process.

To experiment with the program, add and remove rows from test_table, running the program again
after each change.

Asynchronous Function Restrictions

These restrictions apply to the use of asynchronous C API functions:

169

C API Asynchronous Interface Data Structures

• mysql_real_connect_nonblocking() can be used only for accounts that authenticate with one
of these authentication plugins: mysql_native_password (deprecated), sha256_password, or
caching_sha2_password.

• mysql_real_connect_nonblocking() can be used only to establish TCP/IP or Unix socket file
connections.

• These statements are not supported and must be processed using synchronous C API functions: LOAD
DATA, LOAD XML.

• Input arguments passed to an asynchronous C API call that initiates a nonblocking operation may
remain in use until the operation terminates later, and should not be reused until termination occurs.

• Protocol compression is not supported for asynchronous C API functions.

7.2 C API Asynchronous Interface Data Structures
This section describes data structures specific to asynchronous C API functions. For information about
general-purpose C API data structures, see Section 5.2, “C API Basic Data Structures”.

• enum net_async_status

The enumeration type used to express the return status of asynchronous C API functions. The following
table shows the permitted status values.

Enumeration Status Value Description

NET_ASYNC_COMPLETE Asynchronous operation is complete

NET_ASYNC_NOT_READY Asynchronous operation is still in progress

NET_ASYNC_ERROR Asynchronous operation terminated in error

NET_ASYNC_COMPLETE_NO_MORE_RESULTS For mysql_next_result_nonblocking();
indicates no more results available

For more information, see Chapter 7, C API Asynchronous Interface.

7.3 C API Asynchronous Function Reference
The following table summarizes the functions available for asynchronous interaction with the MySQL
server. For greater detail, see the descriptions in Section 7.4, “C API Asynchronous Function Descriptions”.

Table 7.1 C API Asynchronous Functions

Name Description Introduced

mysql_fetch_row_nonblocking()Asynchronously fetch next result
set row

8.0.16

mysql_free_result_nonblocking()Asynchronously free result set
memory

8.0.16

mysql_next_result_nonblocking()Asynchronously return/initiate next
result in multiple-result execution

8.0.16

mysql_real_connect_nonblocking()Asynchronously connect to
MySQL server

8.0.16

mysql_real_query_nonblocking()Asynchronously execute
statement

8.0.16

170

https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-data.html
https://dev.mysql.com/doc/refman/8.0/en/load-xml.html

C API Asynchronous Function Descriptions

Name Description Introduced

mysql_store_result_nonblocking()Asynchronously retrieve and store
entire result set

8.0.16

7.4 C API Asynchronous Function Descriptions

To interact asynchronously with the MySQL server, use the functions described in the following sections.
For descriptions of their synchronous counterparts, see Section 5.4, “C API Basic Function Descriptions”.

7.4.1 mysql_fetch_row_nonblocking()
enum net_async_status
mysql_fetch_row_nonblocking(MYSQL_RES *result,
 MYSQL_ROW *row)

Description

Note

mysql_fetch_row_nonblocking() is an asynchronous function. It is the
counterpart of the mysql_fetch_row() synchronous function, for use by
applications that require asynchronous communication with the server. For general
information about writing asynchronous C API applications, see Chapter 7, C API
Asynchronous Interface.

mysql_fetch_row_nonblocking() is used similarly to mysql_fetch_row(). For details about the
latter, see Section 5.4.22, “mysql_fetch_row()”. The two functions differ as follows:

• mysql_fetch_row() returns a MYSQL_ROW value containing the next row, or NULL. The meaning of a
NULL return depends on which function was called preceding mysql_fetch_row():

• When used after mysql_store_result() or mysql_store_result_nonblocking(),
mysql_fetch_row() returns NULL if there are no more rows to retrieve.

• When used after mysql_use_result(), mysql_fetch_row() returns NULL if there are no more
rows to retrieve or an error occurred.

• mysql_fetch_row_nonblocking() returns an enum net_async_status status indicator
and takes a second row argument that provides a pointer to a MYSQL_ROW value. When the return
status is NET_ASYNC_COMPLETE, the row argument is a pointer to a MYSQL_ROW value containing
the next row, or NULL. The meaning of NULL depends on which function was called preceding
mysql_fetch_row_nonblocking():

• When used after mysql_store_result() or mysql_store_result_nonblocking(), the row
argument is NULL if there are no more rows to retrieve.

• When used after mysql_use_result(), the row argument is NULL if there are no more rows to
retrieve or an error occurred.

mysql_fetch_row_nonblocking() was added in MySQL 8.0.16.

Return Values

Returns an enum net_async_status value. See the description in Section 7.2, “C API Asynchronous
Interface Data Structures”. A NET_ASYNC_ERROR return status indicates an error.

171

mysql_free_result_nonblocking()

Example

See Chapter 7, C API Asynchronous Interface.

7.4.2 mysql_free_result_nonblocking()
enum net_async_status
mysql_free_result_nonblocking(MYSQL_RES *result)

Description

Note

mysql_free_result_nonblocking() is an asynchronous function. It is the
counterpart of the mysql_free_result() synchronous function, for use by
applications that require asynchronous communication with the server. For general
information about writing asynchronous C API applications, see Chapter 7, C API
Asynchronous Interface.

mysql_free_result_nonblocking() is used similarly to mysql_free_result(). For details about
the latter, see Section 5.4.26, “mysql_free_result()”. The two functions differ as follows:

• mysql_free_result() does not return a value.

• mysql_free_result_nonblocking() returns an enum net_async_status status indicator.

mysql_free_result_nonblocking() was added in MySQL 8.0.16.

Return Values

Returns an enum net_async_status value. See the description in Section 7.2, “C API Asynchronous
Interface Data Structures”. A NET_ASYNC_ERROR return status indicates an error.

Example

See Chapter 7, C API Asynchronous Interface.

7.4.3 mysql_next_result_nonblocking()
enum net_async_status
mysql_next_result_nonblocking(MYSQL *mysql)

Description

Note

mysql_next_result_nonblocking() is an asynchronous function. It is the
counterpart of the mysql_next_result() synchronous function, for use by
applications that require asynchronous communication with the server. For general
information about writing asynchronous C API applications, see Chapter 7, C API
Asynchronous Interface.

mysql_next_result_nonblocking() is used similarly to mysql_next_result(). For details about
the latter, see Section 5.4.51, “mysql_next_result()”. The two functions differ as follows:

• mysql_next_result() returns an integer status indicator.

172

mysql_real_connect_nonblocking()

• mysql_next_result_nonblocking() returns an enum net_async_status status indicator.

mysql_next_result_nonblocking() was added in MySQL 8.0.16.

Return Values

Returns an enum net_async_status value. See the description in Section 7.2, “C API Asynchronous
Interface Data Structures”. A NET_ASYNC_COMPLETE_NO_MORE_RESULTS return status indicates there
are no more results available. A NET_ASYNC_ERROR return status indicates an error.

Example

See Chapter 7, C API Asynchronous Interface.

7.4.4 mysql_real_connect_nonblocking()
enum net_async_status
mysql_real_connect_nonblocking(MYSQL *mysql,
 const char *host,
 const char *user,
 const char *passwd,
 const char *db,
 unsigned int port,
 const char *unix_socket,
 unsigned long
 client_flag)

Description

Note

mysql_real_connect_nonblocking() is an asynchronous function. It is the
counterpart of the mysql_real_connect() synchronous function, for use by
applications that require asynchronous communication with the server. For general
information about writing asynchronous C API applications, see Chapter 7, C API
Asynchronous Interface.

mysql_real_connect_nonblocking() is used similarly to mysql_real_connect(). For details
about the latter, see Section 5.4.58, “mysql_real_connect()”. The two functions differ as follows:

• mysql_real_connect() returns a connection handler or NULL.

• mysql_real_connect_nonblocking() returns an enum net_async_status status indicator.

mysql_real_connect_nonblocking() was added in MySQL 8.0.16.

Return Values

Returns an enum net_async_status value. See the description in Section 7.2, “C API Asynchronous
Interface Data Structures”. A NET_ASYNC_ERROR return status indicates an error.

Example

See Chapter 7, C API Asynchronous Interface.

7.4.5 mysql_real_query_nonblocking()
enum net_async_status
mysql_real_query_nonblocking(MYSQL *mysql,

173

mysql_store_result_nonblocking()

 const char *stmt_str,
 unsigned long length)

Description

Note

mysql_real_query_nonblocking() is an asynchronous function. It is the
counterpart of the mysql_real_query() synchronous function, for use by
applications that require asynchronous communication with the server. For general
information about writing asynchronous C API applications, see Chapter 7, C API
Asynchronous Interface.

mysql_real_query_nonblocking() is used similarly to mysql_real_query(). For details about the
latter, see Section 5.4.62, “mysql_real_query()”. The two functions differ as follows:

• mysql_real_query() returns an integer status indicator.

• mysql_real_query_nonblocking() returns an enum net_async_status status indicator.

mysql_real_query_nonblocking() was added in MySQL 8.0.16.

Return Values

Returns an enum net_async_status value. See the description in Section 7.2, “C API Asynchronous
Interface Data Structures”. A NET_ASYNC_ERROR return status indicates an error.

Example

See Chapter 7, C API Asynchronous Interface.

7.4.6 mysql_store_result_nonblocking()
enum net_async_status
mysql_store_result_nonblocking(MYSQL *mysql,
 MYSQL_RES **result)

Description

Note

mysql_store_result_nonblocking() is an asynchronous function. It is the
counterpart of the mysql_store_result() synchronous function, for use by
applications that require asynchronous communication with the server. For general
information about writing asynchronous C API applications, see Chapter 7, C API
Asynchronous Interface.

mysql_store_result_nonblocking() is used similarly to mysql_store_result(). For details
about the latter, see Section 5.4.84, “mysql_store_result()”. The two functions differ as follows:

• mysql_store_result() returns a pointer to a MYSQL_RESULT value that contains the result set, or
NULL if there is no result set or an error occurred.

• mysql_store_result_nonblocking() returns an enum net_async_status status indicator and
takes a second result argument that is the address of a pointer to a MYSQL_RESULT into which to
store the result set. When the return status is NET_ASYNC_COMPLETE, the result argument is NULL if
there is no result set or an error occurred.

174

mysql_store_result_nonblocking()

mysql_store_result_nonblocking() was added in MySQL 8.0.16.

Return Values

Returns an enum net_async_status value. See the description in Section 7.2, “C API Asynchronous
Interface Data Structures”. A NET_ASYNC_ERROR return status indicates an error.

When the return status is NET_ASYNC_COMPLETE, the result argument is NULL if there is no result set
or an error occurred. To determine whether an error occurred, check whether mysql_error() returns a
nonempty string, mysql_errno() returns nonzero, or mysql_field_count() returns zero.

Example

See Chapter 7, C API Asynchronous Interface.

175

176

Chapter 8 C API Thread Interface

Table of Contents
8.1 C API Thread Function Reference ... 177
8.2 C API Threaded Function Descriptions .. 177

8.2.1 mysql_thread_end() .. 177
8.2.2 mysql_thread_init() ... 178
8.2.3 mysql_thread_safe() ... 178

The MySQL C API includes functions enabling threaded client applications to be written. These functions
provide control over thread initialization and termination with the client. See also Section 3.4, “Writing C
API Threaded Client Programs”.

Another C API function, mysql_thread_id(), has “thread” in its name but is not used for client
threading purposes. Instead, it returns the ID of the server thread associated with the client, much like the
CONNECTION_ID() SQL function. See Section 5.4.85, “mysql_thread_id()”.

8.1 C API Thread Function Reference

The following table summarizes the functions available for the thread control within the client. For greater
detail, see the descriptions in Section 8.2, “C API Threaded Function Descriptions”.

Table 8.1 C API Thread Functions

Name Description

mysql_thread_end() Finalize thread handler

mysql_thread_init() Initialize thread handler

mysql_thread_safe() Whether client is compiled thread-safe

8.2 C API Threaded Function Descriptions

To create a threaded client, use the functions described in the following sections. See also Section 3.4,
“Writing C API Threaded Client Programs”.

8.2.1 mysql_thread_end()
void
mysql_thread_end(void)

Description

Call this function as necessary before calling pthread_exit() to free memory allocated by
mysql_thread_init():

• For release/production builds without debugging support enabled, mysql_thread_end() need not be
called.

• For debug builds, mysql_thread_init() allocates debugging information for the DBUG package (see
The DBUG Package). mysql_thread_end() must be called for each mysql_thread_init() call to
avoid a memory leak.

177

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_connection-id
https://dev.mysql.com/doc/refman/8.0/en/dbug-package.html

mysql_thread_init()

mysql_thread_end() is not invoked automatically by the client library.

Return Values

None.

8.2.2 mysql_thread_init()
bool
mysql_thread_init(void)

Description

This function must be called early within each created thread to initialize thread-specific variables.
However, it may be unnecessarily to invoke it explicitly. Calling mysql_thread_init() is
automatically handled by mysql_init(), mysql_library_init(), mysql_server_init(), and
mysql_connect(). If you invoke any of those functions, mysql_thread_init() is called for you.

Return Values

Zero for success. Nonzero if an error occurred.

8.2.3 mysql_thread_safe()
unsigned
int mysql_thread_safe(void)

Description

This function indicates whether the client library is compiled as thread-safe.

Return Values

1 if the client library is thread-safe, 0 otherwise.

178

Chapter 9 C API Client Plugin Interface

Table of Contents
9.1 C API Plugin Function Reference .. 179
9.2 C API Plugin Function Descriptions ... 179

9.2.1 mysql_client_find_plugin() ... 180
9.2.2 mysql_client_register_plugin() ... 180
9.2.3 mysql_plugin_get_option() .. 181
9.2.4 mysql_load_plugin() ... 181
9.2.5 mysql_load_plugin_v() .. 182
9.2.6 mysql_plugin_options() ... 183

This section describes functions used for the client-side plugin API. They enable management of client
plugins. For a description of the st_mysql_client_plugin structure used by these functions, see Client
Plugin Descriptors.

It is unlikely that a client program needs to call the functions in this section. For example, a client
that supports the use of authentication plugins normally causes a plugin to be loaded by calling
mysql_options() to set the MYSQL_DEFAULT_AUTH and MYSQL_PLUGIN_DIR options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugin_name";

/* ... process command-line options ... */

mysql_options(&mysql, MYSQL_PLUGIN_DIR, plugin_dir);
mysql_options(&mysql, MYSQL_DEFAULT_AUTH, default_auth);

Typically, the program will also accept --plugin-dir and --default-auth options that enable users
to override the default values.

9.1 C API Plugin Function Reference

The following table summarizes the functions available for the client-side plugin API. For greater detail, see
the descriptions in Section 9.2, “C API Plugin Function Descriptions”.

Table 9.1 C API Plugin Functions

Name Description Introduced

mysql_client_find_plugin()Return pointer to a plugin

mysql_client_register_plugin()Register a plugin

mysql_load_plugin() Load a plugin

mysql_load_plugin_v() Load a plugin

mysql_plugin_get_option() Get plugin option 8.0.27

mysql_plugin_options() Set plugin option

9.2 C API Plugin Function Descriptions

The following sections provide detailed descriptions of the functions that enable management of client
plugins.

179

https://dev.mysql.com/doc/extending-mysql/8.0/en/client-plugin-descriptors.html
https://dev.mysql.com/doc/extending-mysql/8.0/en/client-plugin-descriptors.html
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_plugin-dir
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_default-auth

mysql_client_find_plugin()

9.2.1 mysql_client_find_plugin()
struct st_mysql_client_plugin *
mysql_client_find_plugin(MYSQL *mysql,
 const char *name,
 int type)

Description

Returns a pointer to a loaded plugin, loading the plugin first if necessary. An error occurs if the type is
invalid or the plugin cannot be found or loaded.

Specify the arguments as follows:

• mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-related
information.

• name: The plugin name.

• type: The plugin type.

Return Values

A pointer to the plugin for success. NULL if an error occurred.

Errors

To check for errors, call the mysql_error() or mysql_errno() function. See Section 5.4.16,
“mysql_error()”, and Section 5.4.15, “mysql_errno()”.

Example

MYSQL mysql;
struct st_mysql_client_plugin *p;

if ((p = mysql_client_find_plugin(&mysql, "myplugin",
 MYSQL_CLIENT_AUTHENTICATION_PLUGIN, 0)))
{
 printf("Plugin version: %d.%d.%d\n", p->version[0], p->version[1], p->version[2]);
}

9.2.2 mysql_client_register_plugin()
struct st_mysql_client_plugin *
mysql_client_register_plugin(MYSQL *mysql,
 struct st_mysql_client_plugin *plugin)

Description

Adds a plugin structure to the list of loaded plugins. An error occurs if the plugin is already loaded.

Specify the arguments as follows:

• mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-related
information.

• plugin: A pointer to the plugin structure.

180

mysql_plugin_get_option()

Return Values

A pointer to the plugin for success. NULL if an error occurred.

Errors

To check for errors, call the mysql_error() or mysql_errno() function. See Section 5.4.16,
“mysql_error()”, and Section 5.4.15, “mysql_errno()”.

9.2.3 mysql_plugin_get_option()

int
mysql_plugin_get_option(struct st_mysql_client_plugin *plugin,
 const char *option,
 void *value)

Description

Given a plugin structure and an option name, returns the option value. If the plugin does not have an option
handler, an error occurs.

Specify the arguments as follows:

• plugin: A pointer to the plugin structure.

• option: The name of the option for which the value is to be returned.

• value: A pointer to the option value.

mysql_plugin_get_option() was added in MySQL 8.0.27.

Return Values

Zero for success, 1 if an error occurred.

9.2.4 mysql_load_plugin()

struct st_mysql_client_plugin *
mysql_load_plugin(MYSQL *mysql,
 const char *name,
 int type,
 int argc,
 ...)

Description

Loads a MySQL client plugin, specified by name and type. An error occurs if the type is invalid or the plugin
cannot be loaded.

It is not possible to load multiple plugins of the same type. An error occurs if you try to load a plugin of a
type already loaded.

Specify the arguments as follows:

• mysql: A pointer to a MYSQL structure. The plugin API does not require a connection to a MySQL
server, but this structure must be properly initialized. The structure is used to obtain connection-related
information.

181

mysql_load_plugin_v()

• name: The name of the plugin to load.

• type: The type of plugin to load, or −1 to disable type checking. If type is not −1, only plugins matching
the type are considered for loading.

• argc: The number of following arguments (0 if there are none). Interpretation of any following arguments
depends on the plugin type.

Another way to cause plugins to be loaded is to set the LIBMYSQL_PLUGINS environment variable to a list
of semicolon-separated plugin names. For example:

export LIBMYSQL_PLUGINS="myplugin1;myplugin2"

Plugins named by LIBMYSQL_PLUGINS are loaded when the client program calls
mysql_library_init(). No error is reported if problems occur loading these plugins.

The LIBMYSQL_PLUGIN_DIR environment variable can be set to the path name of the directory in which
to look for client plugins. This variable is used in two ways:

• During client plugin preloading, the value of the --plugin-dir option is not available, so client plugin
loading fails unless the plugins are located in the hardwired default directory. If the plugins are located
elsewhere, LIBMYSQL_PLUGIN_DIR environment variable can be set to the proper directory to enable
plugin preloading to succeed.

• For explicit client plugin loading, the mysql_load_plugin() and mysql_load_plugin_v() C API
functions use the LIBMYSQL_PLUGIN_DIR value if it exists and the --plugin-dir option was not
given. If --plugin-dir is given, mysql_load_plugin() and mysql_load_plugin_v() ignore
LIBMYSQL_PLUGIN_DIR.

Return Values

A pointer to the plugin if it was loaded successfully. NULL if an error occurred.

Errors

To check for errors, call the mysql_error() or mysql_errno() function. See Section 5.4.16,
“mysql_error()”, and Section 5.4.15, “mysql_errno()”.

Example

MYSQL mysql;

if(!mysql_load_plugin(&mysql, "myplugin",
 MYSQL_CLIENT_AUTHENTICATION_PLUGIN, 0))
{
 fprintf(stderr, "Error: %s\n", mysql_error(&mysql));
 exit(-1);
}

See Also

See also Section 9.2.4, “mysql_load_plugin()”, Section 5.4.16, “mysql_error()”, Section 5.4.15,
“mysql_errno()”.

9.2.5 mysql_load_plugin_v()
struct st_mysql_client_plugin *

182

https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_plugin-dir
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_plugin-dir
https://dev.mysql.com/doc/refman/8.0/en/connection-options.html#option_general_plugin-dir

mysql_plugin_options()

mysql_load_plugin_v(MYSQL *mysql,
 const char *name,
 int type,
 int argc,
 va_list args)

Description

This function is equivalent to mysql_load_plugin(), but it accepts a va_list instead of a variable list
of arguments.

See Also

See also Section 9.2.4, “mysql_load_plugin()”.

9.2.6 mysql_plugin_options()
int
mysql_plugin_options(struct st_mysql_client_plugin *plugin,
 const char *option,
 const void *value)

Description

Passes an option type and value to a plugin. This function can be called multiple times to set several
options. If the plugin does not have an option handler, an error occurs.

Specify the arguments as follows:

• plugin: A pointer to the plugin structure.

• option: The name of the option to be set.

• value: A pointer to the option value.

Return Values

Zero for success, 1 if an error occurred. If the plugin has an option handler, that handler should also return
zero for success and 1 if an error occurred.

183

184

Chapter 10 C API Binary Log Interface

Table of Contents
10.1 Overview of the C API Binary Log Interface ... 185
10.2 C API Binary Log Data Structures ... 186
10.3 C API Binary Log Function Reference ... 187
10.4 C API Binary Log Function Descriptions .. 188

10.4.1 mysql_binlog_close() .. 188
10.4.2 mysql_binlog_fetch() ... 188
10.4.3 mysql_binlog_open() .. 189

The MySQL client/server protocol includes a client interface for reading a stream of replication events from
a MySQL server binary log. This capability uses the MYSQL_RPL data structure and a small set of functions
to manage communication between a client program and the server from which the binary log is to be read.
The following sections describe aspects of this interface in more detail.

10.1 Overview of the C API Binary Log Interface
The following simple example program demonstrates the binary log C API functions. Program notes:

• mysql is assumed to be a valid connection handler.

• The initial SET statement sets the @source_binlog_checksum user-defined variable that the server
takes as an indication that the client is checksum-aware. This client does nothing with checksums, but
without this statement, a server that includes checksums in binary log events will return an error for the
first attempt to read an event containing a checksum. The value assigned to the variable is immaterial;
what matters is that the variable exist.

if (mysql_query(mysql, "SET @source_binlog_checksum='ALL'"))
{
 fprintf(stderr, "mysql_query() failed\n");
 fprintf(stderr, "Error %u: %s\n",
 mysql_errno(mysql), mysql_error(mysql));
 exit(1);
}

MYSQL_RPL rpl;

rpl.file_name_length = 0;
rpl.file_name = NULL;
rpl.start_position = 4;
rpl.server_id = 0;
rpl.flags = 0;

if (mysql_binlog_open(mysql, &rpl))
{
 fprintf(stderr, "mysql_binlog_open() failed\n");
 fprintf(stderr, "Error %u: %s\n",
 mysql_errno(mysql), mysql_error(mysql));
 exit(1);
}
for (;;) /* read events until error or EOF */
{
 if (mysql_binlog_fetch(mysql, &rpl))
 {
 fprintf(stderr, "mysql_binlog_fetch() failed\n");

185

https://dev.mysql.com/doc/refman/8.0/en/set-variable.html

C API Binary Log Data Structures

 fprintf(stderr, "Error %u: %s\n",
 mysql_errno(mysql), mysql_error(mysql));
 break;
 }
 if (rpl.size == 0) /* EOF */
 {
 fprintf(stderr, "EOF event received\n");
 break;
 }
 fprintf(stderr, "Event received of size %lu.\n", rpl.size);
}
mysql_binlog_close(mysql, &rpl);

For additional examples that show how to use these functions, look in a MySQL source distribution for
these source files:

• mysqlbinlog.cc in the client directory

• mysql_client_test.c in the testclients directory

10.2 C API Binary Log Data Structures
C API functions for processing a replication event stream from a server require a connection handler (a
MYSQL * pointer) and a pointer to a MYSQL_RPL structure that describes the steam of replication events to
read from the server binary log. For example:

MYSQL *mysql = mysql_real_connect(...);

MYSQL_RPL rpl;

... initialize MYSQL_RPL members ...

int result = mysql_binlog_open(mysql, &rpl);

This section describes the MYSQL_RPL structure members. Connection handlers are described in
Section 5.2, “C API Basic Data Structures”.

The applicable MYSQL_RPL members depend on the binary log operation to be performed:

• Before calling mysql_binlog_open(), the caller must set the MYSQL_RPL members from
file_name_length through flags. In addition, if flags has the MYSQL_RPL_GTID flag set, the
caller must set the members from gtid_set_encoded_size through gtid_set_arg.

• After a successful mysql_binlog_fetch() call, the caller examines the size and buffer members.

MYSQL_RPL structure member descriptions:

• file_name_length

The length of the name of the binary log file to read. This member is used in conjunction with
file_name; see the file_name description.

• file_name

The name of the binary log file to read:

• If file_name is NULL, the client library sets it to the empty string and sets file_name_length to 0.

• If file_name is not NULL, file_name_length must either be the length of the name or 0.
If file_name_length is 0, the client library sets it to the length of the name, in which case,
file_name must be given as a null-terminated string.

186

C API Binary Log Function Reference

To read from the beginning of the binary log without having to know the name of the oldest binary log
file, set file_name to NULL or the empty string, and start_position to 4.

• start_position

The position at which to start reading the binary log. The position of the first event in any given binary log
file is 4.

• server_id

The server ID to use for identifying to the server from which the binary log is read.

• flags

The union of flags that affect binary log reading, or 0 if no flags are set. These flag values are permitted:

• MYSQL_RPL_SKIP_HEARTBEAT

Set this flag to cause mysql_binlog_fetch() to skip heartbeat events.

• MYSQL_RPL_GTID

Set this flag to read GTID (global transaction ID) data. If set, you must initialize the MYSQL_RPL
structure GTID-related members from gtid_set_encoded_size to gtid_set_arg before calling
mysql_binlog_open().

It is beyond the scope of this documentation to describe in detail how client programs use those GTID-
related members. For more information, examine the mysqlbinlog.cc source file. For information
about GTID-based replication, see Replication with Global Transaction Identifiers.

• gtid_set_encoded_size

The size of GTID set data, or 0.

• fix_gtid_set

The address of a callback function for mysql_binlog_open() to call to fill the command packet GTID
set, or NULL if there is no such function. The callback function, if used, should have this calling signature:

void my_callback(MYSQL_RPL *rpl, unsigned char *packet_gtid_set);

• gtid_set_arg

Either a pointer to GTID set data (if fix_gtid_set is NULL), or a pointer to a value to be made
available for use within the callback function (if fix_gtid_set is not NULL). gtid_set_arg is a
generic pointer, so it can point to any kind of value (for example, a string, a structure, or a function). Its
interpretation within the callback depends on how the callback intends to use it.

• size

After a successful mysql_binlog_fetch() call, the size of the returned binary log event. The value is
0 for an EOF event, greater than 0 for a non-EOF event.

• buffer

After a successful mysql_binlog_fetch() call, a pointer to the binary log event contents.

10.3 C API Binary Log Function Reference

187

https://dev.mysql.com/doc/refman/8.0/en/replication-gtids.html

C API Binary Log Function Descriptions

The following table summarizes the functions available for reading a replication event stream from a binary
log. For greater detail, see the descriptions in Section 10.4, “C API Binary Log Function Descriptions”.

Table 10.1 C API Binary Log Functions

Name Description

mysql_binlog_close() Close replication event stream

mysql_binlog_fetch() Read event from replication event stream

mysql_binlog_open() Open replication event stream

10.4 C API Binary Log Function Descriptions

The following sections provide detailed descriptions of the functions that enable reading the stream of
replication events from a MySQL server binary log.

10.4.1 mysql_binlog_close()
void
mysql_binlog_close(MYSQL *mysql,
 MYSQL_RPL *rpl)

Description

Close a replication event stream.

Arguments:

• mysql: The connection handler returned from mysql_init(). The handler remains open after the
mysql_binlog_close() call.

• rpl: The replication stream structure. After calling mysql_binlog_close(), this structure should not
be used further without reinitializing it and calling mysql_binlog_open() again.

Errors

None.

Example

See Section 10.4, “C API Binary Log Function Descriptions”.

10.4.2 mysql_binlog_fetch()
int
mysql_binlog_fetch(MYSQL *mysql,
 MYSQL_RPL *rpl)

Description

Fetch one event from the replication event stream.

Arguments:

• mysql: The connection handler returned from mysql_init().

188

mysql_binlog_open()

• rpl: The replication stream structure. After a successful call, the size member indicates the event size,
which is 0 for an EOF event. For a non-EOF event, size is greater than 0 and the buffer member
points to the event contents.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

Example

See Section 10.4, “C API Binary Log Function Descriptions”.

10.4.3 mysql_binlog_open()
int
mysql_binlog_open(MYSQL *mysql,
 MYSQL_RPL *rpl)

Description

Open a new replication event stream, to read a MySQL server binary log.

Arguments:

• mysql: The connection handler returned from mysql_init().

• rpl: A MYSQL_RPL structure that has been initialized to indicate the replication event stream source. For
a description of the structure members and how to initialize them, see Section 10.2, “C API Binary Log
Data Structures”.

Return Values

Zero for success. Nonzero if an error occurred.

Errors

• CR_FILE_NAME_TOO_LONG

The specified binary log file name was too long.

• CR_OUT_OF_MEMORY

Out of memory.

Example

See Section 10.4, “C API Binary Log Function Descriptions”.

189

https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_file_name_too_long
https://dev.mysql.com/doc/mysql-errors/8.0/en/client-error-reference.html#error_cr_out_of_memory

190

Index

Symbols
@source_binlog_checksum user-defined variable, 185

A
asynchronous C API

data structures, 170
function descriptions, 171
function reference, 170

asynchronous interface
C API, 165

asynchronous interface usage
C API, 165

B
basic

C API, 34
basic data structures

C API, 37
basic function descriptions

C API, 46
basic function reference

C API, 42
basic interface usage

C API, 34
binary log

C API, 185
binary log C API

data structures, 186
function descriptions, 188
function reference, 187

binary log interface usage
C API, 185

building
client programs, 5

C
C API

asynchronous interface, 165
asynchronous interface usage, 165
basic, 34
basic data structures, 36
basic function descriptions, 46
basic function reference, 42
basic interface usage, 34
binary log, 185
binary log interface usage, 185
client version, 24
data types, 1
encrypted connections, 11
example programs, 5

function reference, 25
linking problems, 7
multiple statement execution, 13
optional result set metadata, 21
prepared CALL statement, 16
prepared statement interface usage, 128
prepared statements and temporal values, 15
reconnection control, 21
server version, 24
SSL session reuse, 12

C API functions
mysql_bind_param(), 48

client programs
building, 5

client version
C API, 24

clients
threaded, 9

compiling clients
on Unix, 5
on Windows, 6

D
data structures

asynchronous C API, 170
binary log C API, 186
prepared statement C API, 129

data types
C API, 1

DNS SRV records, 98
DYLD_LIBRARY_PATH environment variable, 10

E
encrypted connections

C API, 11
environment variable

DYLD_LIBRARY_PATH, 10
LD_LIBRARY_PATH, 10
LIBMYSQL_PLUGINS, 182
LIBMYSQL_PLUGIN_DIR, 182
PKG_CONFIG_PATH, 8

errors
linking, 7

example programs
C API, 5

F
function descriptions

asynchronous C API, 171
binary log C API, 188
plugin C API, 179
prepared statement C API, 137
thread C API, 177

191

function reference
asynchronous C API, 170
binary log C API, 188
C API, 25
plugin C API, 179
prepared statement C API, 136
thread C API, 177

functions
prepared statement C API, 135

I
ID

unique, 23

L
last row

unique ID, 23
LAST_INSERT_ID(), 23
LD_LIBRARY_PATH environment variable, 10
LIBMYSQL_PLUGINS environment variable, 182
LIBMYSQL_PLUGIN_DIR environment variable, 182
linking, 5

errors, 7
problems, 7

logging
prepared statement C API, 129

M
multiple statement execution

C API, 13
MYSQL C type, 37
mysql_affected_rows(), 23, 47
mysql_autocommit(), 48
MYSQL_BIND C type, 130
mysql_bind_param() C API function, 48
mysql_binlog_close(), 188
mysql_binlog_fetch(), 188
mysql_binlog_open(), 189
mysql_change_user(), 50
mysql_character_set_name(), 51
mysql_client_find_plugin(), 180
mysql_client_register_plugin(), 180
mysql_close(), 52
mysql_commit(), 52
mysql_connect(), 52
mysql_create_db(), 52
mysql_data_seek(), 53
mysql_debug(), 54
mysql_drop_db(), 54
mysql_dump_debug_info(), 55
mysql_eof(), 55
mysql_errno(), 56
mysql_error(), 57

mysql_escape_string(), 58
mysql_fetch_field(), 58
mysql_fetch_fields(), 59
mysql_fetch_field_direct(), 58
mysql_fetch_lengths(), 60
mysql_fetch_row(), 60
mysql_fetch_row_nonblocking(), 171
MYSQL_FIELD C type, 37
mysql_field_count(), 62, 81
MYSQL_FIELD_OFFSET C type, 37
mysql_field_seek(), 63
mysql_field_tell(), 63
mysql_free_result(), 63
mysql_free_result_nonblocking(), 172
mysql_free_ssl_session_data(), 64
mysql_get_character_set_info(), 64
mysql_get_client_info(), 65
mysql_get_client_version(), 65
mysql_get_host_info(), 65
mysql_get_option(), 66
mysql_get_proto_info(), 67
mysql_get_server_info(), 67
mysql_get_server_version(), 68
mysql_get_ssl_cipher(), 68
mysql_get_ssl_session_data(), 68
mysql_get_ssl_session_reused(), 69
mysql_hex_string(), 69
mysql_info(), 23, 70
mysql_init(), 71
mysql_insert_id(), 23, 23, 71
mysql_kill(), 73
mysql_library_end(), 74
mysql_library_init(), 74
mysql_list_dbs(), 75
mysql_list_fields(), 76
mysql_list_processes(), 77
mysql_list_tables(), 78
mysql_load_plugin(), 181
mysql_load_plugin_v(), 182
mysql_more_results(), 79
mysql_next_result(), 79
mysql_next_result_nonblocking(), 172
mysql_num_fields(), 81
mysql_num_rows(), 23, 82
mysql_options(), 82
mysql_options4(), 91
mysql_ping(), 92
mysql_plugin_get_option(), 181
mysql_plugin_options(), 183
mysql_query(), 23, 93
mysql_real_connect(), 93
mysql_real_connect_dns_srv(), 98
mysql_real_connect_nonblocking(), 173
mysql_real_escape_string(), 99

192

mysql_real_escape_string_quote(), 100
mysql_real_query(), 23, 102
mysql_real_query_nonblocking(), 173
mysql_refresh(), 103
mysql_reload(), 104
MYSQL_RES C type, 37
mysql_reset_connection(), 105
mysql_reset_server_public_key(), 105
mysql_result_metadata(), 106
mysql_rollback(), 106
MYSQL_ROW C type, 37
mysql_row_seek(), 107
mysql_row_tell(), 107
mysql_select_db(), 107
mysql_server_end(), 108
mysql_server_init(), 108
mysql_session_track_get_first(), 109
mysql_session_track_get_next(), 115
mysql_set_character_set(), 116
mysql_set_local_infile_default(), 116, 116
mysql_set_server_option(), 118
mysql_shutdown(), 119
mysql_sqlstate(), 119
mysql_ssl_set(), 120
mysql_stat(), 121
MYSQL_STMT C type, 130
mysql_stmt_affected_rows(), 138
mysql_stmt_attr_get(), 138
mysql_stmt_attr_set(), 138
mysql_stmt_bind_param(), 140
mysql_stmt_bind_result(), 140
mysql_stmt_close(), 141
mysql_stmt_data_seek(), 142
mysql_stmt_errno(), 142
mysql_stmt_error(), 143
mysql_stmt_execute(), 143
mysql_stmt_fetch(), 147
mysql_stmt_fetch_column(), 152
mysql_stmt_field_count(), 153
mysql_stmt_free_result(), 153
mysql_stmt_init(), 153
mysql_stmt_insert_id(), 154
mysql_stmt_next_result(), 154
mysql_stmt_num_rows(), 155
mysql_stmt_param_count(), 156
mysql_stmt_param_metadata(), 156
mysql_stmt_prepare(), 156
mysql_stmt_reset(), 157
mysql_stmt_result_metadata, 158
mysql_stmt_row_seek(), 159
mysql_stmt_row_tell(), 160
mysql_stmt_send_long_data(), 160
mysql_stmt_sqlstate(), 162
mysql_stmt_store_result(), 162

mysql_store_result(), 23, 122
mysql_store_result_nonblocking(), 174
mysql_thread_end(), 177
mysql_thread_id(), 123
mysql_thread_init(), 178
mysql_thread_safe(), 178
MYSQL_TIME C type, 133
mysql_use_result(), 124
mysql_warning_count(), 125
my_bool C type, 37
my_ulonglong C type, 37

O
optional result set metadata

C API, 21

P
PKG_CONFIG_PATH environment variable, 8
plugin C API

function descriptions, 179
function reference, 179

prepared CALL statement
C API, 16

prepared statement C API
data structures, 129
function descriptions, 137
function reference, 136
functions, 135
logging, 129
type codes, 133

prepared statement interface usage
C API, 128

prepared statements
C API, 127

prepared statements and temporal values
C API, 15

problems
linking, 7

programs
client, 5

Q
QUOTE(), 99, 101

R
reconnection

automatic, 21
reconnection control

C API, 21
result set metadata

suppression, 21

193

S
server version

C API, 24
session state information, 109, 115
SIGPIPE signal

client response, 9, 95
@source_binlog_checksum user-defined variable, 185
SSL session reuse

C API, 12

T
tables

unique ID for last row, 23
thread C API

function descriptions, 177
function reference, 177

threaded clients, 9
type codes

prepared statement C API, 133

U
unique ID, 23
Unix

compiling clients on, 5

W
Windows

compiling clients on, 6

Z
ZEROFILL, 20

194

	MySQL 8.0 C API Developer Guide
	Table of Contents
	Preface and Legal Notices
	Chapter 1 The MySQL C API
	Chapter 2 MySQL C API Implementations
	Chapter 3 Writing C API-Based Client Applications
	3.1 Example C API Client Programs
	3.2 Building C API Client Programs
	3.3 Building C API Client Programs Using pkg-config
	3.4 Writing C API Threaded Client Programs
	3.5 Running C API Client Programs
	3.6 Using C API Features
	3.6.1 Support for Encrypted Connections
	3.6.2 SSL Session Reuse
	3.6.3 Multiple Statement Execution Support
	3.6.4 Prepared Statement Handling of Date and Time Values
	3.6.5 Prepared CALL Statement Support
	3.6.6 Prepared Statement Problems
	3.6.7 Optional Result Set Metadata
	3.6.8 Automatic Reconnection Control
	3.6.9 NULL mysql_store_result() Return After mysql_query() Success
	3.6.10 Results Available from a Query
	3.6.11 Obtaining the Unique ID for the Last Inserted Row
	3.6.12 Obtaining the Server Version and Client Library Version

	Chapter 4 C API Function Reference
	Chapter 5 C API Basic Interface
	5.1 Overview of the C API Basic Interface
	5.2 C API Basic Data Structures
	5.3 C API Basic Function Reference
	5.4 C API Basic Function Descriptions
	5.4.1 mysql_affected_rows()
	5.4.2 mysql_autocommit()
	5.4.3 mysql_bind_param()
	5.4.4 mysql_change_user()
	5.4.5 mysql_character_set_name()
	5.4.6 mysql_close()
	5.4.7 mysql_commit()
	5.4.8 mysql_connect()
	5.4.9 mysql_create_db()
	5.4.10 mysql_data_seek()
	5.4.11 mysql_debug()
	5.4.12 mysql_drop_db()
	5.4.13 mysql_dump_debug_info()
	5.4.14 mysql_eof()
	5.4.15 mysql_errno()
	5.4.16 mysql_error()
	5.4.17 mysql_escape_string()
	5.4.18 mysql_fetch_field()
	5.4.19 mysql_fetch_field_direct()
	5.4.20 mysql_fetch_fields()
	5.4.21 mysql_fetch_lengths()
	5.4.22 mysql_fetch_row()
	5.4.23 mysql_field_count()
	5.4.24 mysql_field_seek()
	5.4.25 mysql_field_tell()
	5.4.26 mysql_free_result()
	5.4.27 mysql_free_ssl_session_data()
	5.4.28 mysql_get_character_set_info()
	5.4.29 mysql_get_client_info()
	5.4.30 mysql_get_client_version()
	5.4.31 mysql_get_host_info()
	5.4.32 mysql_get_option()
	5.4.33 mysql_get_proto_info()
	5.4.34 mysql_get_server_info()
	5.4.35 mysql_get_server_version()
	5.4.36 mysql_get_ssl_cipher()
	5.4.37 mysql_get_ssl_session_data()
	5.4.38 mysql_get_ssl_session_reused()
	5.4.39 mysql_hex_string()
	5.4.40 mysql_info()
	5.4.41 mysql_init()
	5.4.42 mysql_insert_id()
	5.4.43 mysql_kill()
	5.4.44 mysql_library_end()
	5.4.45 mysql_library_init()
	5.4.46 mysql_list_dbs()
	5.4.47 mysql_list_fields()
	5.4.48 mysql_list_processes()
	5.4.49 mysql_list_tables()
	5.4.50 mysql_more_results()
	5.4.51 mysql_next_result()
	5.4.52 mysql_num_fields()
	5.4.53 mysql_num_rows()
	5.4.54 mysql_options()
	5.4.55 mysql_options4()
	5.4.56 mysql_ping()
	5.4.57 mysql_query()
	5.4.58 mysql_real_connect()
	5.4.59 mysql_real_connect_dns_srv()
	5.4.60 mysql_real_escape_string()
	5.4.61 mysql_real_escape_string_quote()
	5.4.62 mysql_real_query()
	5.4.63 mysql_refresh()
	5.4.64 mysql_reload()
	5.4.65 mysql_reset_connection()
	5.4.66 mysql_reset_server_public_key()
	5.4.67 mysql_result_metadata()
	5.4.68 mysql_rollback()
	5.4.69 mysql_row_seek()
	5.4.70 mysql_row_tell()
	5.4.71 mysql_select_db()
	5.4.72 mysql_server_end()
	5.4.73 mysql_server_init()
	5.4.74 mysql_session_track_get_first()
	5.4.75 mysql_session_track_get_next()
	5.4.76 mysql_set_character_set()
	5.4.77 mysql_set_local_infile_default()
	5.4.78 mysql_set_local_infile_handler()
	5.4.79 mysql_set_server_option()
	5.4.80 mysql_shutdown()
	5.4.81 mysql_sqlstate()
	5.4.82 mysql_ssl_set()
	5.4.83 mysql_stat()
	5.4.84 mysql_store_result()
	5.4.85 mysql_thread_id()
	5.4.86 mysql_use_result()
	5.4.87 mysql_warning_count()

	Chapter 6 C API Prepared Statement Interface
	6.1 Overview of the C API Prepared Statement Interface
	6.2 C API Prepared Statement Data Structures
	6.2.1 C API Prepared Statement Type Codes
	6.2.2 C API Prepared Statement Type Conversions

	6.3 C API Prepared Statement Function Reference
	6.4 C API Prepared Statement Function Descriptions
	6.4.1 mysql_stmt_affected_rows()
	6.4.2 mysql_stmt_attr_get()
	6.4.3 mysql_stmt_attr_set()
	6.4.4 mysql_stmt_bind_param()
	6.4.5 mysql_stmt_bind_result()
	6.4.6 mysql_stmt_close()
	6.4.7 mysql_stmt_data_seek()
	6.4.8 mysql_stmt_errno()
	6.4.9 mysql_stmt_error()
	6.4.10 mysql_stmt_execute()
	6.4.11 mysql_stmt_fetch()
	6.4.12 mysql_stmt_fetch_column()
	6.4.13 mysql_stmt_field_count()
	6.4.14 mysql_stmt_free_result()
	6.4.15 mysql_stmt_init()
	6.4.16 mysql_stmt_insert_id()
	6.4.17 mysql_stmt_next_result()
	6.4.18 mysql_stmt_num_rows()
	6.4.19 mysql_stmt_param_count()
	6.4.20 mysql_stmt_param_metadata()
	6.4.21 mysql_stmt_prepare()
	6.4.22 mysql_stmt_reset()
	6.4.23 mysql_stmt_result_metadata()
	6.4.24 mysql_stmt_row_seek()
	6.4.25 mysql_stmt_row_tell()
	6.4.26 mysql_stmt_send_long_data()
	6.4.27 mysql_stmt_sqlstate()
	6.4.28 mysql_stmt_store_result()

	Chapter 7 C API Asynchronous Interface
	7.1 Overview of the C API Asynchronous Interface
	7.2 C API Asynchronous Interface Data Structures
	7.3 C API Asynchronous Function Reference
	7.4 C API Asynchronous Function Descriptions
	7.4.1 mysql_fetch_row_nonblocking()
	7.4.2 mysql_free_result_nonblocking()
	7.4.3 mysql_next_result_nonblocking()
	7.4.4 mysql_real_connect_nonblocking()
	7.4.5 mysql_real_query_nonblocking()
	7.4.6 mysql_store_result_nonblocking()

	Chapter 8 C API Thread Interface
	8.1 C API Thread Function Reference
	8.2 C API Threaded Function Descriptions
	8.2.1 mysql_thread_end()
	8.2.2 mysql_thread_init()
	8.2.3 mysql_thread_safe()

	Chapter 9 C API Client Plugin Interface
	9.1 C API Plugin Function Reference
	9.2 C API Plugin Function Descriptions
	9.2.1 mysql_client_find_plugin()
	9.2.2 mysql_client_register_plugin()
	9.2.3 mysql_plugin_get_option()
	9.2.4 mysql_load_plugin()
	9.2.5 mysql_load_plugin_v()
	9.2.6 mysql_plugin_options()

	Chapter 10 C API Binary Log Interface
	10.1 Overview of the C API Binary Log Interface
	10.2 C API Binary Log Data Structures
	10.3 C API Binary Log Function Reference
	10.4 C API Binary Log Function Descriptions
	10.4.1 mysql_binlog_close()
	10.4.2 mysql_binlog_fetch()
	10.4.3 mysql_binlog_open()

	Index

