Extending MySQL 8.0

Abstract

This document describes what you need to know when working on the MySQL 8.0 code. To track or contribute
to MySQL development, follow the instructions in Installing MySQL Using a Development Source Tree. If you
are interested in MySQL internals, you should also join the MySQL Community Slack. Feel free to ask questions
about the code and to send patches that you would like to contribute to the MySQL project!

For help with using MySQL, please visit the MySQL Forums, where you can discuss your issues with other
MySQL users.

Document generated on: 2026-01-14 (revision: 84247)

https://dev.mysql.com/doc/refman/8.0/en/installing-development-tree.html
https://mysqlcommunity.slack.com/
http://forums.mysql.com

Table of Contents

Preface and Legal NOTICESccouuuiiiiiiieiiei ettt ettt et et e e e nb e e enaas %
N [a1 fe o [N ox 1 o] o PP PR 1
2 MYSQL TRICAUS ... ettt ettt et e et et e et et e et et eeaaa s 3
3 The MYSQL TESE SUILEceettieiiiiie ettt et e e et e e e et e e e e b e e e ene s 5
4 The MySQL PIUGIN AP ... ettt ettt e e e s 7
4.1 TYPES OF PIUGINS ...eiiiiiiiiieieit ettt et e e et et e et e eeaans 8

4.2 Plugin API CharaCteriStCSc.uiiuu ittt e e et e e e eenns 13

4.3 Plugin API COMPONENTSciiitieeiit ettt e e e et e et e et et e e e e 14

4.4 WIING PIUGINS ..ttt et e e e et e e et eeena s 15
4.4.1 Overview Of PIUGIN WIINGoiiiiiiieiii e e 15

4.4.2 PlUgin DAt STUCTUIEScouuiiieiiiii ettt et e e e e e et e e e e eeees 16

4.4.3 Compiling and Installing Plugin LiDrariesc.ocoeeuiiiiiiiiieiieeeei e 28

4.4.4 Writing Full-Text Parser PIUGINSccouuiiiiiiiie e 28

4.4.5 Writing Daemon PIUGINS ...ttt et e e e e e eens 36

4.4.6 Writing INFORMATION_SCHEMA PIUGQINSuiiiiiiiiiiiiiiieee e 37

4.4.7 Writing Semisynchronous Replication PIUgINSocoouiiiiiiiiiniiiiice e 40

4.4.8 Writing AUIt PIUGINS ... ottt e e e eea e 41

4.4.9 Writing Authentication PIUGINSiiiiiiiii e 51

4.4.10 Writing Password-Validation PIUGINSccouuiiiiiiiiiiiieeei e 61

4.4.11 Writing Protocol Trace PIUGQINSiiiiiiiiiiiii e e 63

4.4.12 Writing Keyring PIUGINSiiiiiiiiii e 68

5 MYSQL ServiCes fOr PIUGINSccuuuiiiiiii ettt ettt ettt e et e e e 71
6 Adding FUNCLIONS 10 MYSQL ...ttt et e e 75
6.1 Adding @ NatiVe FUNCLIONuiiiiiiiieiii ettt e ettt e e e et e e eet e eeens 76

6.2 Adding a Loadable FUNCLONcoouuiiiiie et 77

T POMtING MYSQL ..ottt ettt ettt ettt naaas 89
a0 = PP R T UPPPTT 91

Preface and Legal Notices

This document describes what you need to know when working on the MySQL 8.0 code. To track or
contribute to MySQL development, follow the instructions in Installing MySQL Using a Development
Source Tree. If you are interested in MySQL internals, you should also join the MySQL Community
Slack. Feel free to ask questions about the code and to send patches that you would like to contribute
to the MySQL project!

Legal Notices

Copyright © 1997, 2026, Oracle and/or its affiliates.
License Restrictions

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly
permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate,
broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any
form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless
required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-
free. If you find any errors, please report them to us in writing.

Restricted Rights Notice

If this is software, software documentation, data (as defined in the Federal Acquisition Regulation), or
related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the
U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated
software, any programs embedded, installed, or activated on delivered hardware, and modifications
of such programs) and Oracle computer documentation or other Oracle data delivered to or accessed
by U.S. Government end users are "commercial computer software," "commercial computer software
documentation," or "limited rights data" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, the use, reproduction, duplication, release, display,
disclosure, modification, preparation of derivative works, and/or adaptation of i) Oracle programs
(including any operating system, integrated software, any programs embedded, installed, or activated
on delivered hardware, and modifications of such programs), ii) Oracle computer documentation and/
or iii) other Oracle data, is subject to the rights and limitations specified in the license contained in

the applicable contract. The terms governing the U.S. Government's use of Oracle cloud services

are defined by the applicable contract for such services. No other rights are granted to the U.S.
Government.

Hazardous Applications Notice

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any
damages caused by use of this software or hardware in dangerous applications.

Trademark Notice

Oracle, Java, MySQL, and NetSuite are registered trademarks of Oracle and/or its affiliates. Other
names may be trademarks of their respective owners.

https://dev.mysql.com/doc/refman/8.0/en/installing-development-tree.html
https://dev.mysql.com/doc/refman/8.0/en/installing-development-tree.html
https://mysqlcommunity.slack.com/
https://mysqlcommunity.slack.com/

Documentation Accessibility

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC
trademarks are used under license and are trademarks or registered trademarks of SPARC
International, Inc. AMD, Epyc, and the AMD logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

Third-Party Content, Products, and Services Disclaimer

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible

for and expressly disclaim all warranties of any kind with respect to third-party content, products,

and services unless otherwise set forth in an applicable agreement between you and Oracle. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to
your access to or use of third-party content, products, or services, except as set forth in an applicable
agreement between you and Oracle.

Use of This Documentation

This documentation is NOT distributed under a GPL license. Use of this documentation is subject to the
following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion

to other formats is allowed as long as the actual content is not altered or edited in any way. You shall
not publish or distribute this documentation in any form or on any media, except if you distribute the
documentation in a manner similar to how Oracle disseminates it (that is, electronically for download
on a Web site with the software) or on a CD-ROM or similar medium, provided however that the
documentation is disseminated together with the software on the same medium. Any other use, such
as any dissemination of printed copies or use of this documentation, in whole or in part, in another
publication, requires the prior written consent from an authorized representative of Oracle. Oracle and/
or its affiliates reserve any and all rights to this documentation not expressly granted above.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program
website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support for Accessibility

Oracle customers that have purchased support have access to electronic support through My Oracle
Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit ht t p: / / www. or acl e. cont pl s/

t opi ¢/ | ookup?ct x=acc& d=tr s if you are hearing impaired.

Vi

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

Chapter 1 Introduction

This document describes what you need to know when working on the MySQL 8.0 code. To track or
contribute to MySQL development, follow the instructions in Installing MySQL Using a Development
Source Tree. If you are interested in MySQL internals, you should also join the MySQL Community
Slack. Feel free to ask questions about the code and to send patches that you would like to contribute
to the MySQL project!

Note

The MySQL source code contains internal documentation written using
Doxygen. This documentation is useful for understanding how MySQL works
from a developer perspective. The generated Doxygen content is available
at https://dev.mysql.com/doc/index-other.html. It is also possible to generate
this content locally from a MySQL source distribution using the instructions at
Generating MySQL Doxygen Documentation Content.

https://dev.mysql.com/doc/refman/8.0/en/installing-development-tree.html
https://dev.mysql.com/doc/refman/8.0/en/installing-development-tree.html
https://mysqlcommunity.slack.com/
https://mysqlcommunity.slack.com/
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation-doxygen.html

Chapter 2 MySQL Threads

The MySQL server creates the following threads:

Connection manager threads handle client connection requests on the network interfaces that

the server listens to. On all platforms, one manager thread handles TCP/IP connection requests.
On Unix, this manager thread also handles Unix socket file connection requests. On Windows, a
manager thread handles shared-memory connection requests, and another handles named-pipe
connection requests. The server does not create threads to handle interfaces that it does not listen
to. For example, a Windows server that does not have support for named-pipe connections enabled
does not create a thread to handle them.

Connection manager threads associate each client connection with a thread dedicated to it that
handles authentication and request processing for that connection. Manager threads create a new
thread when necessary but try to avoid doing so by consulting the thread cache first to see whether
it contains a thread that can be used for the connection. When a connection ends, its thread is
returned to the thread cache if the cache is not full.

For information about tuning the parameters that control thread resources, see Connection
Interfaces.

On a source replication server, connections from replica servers are handled like client connections:
There is one thread per connected replica.

On a replica server, an I/O thread is started to connect to the source server and read updates
from it. An SQL thread is started to apply updates read from the source. These two threads run
independently and can be started and stopped independently.

A signal thread handles all signals. This thread also normally handles alarms and calls
process_al arm() to force timeouts on connections that have been idle too long.

If | nnoDB is used, there will be additional read and write threads by default. The number of these are
controlled by the i nnodb_read_i o_threads andi nnodb_write_io_threads parameters. See
InnoDB Startup Options and System Variables.

If the server is started with the - - f | ush_t i me=val option, a dedicated thread is created to flush all
tables every val seconds.

If the event scheduler is active, there is one thread for the scheduler, and a thread for each event
currently running. See Event Scheduler Overview.

nmysgl adm n processli st only shows the connection, replication, and event threads.

https://dev.mysql.com/doc/refman/8.0/en/connection-interfaces.html
https://dev.mysql.com/doc/refman/8.0/en/connection-interfaces.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_read_io_threads
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_write_io_threads
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_flush_time
https://dev.mysql.com/doc/refman/8.0/en/events-overview.html

Chapter 3 The MySQL Test Suite

The test system that is included in Unix source and binary distributions makes it possible for users and
developers to perform regression tests on the MySQL code. These tests can be run on Unix.

You can also write your own test cases. For information, including system requirements, see
The MySQL Test Framework in the MySQL Server Doxygen documentation, available at https://
dev.mysqgl.com/doc/index-other.html.

The current set of test cases does not test everything in MySQL, but it should catch most obvious
bugs in the SQL processing code, operating system or library issues, and is quite thorough in testing
replication. Our goal is to have the tests cover 100% of the code. We welcome contributions to our test
suite. You may especially want to contribute tests that examine the functionality critical to your system
because this ensures that all future MySQL releases work well with your applications.

The test system consists of a test language interpreter (mysql t est), a Perl script to run all tests
(mysql -t est -run. pl), the actual test cases written in a special test language, and their expected
results. To run the test suite on your system after a build, type nake t est from the source root
directory, or change location to the nmysql - t est directory and type . / nysql -t est -run. pl . If you
have installed a binary distribution, change location to the mysql - t est directory under the installation
root directory (for example, / usr/ | ocal / mysql / nysql -test),andrun ./ nysql -test-run. pl .
All tests should succeed. If any do not, feel free to try to find out why and report the problem if it
indicates a bug in MySQL. See How to Report Bugs or Problems.

If one test fails, you should run nysqgl -t est - r un. pl with the - - f or ce option to check whether any
other tests fail.

If you have a copy of nysql d running on the machine where you want to run the test suite, you do
not have to stop it, as long as it is not using ports 9306 or 9307. If either of those ports is taken, you
should set the MTR_BUI LD THREAD environment variable to an appropriate value, and the test suite
will use a different set of ports for source, replica, and NDB). For example:

$> export MIR BU LD THREAD=31
$> ./nysql-test-run.pl [options] [test nane]

In the mysql - t est directory, you can run an individual test case with . / nysql -t est - run. pl
t est _nane.

If you have a question about the test suite, or have a test case to contribute, join the MySQL
Community Slack.

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/8.0/en/bug-reports.html
https://mysqlcommunity.slack.com/
https://mysqlcommunity.slack.com/

Chapter 4 The MySQL Plugin API

Table of Contents

o R Y/ o L= TSR) = 0T 1] P 8
4.2 PIUGIN AP CharaCteriStCSccuuiiiiieiii it e e e e e e e e e e e et e e et e e aaneeeanaes 13
I e [0 To [AN o B @ a1 o To] 1=) 14
YY1 v To T (0T 1] P 15
4.4.1 Overview Of PIUGIN WIEINGoovuiiiiiic e e e e e et e e e e e eaas 15
4.4.2 Plugin Data SUCIUIESciiiieiiiieii e e e e e e e e e e e e e et e e et e e et e e et e e aaeeeens 16
4.4.3 Compiling and Installing Plugin LIDrariesccooiiiiiiiiiii e 28
4.4.4 Writing FUull-Text Parser PIUGINSooiuiiiiiii e e e e s e eaa e eees 28
4.4.5 Writing Daemon PIUGQINSc.uiiiiiiiiee e e e e e e e e e e e e et eeaaeeanns 36
4.4.6 Writing INFORMATION_SCHEMA PIUGQINSiiiiiiiiiiiiiiiie e eeeeeeeei e e e e e aeeeaaaans 37
4.4.7 Writing Semisynchronous Replication PIUGINSccoooiiiiiiiiiii e 40
4.4.8 Writing AUIt PIUGINS .. oiiiiii e e e e e e e e e e et e e e eanes 41
4.4.9 Writing Authentication PIUGINSoiiiiiiii e e 51
4.4.10 Writing Password-Validation PIUGINScc.iiiiiiiiiiiiciecc e e e e 61
4.4.11 Writing Protocol Trace PIUQINSoiiiiiiii e e e 63
4.4.12 Writing Keyring PIUGINScioiiiiiii i e e e e e e e e e e e eaaaeees 68

MySQL supports a plugin API that enables creation of server components. Plugins can be loaded at
server startup, or loaded and unloaded at runtime without restarting the server. The API is generic and
does not specify what plugins can do. The components supported by this interface include, but are not
limited to, storage engines, full-text parser plugins, and server extensions.

For example, full-text parser plugins can be used to replace or augment the built-in full-text parser.

A plugin can parse text into words using rules that differ from those used by the built-in parser. This
can be useful if you need to parse text with characteristics different from those expected by the built-in
parser.

The plugin interface is more general than the older loadable function interface.

The plugin interface uses the pl ugi n table in the nysql database to record information about plugins
that have been installed permanently with the | NSTALL PLUG N statement. This table is created as
part of the MySQL installation process. Plugins can also be installed for a single server invocation with
the - - pl ugi n- | oad option. Plugins installed this way are not recorded in the pl ugi n table. See
Installing and Uninstalling Plugins.

MySQL supports an API for client plugins in addition to that for server plugins. This is used, for
example, by authentication plugins where a server-side plugin and a client-side plugin cooperate to
enable clients to connect to the server through a variety of authentication methods.

Note

The MySQL source code contains internal documentation written using
Doxygen. This documentation is useful for understanding how MySQL works
from a developer perspective. The generated Doxygen content is available
at https://dev.mysql.com/doc/index-other.html. It is also possible to generate
this content locally from a MySQL source distribution using the instructions at
Generating MySQL Doxygen Documentation Content.

Additional Resources

The book MySQL 5.1 Plugin Development by Sergei Golubchik and Andrew Hutchings provides a
wealth of detail about the plugin API. Despite the fact that the book's title refers to MySQL Server 5.1,
most of the information in it applies to later versions as well.

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation-doxygen.html

Types of Plugins

4.1 Types of Plugins

The plugin API enables creation of plugins that implement several capabilities:
e Loadable functions (UDFs)

» Storage engines

» Full-text parsers

» Daemons

* | NFORVATI ON_SCHENA tables

» Semisynchronous replication

* Auditing

 Authentication

» Password validation and strength checking
 Protocol tracing

* Query rewriting

e Secure keyring storage and retrieval

The following sections provide an overview of these plugin types.
» Loadable Function (UDF) Plugins

» Storage Engine Plugins

» Full-Text Parser Plugins

» Daemon Plugins

* INFORMATION_SCHEMA Plugins

» Semisynchronous Replication Plugins
 Audit Plugins

 Authentication Plugins

» Password-Validation Plugins

» Protocol Trace Plugins

* Query Rewrite Plugins

» Keyring Plugins
Loadable Function (UDF) Plugins

Loadable functions can be included in component or plugin library files and installed on the server.

For information about using the MySQL interface for loadable functions, see Section 6.2, “Adding
a Loadable Function”. The steps to compile and install loadable function plugins are described in
Loadable Function Compiling and Installing.

Note

Loadable functions previously were known as user-defined functions (UDFs).
That terminology was something of a misnomer because “user-defined” also

Storage Engine Plugins

can apply to stored functions written using SQL and native functions added by
modifying the server source code.

Storage Engine Plugins

The pluggable storage engine architecture used by MySQL Server enables storage engines to be
written as plugins and loaded into and unloaded from a running server. For a description of this
architecture, see Overview of MySQL Storage Engine Architecture.

For information on how to use the plugin API to write storage engines, see MySQL Internals: Writing a
Custom Storage Engine.

Full-Text Parser Plugins

MySQL has a built-in parser that it uses by default for full-text operations (parsing text to be indexed,
or parsing a query string to determine the terms to be used for a search). The built-in full-text parser is
supported with | nnoDB and Myl SAMtables.

MySQL also has a character-based ngram full-text parser that supports Chinese, Japanese, and
Korean (CJK), and a word-based MeCab parser plugin that supports Japanese, for use with | nnoDB
and MWy SAMtables.

For full-text processing, “parsing” means extracting words (or “tokens”, in the case of an n-gram
character-based parser) from text or a query string based on rules that define which character
sequences make up a word and where word boundaries lie.

When parsing for indexing purposes, the parser passes each word to the server, which adds it to a full-
text index. When parsing a query string, the parser passes each word to the server, which accumulates
the words for use in a search.

The parsing properties of the built-in full-text parser are described in Full-Text Search Functions. These
properties include rules for determining how to extract words from text. The parser is influenced by
certain system variables that cause words shorter or longer to be excluded, and by the stopword list
that identifies common words to be ignored. For more information, see Full-Text Stopwords, and Fine-
Tuning MySQL Full-Text Search.

The plugin API enables you to use a full-text parser other than the default built-in full-text parser. For
example, if you are working with Japanese, you may choose to use the MeCab full-text parser. The
plugin API also enables you to provide a full-text parser of your own so that you have control over the
basic duties of a parser. A parser plugin can operate in either of two roles:

» The plugin can replace the built-in parser. In this role, the plugin reads the input to be parsed, splits
it up into words, and passes the words to the server (either for indexing or for token accumulation).
The ngram and MeCab parsers operate as replacements for the built-in full-text parser.

You may choose to provide your own full-text parser if you need to use different rules from those of
the built-in parser for determining how to split up input into words. For example, the built-in parser
considers the text “case-sensitive” to consist of two words “case” and “sensitive,” whereas an
application might need to treat the text as a single word.

» The plugin can act in conjunction with the built-in parser by serving as a front end for it. In this role,
the plugin extracts text from the input and passes the text to the parser, which splits up the text into
words using its normal parsing rules. This parsing is affected by the i nnodb_ft xxx orft_xxx
system variables and the stopword list.

One reason to use a parser this way is that you need to index content such as PDF documents, XML
documents, or . doc files. The built-in parser is not intended for those types of input but a plugin can
pull out the text from these input sources and pass it to the built-in parser.

It is also possible for a parser plugin to operate in both roles. That is, it could extract text from
noncleartext input (the front end role), and also parse the text into words (thus replacing the built-in
parser).

https://dev.mysql.com/doc/refman/8.0/en/pluggable-storage-overview.html
https://dev.mysql.com/doc/internals/en/custom-engine.html
https://dev.mysql.com/doc/internals/en/custom-engine.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-search.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-stopwords.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-fine-tuning.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-fine-tuning.html

Daemon Plugins

A full-text plugin is associated with full-text indexes on a per-index basis. That is, when you install a
parser plugin initially, that does not cause it to be used for any full-text operations. It simply becomes
available. For example, a full-text parser plugin becomes available to be named in a W TH PARSER
clause when creating individual FULLTEXT indexes. To create such an index at table-creation time, do
this:

CREATE TABLE t

doc CHAR(255),
FULLTEXT | NDEX (doc) W TH PARSER par ser _nane
) ENG NE=I nnoDB;

Or you can add the index after the table has been created:

ALTER TABLE t ADD FULLTEXT | NDEX (doc) W TH PARSER par ser_nare;

The only SQL change for associating the parser with the index is the W TH PARSER clause. Searches
are specified as before, with no changes needed for queries.

When you associate a parser plugin with a FULLTEXT index, the plugin is required for using the index.
If the parser plugin is dropped, any index associated with it becomes unusable. Any attempt to use a
table for which a plugin is not available results in an error, although DROP TABLE is still possible.

For more information about full-text plugins, see Section 4.4.4, “Writing Full-Text Parser Plugins”.
MySQL 8.0 supports full-text plugins with Myl SAMand | nnoDB.

Daemon Plugins

A daemon plugin is a simple type of plugin used for code that should be run by the server but that does
not communicate with it. MySQL distributions include an example daemon plugin that writes periodic
heartbeat messages to a file.

For more information about daemon plugins, see Section 4.4.5, “Writing Daemon Plugins”.

INFORMATION_SCHEMA Plugins

I NFORVATI ON_SCHENA plugins enable the creation of tables containing server metadata that

are exposed to users through the | NFORVATI ON_SCHENA database. For example, | nnoDB uses

| NFORVATI ON_SCHENA plugins to provide tables that contain information about current transactions
and locks.

For more information about | NFORVATI ON_SCHENA plugins, see Section 4.4.6, “Writing
INFORMATION_SCHEMA Plugins”.

Semisynchronous Replication Plugins

MySQL replication is asynchronous by default. With semisynchronous replication, a commit performed
on the source side blocks before returning to the session that performed the transaction until at

least one replica acknowledges that it has received and logged the events for the transaction.
Semisynchronous replication is implemented through complementary source and client plugins. See
Semisynchronous Replication.

For more information about semisynchronous replication plugins, see Section 4.4.7, “Writing
Semisynchronous Replication Plugins”.

Audit Plugins
The MySQL server provides a pluggable audit interface that enables information about server

operations to be reported to interested parties. Audit notification occurs for these operations (although
the interface is general and the server could be modified to report others):

10

https://dev.mysql.com/doc/refman/8.0/en/drop-table.html
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/replication-semisync.html

Authentication Plugins

» Write a message to the general query log (if the log is enabled)
» Write a message to the error log
» Send a query result to a client

Audit plugins may register with the audit interface to receive notification about server operations. When
an auditable event occurs within the server, the server determines whether notification is needed. For
each registered audit plugin, the server checks the event against those event classes in which the
plugin is interested and passes the event to the plugin if there is a match.

This interface enables audit plugins to receive notifications only about operations in event classes they
consider significant and to ignore others. The interface provides for categorization of operations into
event classes and further division into event subclasses within each class.

When an audit plugin is notified of an auditable event, it receives a pointer to the current THD structure
and a pointer to a structure that contains information about the event. The plugin can examine the
event and perform whatever auditing actions are appropriate. For example, the plugin can see what
statement produced a result set or was logged, the number of rows in a result, who the current user
was for an operation, or the error code for failed operations.

For more information about audit plugins, see Section 4.4.8, “Writing Audit Plugins”.

Authentication Plugins

MySQL supports pluggable authentication. Authentication plugins exist on both the server and client
sides. Plugins on the server side implement authentication methods for use by clients when they
connect to the server. A plugin on the client side communicates with a server-side plugin to provide the
authentication information that it requires. A client-side plugin may interact with the user, performing
tasks such as soliciting a password or other authentication credentials to be sent to the server. See
Pluggable Authentication.

Pluggable authentication also enables proxy user capability, in which one user takes the identity of
another user. A server-side authentication plugin can return to the server the name of the user whose
identity the connecting user should have. See Proxy Users.

For more information about authentication plugins, see Section 4.4.9, “Writing Authentication Plugins”.

Password-Validation Plugins

The MySQL server provides an interface for writing plugins that test passwords. Such a plugin
implements two capabilities:

* Rejection of too-weak passwords in statements that assign passwords (such as CREATE USER and
ALTER USER statements).

» Assessing the strength of potential passwords for the VALI DATE_PASSWORD STRENGTH() SQL
function.

For information about writing this type of plugin, see Section 4.4.10, “Writing Password-Validation
Plugins”.

Protocol Trace Plugins

MySQL supports the use of protocol trace plugins: client-side plugins that implement tracing of
communication between a client and the server that takes place using the client/server protocol.

For more information about protocol trace plugins, see Section 4.4.11, “Writing Protocol Trace Plugins”.

Query Rewrite Plugins

11

https://dev.mysql.com/doc/refman/8.0/en/pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/proxy-users.html
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/encryption-functions.html#function_validate-password-strength

Keyring Plugins

MySQL Server supports query rewrite plugins that can examine and possibly modify statements
received by the server before the server executes them. A query rewrite plugin takes statements either
before or after the server has parsed them.

A preparse query rewrite plugin has these characteristics:

» The plugin enables rewriting of SQL statements arriving at the server before the server processes
them.

* The plugin receives a statement string and may return a different string.
A postparse query rewrite plugin has these characteristics:
* The plugin enables statement rewriting based on parse trees.

» The server parses each statement and passes its parse tree to the plugin, which may traverse
the tree. The plugin can return the original tree to the server for further processing, or construct a
different tree and return that instead.

e The plugin can use the nysql _par ser plugin service for these purposes:

e To activate statement digest calculation and obtain the normalized version of statements
independent of whether the Performance Schema produces digests.

e To traverse parse trees.

« To parse statements. This is useful if the plugin constructs a new statement string from the parse
tree. The plugin can have the server parse the string to produce a new tree, then return that tree
as the representation of the rewritten statement.

For more information about plugin services, see MySQL Plugin Services.
Preparse and postparse query rewrite plugins share these characteristics:
« If a query rewrite plugin is installed, the - - | og- r aw option affects statement logging as follows:

« Without - - | og- r aw, the server logs the statement returned by the query rewrite plugin. This may
differ from the statement as received.

* With - - | og- r aw, the server logs the original statement as received.

« If a plugin rewrites a statement, the server decides whether to write it to the binary log (and thus to
any replicas) based on the rewritten statement, not the original statement. If a plugin rewrites only
SELECT statements to SELECT statements, there is no impact on binary logging because the server
does not write SELECT statements to the binary log.

* If a plugin rewrites a statement, the server produces a Not e message that the client can view
using SHOW WARNI NGS. Messages have this format, where st nt _i n is the original statement and
st nmt _out is the rewritten statement:

Query 'stnt_in' rewitten to 'stnt_out' by a query rewite plugin

MySQL distributions include a postparse query rewrite plugin named Rewr i t er . This plugin is rule
based. You can add rows to its rules table to cause SELECT statement rewriting. For more information,
see The Rewriter Query Rewrite Plugin.

Query rewrite plugins use the same API as audit plugins. For more information about audit plugins, see
Section 4.4.8, “Writing Audit Plugins”.

Keyring Plugins

12

https://dev.mysql.com/doc/refman/8.0/en/plugin-services.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_log-raw
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/show-warnings.html
https://dev.mysql.com/doc/refman/8.0/en/select.html
https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin.html

Plugin API Characteristics

MySQL Server supports keyring plugins that enable internal server components and plugins to securely
store sensitive information for later retrieval.

All MySQL distributions include a keyring plugin named keyri ng_fi |l e. MySQL Enterprise Edition
distributions include additional keyring plugins. See The MySQL Keyring.

For more information about keyring plugins, see Section 4.4.12, “Writing Keyring Plugins”.

4.2 Plugin API Characteristics

The server plugin API has these characteristics:
» All plugins have several things in common.

Each plugin has a name that it can be referred to in SQL statements, as well as other metadata such
as an author and a description that provide other information. This information can be examined in
the | NFORMATI ON_SCHENA. PLUG NS table or using the SHON PLUG NS statement.

e The plugin framework is extendable to accommodate different kinds of plugins.

Although some aspects of the plugin APl are common to all types of plugins, the API also permits
type-specific interface elements so that different types of plugins can be created. A plugin with one
purpose can have an interface most appropriate to its own requirements and not the requirements of
some other plugin type.

Interfaces for several types of plugins exist, such as storage engines, full-text parser, and
| NFORVATI ON_SCHENMA tables. Others can be added.

» Plugins can expose information to users.

A plugin can implement system and status variables that are available through the SHOW
VARI ABLES and SHOW STATUS statements.

* The plugin APl includes versioning information.

The version information included in the plugin API enables a plugin library and each plugin that it
contains to be self-identifying with respect to the API version that was used to build the library. If the
API changes over time, the version numbers will change, but a server can examine a given plugin
library's version information to determine whether it supports the plugins in the library.

There are two types of version numbers. The first is the version for the general plugin framework
itself. Each plugin library includes this kind of version number. The second type of version applies

to individual plugins. Each specific type of plugin has a version for its interface, so each plugin in a
library has a type-specific version number. For example, a library containing a full-text parser plugin
has a general plugin API version number, and the plugin has a version number specific to the full-text
plugin interface.

e The plugin API implements security restrictions.

A plugin library must be installed in a specific dedicated directory for which the location is controlled
by the server and cannot be changed at runtime. Also, the library must contain specific symbols that
identify it as a plugin library. The server will not load something as a plugin if it was not built as a

plugin.
» Plugins have access to server services.

The services interface exposes server functionality that plugins can access using ordinary function
calls. For details, see MySQL Plugin Services.

In some respects, the server plugin API is similar to the older loadable function API that it supersedes,
but the plugin API has several advantages over the older interface. For example, loadable functions
had no versioning information. Also, the newer plugin interface eliminates the security issues of the

13

https://dev.mysql.com/doc/refman/8.0/en/keyring.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/plugin-services.html

Plugin API Components

older loadable function interface. The older interface for writing nonplugin loadable functions permitted
libraries to be loaded from any directory searched by the system's dynamic linker, and the symbols that
identified the loadable function library were relatively nonspecific.

The client plugin API has similar architectural characteristics, but client plugins have no direct access to
the server the way server plugins do.

4.3 Plugin APl Components

The server plugin implementation comprises several components.
SQL statements:
* | NSTALL PLUG Nregisters a plugin in the mysql . pl ugi n table and loads the plugin code.

e UNI NSTALL PLUG N unregisters a plugin from the nysql . pl ugi n table and unloads the plugin
code.

» The W TH PARSER clause for full-text index creation associates a full-text parser plugin with a given
FULLTEXT index.

e SHOW PLUG NS displays information about server plugins.
Command-line options and system variables:
» The - - pl ugi n-1 oad option enables plugins to be loaded at server startup time.

e The pl ugi n_di r system variable indicates the location of the directory where all plugins
must be installed. The value of this variable can be specified at server startup with a - -
pl ugi n_di r=di r _nane option. nysqgl confi g --pl ugi ndi r displays the default plugin
directory path name.

For additional information about plugin loading, see Installing and Uninstalling Plugins.
Plugin-related tables:
e The | NFORMATI ON_SCHEMA. PLUGQ NS table contains plugin information.

* The nysqgl . pl ugi n table lists each plugin that was installed with | NSTALL PLUG Nand is required
for plugin use. For new MySQL installations, this table is created during the installation process.

The client plugin implementation is simpler:

» Forthe nysql options() C API function, the M\YSQL_DEFAULT AUTHand MYSQL_PLUG N DI R
options enable client programs to load authentication plugins.

» There are C API functions that enable management of client plugins.

To examine how MySQL implements plugins, consult the following source files in a MySQL source
distribution:

* Inthei ncl ude/ nysql directory, pl ugi n. h exposes the public plugin API. This file should be
examined by anyone who wants to write a plugin library. pl ugi n_xxx. h files provide additional
information that pertains to specific types of plugins. cl i ent _pl ugi n. h contains information
specific to client plugins.

* Inthe sql directory, sql _pl ugi n. h and sql _pl ugi n. cc comprise the internal plugin
implementation. sql _acl . cc is where the server uses authentication plugins. These files need not
be consulted by plugin developers. They may be of interest for those who want to know more about
how the server handles plugins.

e Inthe sql - common directory, cl i ent _pl ugi n. h implements the C API client plugin functions, and
cl i ent. c implements client authentication support. These files need not be consulted by plugin

14

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Writing Plugins

developers. They may be of interest for those who want to know more about how the server handles
plugins.

4.4 Writing Plugins

To create a plugin library, you must provide the required descriptor information that indicates what
plugins the library file contains, and write the interface functions for each plugin.

Every server plugin must have a general descriptor that provides information to the plugin API, and a
type-specific descriptor that provides information about the plugin interface for a given type of plugin.
The structure of the general descriptor is the same for all plugin types. The structure of the type-
specific descriptor varies among plugin types and is determined by the requirements of what the plugin
needs to do. The server plugin interface also enables plugins to expose status and system variables.
These variables become visible through the SHOW STATUS and SHOW VARI ABLES statements and the
corresponding | NFORVATI ON_SCHENA tables.

For client-side plugins, the architecture is a bit different. Each plugin must have a descriptor, but there
is no division into separate general and type-specific descriptors. Instead, the descriptor begins with a
fixed set of members common to all client plugin types, and the common members are followed by any
additional members required to implement the specific plugin type.

A server plugin contains code that becomes part of the running server, so when you write the plugin,
you are bound by any and all constraints that otherwise apply to writing server code. For example, you
may have problems if you attempt to use functions from the | i bst dc++ library. These constraints may
change in future versions of the server, so it is possible that server upgrades will require revisions to
plugins originally written for older servers. For information about these constraints, see MySQL Source-
Configuration Options, and Dealing with Problems Compiling MySQL.

Client plugin writers should avoid dependencies on what symbols the calling application has because
you cannot be sure what applications will use the plugin.

4.4.1 Overview of Plugin Writing
These conditions apply to plugin writing:
» MySQL header files used by plugins contain C++ code, so plugins must be compiled as C++ code.

* You must compile plugins with the entire server source code present, not just the libraries and
header files.

» Compiled plugins are not compatible across server versions. For a plugin compiled against MySQL
8.0.X, there is no guarantee it will work with a MySQL 8.0.Y server without recompiling for MySQL
8.0.Y.

 Plugins are loaded and unloaded dynamically, so your operating system must support dynamic
loading and you must have compiled the calling application dynamically (not statically). For server
plugins, this means that nysql d must be linked dynamically.

The following procedure provides an overview of the steps needed to create a plugin library. The next
sections provide additional details on setting plugin data structures and writing specific types of plugins.

1. Inthe plugin source file, include the header files that the plugin library needs. The pl ugi n. h file is
required, and the library might require other files as well. For example:

#i ncl ude <stdlib. h>
#i ncl ude <ctype. h>
#i ncl ude <nysql/ pl ugi n. h>

2. Set up the descriptor information for the plugin library file. For server plugins, write the library
descriptor, which must contain the general plugin descriptor for each server plugin in the file. For
more information, see Section 4.4.2.1, “Server Plugin Library and Plugin Descriptors”. In addition,

15

https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/compilation-problems.html

Plugin Data Structures

set up the type-specific descriptor for each server plugin in the library. Each plugin's general
descriptor points to its type-specific descriptor.

For client plugins, write the client descriptor. For more information, see Section 4.4.2.3, “Client
Plugin Descriptors”.

3. Write the plugin interface functions for each plugin. For example, each plugin's general plugin
descriptor points to the initialization and deinitialization functions that the server should invoke when
it loads and unloads the plugin. The plugin's type-specific description may also point to interface
functions.

4. For server plugins, set up the status and system variables, if there are any.

5. Compile the plugin library as a shared library and install it in the plugin directory. For more
information, see Section 4.4.3, “Compiling and Installing Plugin Libraries”.

6. For server plugins, register the plugin with the server. For more information, see Installing and
Uninstalling Plugins.

7. Test the plugin to verify that it works properly.

4.4.2 Plugin Data Structures

A plugin library file includes descriptor information to indicate what plugins it contains.
If the plugin library contains any server plugins, it must include the following descriptor information:

» A library descriptor indicates the general server plugin API version number used by the library and
contains a general plugin descriptor for each server plugin in the library. To provide the framework
for this descriptor, invoke two macros from the pl ugi n. h header file:

nysql _decl are_pl ugi n(nane)
... one or nore server plugin descriptors here ...
nysql _decl are_pl ugi n_end

The macros expand to provide a declaration for the API version automatically. You must provide the
plugin descriptors.

 Within the library descriptor, each general server plugin is described by a st _nysqgl _pl ugi n
structure. This plugin descriptor structure contains information that is common to every type of server
plugin: A value that indicates the plugin type; the plugin name, author, description, and license type;
pointers to the initialization and deinitialization functions that the server invokes when it loads and
unloads the plugin, and pointers to any status or system variables the plugin implements.

» Each general server plugin descriptor within the library descriptor also contains a pointer to a type-
specific plugin descriptor. The structure of the type-specific descriptors varies from one plugin type to
another because each type of plugin can have its own API. A type-specific plugin descriptor contains
a type-specific API version number and pointers to the functions that are needed to implement that
plugin type. For example, a full-text parser plugin has initialization and deinitialization functions, and
a main parsing function. The server invokes these functions when it uses the plugin to parse text.

The plugin library also contains the interface functions that are referenced by the general and type-
specific descriptors for each plugin in the library.

If the plugin library contains a client plugin, it must include a descriptor for the plugin. The descriptor
begins with a fixed set of members common to all client plugins, followed by any members specific to
the plugin type. To provide the descriptor framework, invoke two macros from the cl i ent _pl ugi n. h
header file:

nysql _decl are_client_plugi n(pl ugi n_type)
menbers common to all client plugins ...
type-specific extra nmenbers ..

nysql _end_client_plugin

16

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html

Plugin Data Structures

The plugin library also contains any interface functions referenced by the client descriptor.

The nysql _decl are_pl ugi n() and nysql _decl are_cl i ent _pl ugi n() macros differ somewhat
in how they can be invoked, which has implications for the contents of plugin libraries. The following
guidelines summarize the rules:

* nysql _decl are_plugin() and nysqgl _decl are_client_pl ugi n() can both be used in
the same source file, which means that a plugin library can contain both server and client plugins.
However, each of nysql _decl are_pl ugi n() and nysql _decl are_client_plugi n() can be
used at most once.

* nysql _decl are_pl ugi n() permits multiple server plugin declarations, so a plugin library can
contain multiple server plugins.

* nysql declare_client plugin() permits only a single client plugin declaration. To create
multiple client plugins, separate plugin libraries must be used.

When a client program looks for a client plugin that is in a plugin library and not built into

i brysgl cli ent, it looks for a file with a base name that is the same as the plugin name. For
example, if a program needs to use a client authentication plugin named aut h_xxx on a system that
uses . so as the library suffix, it looks in the file named aut h_xxx. so. (On macOS, the program looks
first for aut h_xxx. dyl i b, then for aut h_xxx. so.) For this reason, if a plugin library contains a client
plugin, the library must have the same base name as that plugin.

The same is not true for a library that contains server plugins. The - - pl ugi n- | oad option and the
| NSTALL PLUG N statement provide the library file name explicitly, so there need be no explicit
relationship between the library name and the name of any server plugins it contains.

4.4.2.1 Server Plugin Library and Plugin Descriptors

Every plugin library that contains server plugins must include a library descriptor that contains the
general plugin descriptor for each server plugin in the file. This section discusses how to write the
library and general descriptors for server plugins.

The library descriptor must define two symbols:

« nysql _plugin_interface version_ specifies the version number of the general plugin
framework. This is given by the M\YSQL_PLUG N_| NTERFACE_VERSI ON symbol, which is defined in
the pl ugi n. h file.

« nysql plugin_decl arations_ defines an array of plugin declarations, terminated by a
declaration with all members set to 0. Each declaration is an instance of the st _nysql _pl ugin
structure (also defined in pl ugi n. h). There must be one of these for each server plugin in the
library.

If the server does not find those two symbols in a library, it does not accept it as a legal plugin library
and rejects it with an error. This prevents use of a library for plugin purposes unless it was built
specifically as a plugin library.

The conventional way to define the two required symbols is by using the nysql _decl are_pl ugi n()
and nysql _decl are_pl ugi n_end macros from the pl ugi n. h file:

nysql _decl are_pl ugi n(nane)
... one or nore server plugin descriptors here ...
nysql _decl are_pl ugi n_end;

Each server plugin must have a general descriptor that provides information to the server plugin API.
The general descriptor has the same structure for all plugin types. The st _mysql _pl ugi n structure in
the pl ugi n. h file defines this descriptor:

struct st_mysql _plugin

{
int type; /* the plugin type (a MYSQL_XXX_PLUG N val ue) */

17

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html

Plugin Data Structures

voi d *info; /* pointer to type-specific plugin descriptor */
const char *nane; /* plugin nane */
const char *aut hor; /* plugin author (for |_S. PLUG NS) */
const char *descr; /* general descriptive text (for |I_S. PLUG NS) */
int license; /* the plugin |icense (PLUG N_LI CENSE_XXX) */

int (*init)(void *); [/* the function to invoke when plugin is |oaded */
int (*deinit)(void *);/* the function to invoke when plugin is unloaded */
unsigned int version; /* plugin version (for |_S. PLUG NS) */
struct st_nysqgl _show var *status_vars;

struct st_nysqgl _sys_var **systemvars;

void * _ reservedl; /* reserved for dependency checking */
unsigned long flags; [/* flags for plugin */

}s

The st _nysql _pl ugi n descriptor structure members are used as follows. char * members should
be specified as null-terminated strings.

» type: The plugin type. This must be one of the plugin-type values from pl ugi n. h:

/*
The al | owabl e types of plugins
*/

#def i ne MySQL_UDF_PLUG N 0 /* User-defined function */
#def i ne MySQL_STORAGE_ENG NE_PLUG N 1 /* Storage Engine */
#def i ne MYSQL_FTPARSER PLUG N 2 /* Full-text parser plugin */
#defi ne MYSQL_DAEMON PLUG N 3 /* The daenon/raw pl ugin type */
#defi ne MYSQL_I NFORVATI ON_SCHEMA PLUG N 4 /* The |_S plugin type */

#define MYSQL_AUDI T_PLUG N 5 /* The Audit plugin type */
#define MYSQL_REPLI CATI ON_PLUG N 6 /* The replication plugin type */
#defi ne MYSQL_AUTHENTI CATI ON_PLUG N 7 /* The authentication plugin type */

#defi ne MYSQL_VALI DATE_PASSWORD PLUG N 8 /* validate password plugin type */
#def i ne MySQL_GROUP_REPLI CATION PLUGN 9 /* The Group Replication plugin */
#define MYSQL_KEYRI NG PLUG N 10 /* The Keyring plugin type */
#define MYSQL_CLONE_PLUG N 11 /* The done plugin type */

For example, for a full-text parser plugin, the t ype value is MYSQL_FTPARSER _PLUG N.

» i nf o: A pointer to the type-specific descriptor for the plugin. This descriptor's structure depends on
the particular type of plugin, unlike that of the general plugin descriptor structure. For version-control
purposes, the first member of the type-specific descriptor for every plugin type is expected to be the
interface version for the type. This enables the server to check the type-specific version for every
plugin no matter its type. Following the version number, the descriptor includes any other members
needed, such as callback functions and other information needed by the server to invoke the plugin
properly. Later sections on writing particular types of server plugins describe the structure of their
type-specific descriptors.

» nane: A string that gives the plugin name. This is the name that will be listed in the mysql . pl ugi n
table and by which you refer to the plugin in SQL statements such as | NSTALL PLUG Nand
UNI NSTALL PLUG N, or with the - - pl ugi n- | oad option. The name is also visible in the
| NFORVATI ON_SCHENMA. PLUG NS table or the output from SHOW PLUG NS.

The plugin name should not begin with the name of any server option. If it does, the server will fail
to initialize it. For example, the server has a - - socket option, so you should not use a plugin name
such as socket , socket pl ugi n, and so forth.

» aut hor : A string naming the plugin author. This can be whatever you like.
» desc: A string that provides a general description of the plugin. This can be whatever you like.

» | i cense: The plugin license type. The value can be one of PLUG N LI CENSE PROPRI ETARY,
PLUG N LI CENSE_GPL, or PLUG N_LI CENSE_BSD.

* init:Aonce-only initialization function, or NULL if there is no such function. The server executes
this function when it loads the plugin, which happens for | NSTALL PLUG N or, for plugins listed
in the mysql . pl ugi n table, at server startup. The function takes one argument that points to the
internal structure used to identify the plugin. It returns zero for success and nonzero for failure.

18

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_socket
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html

Plugin Data Structures

dei ni t : A once-only deinitialization function, or NULL if there is no such function. The server
executes this function when it unloads the plugin, which happens for UNI NSTALL PLUGQ N or, for
plugins listed in the nysql . pl ugi n table, at server shutdown. The function takes one argument that
points to the internal structure used to identify the plugin It returns zero for success and nonzero for
failure.

ver si on: The plugin version number. When the plugin is installed, this value can be retrieved from
the | NFORMATI ON_SCHENA. PLUG NS table. The value includes major and minor numbers. If you
write the value as a hex constant, the format is Ox MVNN, where MMand NN are the major and minor
numbers, respectively. For example, 0x0302 represents version 3.2.

st at us_var s: A pointer to a structure for status variables associated with the plugin, or NULL if
there are no such variables. When the plugin is installed, these variables are displayed in the output
of the SHOW STATUS statement.

The st at us_var s member, if not NULL, points to an array of st _nysql _show_var structures that
describe status variables. See Section 4.4.2.2, “Server Plugin Status and System Variables”.

syst em var s: A pointer to a structure for system variables associated with the plugin, or NULL

if there are no such variables. These options and system variables can be used to help initialize
variables within the plugin. When the plugin is installed, these variables are displayed in the output of
the SHOW VARI ABLES statement.

The syst em var s member, if not NULL, points to an array of st _nysql _sys_var structures that
describe system variables. See Section 4.4.2.2, “Server Plugin Status and System Variables”.

__reservedl: A placeholder for the future. It should be set to NULL.

f I ags: Plugin flags. Individual bits correspond to different flags. The value should be set to the OR
of the applicable flags. These flags are available:

#defi ne PLUG N_OPT_NO_| NSTALL 1UL /* Not dynanmically |oadable */
#defi ne PLUG N_OPT_NO UNI NSTALL 2UL /* Not dynamically unl oadabl e */
#define PLUG N OPT_ALLOWEARLY 4UL /* allow --early-plugin-|oad */

The flags have the following meanings when enabled:

e PLUG N_OPT_NO I NSTALL: The plugin cannot be loaded at runtime with the | NSTALL PLUG N
statement. This is appropriate for plugins that must be loaded at server startup with the - -
pl ugi n-1 oad, - - pl ugi n-1 oad- add, or - - ear| y- pl ugi n-1 oad option.

e PLUG N_OPT_NO_UNI NSTALL: The plugin cannot be unloaded at runtime with the UNI NSTALL
PLUG N statement.

e PLUG N_OPT_ALLOW EARLY: The plugin can be loaded early in the server startup sequence with
the - - ear | y- pl ugi n- | oad option. This flag has no effect on whether a plugin can be loaded at
server startup with the - - pl ugi n- | oad or - - pl ugi n-1 oad- add option, or at runtime with the
I NSTALL PLUG N statement.

This flag was added in MySQL 8.0.17. All plugins compiled using MySQL distributions prior to
8.0.17 do not have this flag set. When loading these into pre-8.0.17 servers this does not matter,
but attempts to use - - ear | y- pl ugi n-1 oad to load plugin binaries compiled using pre-8.0.17
MySQL distributions into a 8.0.17 or higher server will fail. The plugins must be recompiled against
MySQL 8.0.17 or higher.

The server invokes the i ni t and dei ni t functions in the general plugin descriptor only when loading
and unloading the plugin. They have nothing to do with use of the plugin such as happens when an
SQL statement causes the plugin to be invoked.

For example, the descriptor information for a library that contains a single full-text parser plugin named
si npl e_par ser looks like this:

19

https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load-add
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load

Plugin Data Structures

nmysql _decl are_pl ugi n(ftexanpl e)

{

MYSQL_FTPARSER _PLUG N, /* type */
&si npl e_par ser _descriptor, /* descriptor */
"si npl e_parser", /* nane */
"Oracl e Corporation", /* aut hor */
"Sinple Full-Text Parser", [* description */
PLUG N_LI CENSE_GPL, /* plugin |icense */
sinpl e_parser_plugin_init, /* init function (when | oaded) */
si npl e_parser_plugin_deinit,/* deinit function (when unl oaded) */
0x0001, /* version */
si npl e_st at us, /* status vari abl es */
si npl e_system vari abl es, /* system vari abl es */
NULL,

0

nmysql _decl are_pl ugi n_end;

For a full-text parser plugin, the type must be MYSQL_FTPARSER_PLUG N. This is the value that
identifies the plugin as being legal for use in a W TH PARSER clause when creating a FULLTEXT index.
(No other plugin type is legal for this clause.)

pl ugi n. h defines the nysql decl are_pl ugi n() and nysqgl _decl are_pl ugi n_end macros like
this:

#i f ndef MYSQL_DYNAM C_PLUG N

#defi ne __MYSQL_DECLARE PLUG N(NAME, VERSI ON, PS|IZE, DECLS) \

MYSQL_PLUG N_EXPORT int VERSI ON= MYSQL_PLUG N_| NTERFACE_VERSI ON; \

MYSQL_PLUG N_EXPORT int PSIZE= sizeof (struct st_nysql _plugin); \

MYSQL_PLUG N_EXPORT struct st_mysql _plugin DECLS[] = {

#el se

#defi ne __MYSQL_DECLARE PLUG N(NAME, VERSI ON, PS|IZE, DECLS) \

MYSQL_PLUG N_EXPORT int _nysql _plugin_interface_version_= MYSQL_PLUG N_I NTERFACE_VERSI ON; \
MYSQL_PLUG N_EXPORT int _nysql _sizeof _struct_st_plugin_= sizeof (struct st_nysql _plugin); \
MYSQL_PLUG N_EXPORT struct st_mysql _plugin _nysqgl _plugi n_declarations_[]= {

#endi f

#defi ne nysql _decl are_pl ugi n(NAME) \

__MYSQL_DECLARE_PLUG N(NANME, \
bui l tin_ ## NAME ## _plugi n_interface_version, \
bui l tin_ ## NAME ## _sizeof _struct_st_plugin, \
bui l tin_ ## NAME ## _pl ugi n)

#defi ne nysql _decl are_pl ugin_end ,{0,0,0,0,0,0,0,0,0,0,0,0, 0}}
Note

Those declarations define the nmysql plugin_interface version_
symbol only if the MYSQL_DYNAM C PLUG Nsymbol is defined. This means
that - DMYSQL_DYNAM C_PLUGQ N must be provided as part of the compilation
command to build the plugin as a shared library.

When the macros are used as just shown, they expand to the following code, which
defines both of the required symbols (_nysql plugin_interface version_and
_nysgl _plugin_decl arations_):

int _nysqgl _plugin_interface_version_= MYSQL_PLUG N_|I NTERFACE_VERSI O\;
int _nysql _sizeof _struct_st_plugi n_= sizeof (struct st_mysqgl _plugin);
struct st_nysql _plugin _nysql _plugin_declarations []= {

MYSQL_FTPARSER PLUG N, /* type f
&si npl e_par ser_descriptor, /* descriptor */
"si npl e_parser", /* nane */
"Oracl e Corporation”, /* aut hor */
"Sinple Full-Text Parser", /[* description */
PLUG N_LI CENSE_GPL, /* plugin |icense */
sinpl e_parser_plugin_init, /* init function (when | oaded) */

sinpl e_parser_plugin_deinit,/* deinit function (when unl oaded) */

Plugin Data Structures

0x0001, /* version */
si npl e_st at us, /* status vari abl es */
si npl e_system vari abl es, /* system vari abl es */
NULL,

0

,{0,0,0,0,0,0,0,0,0,0,0,0}}
}s

The preceding example declares a single plugin in the general descriptor, but it is possible to declare
multiple plugins. List the declarations one after the other between nysql decl are_pl ugi n() and
nysql _decl are_pl ugi n_end, separated by commas.

MySQL server plugins must be compiled as C++ code. One C++ feature that you should not

use is honconstant variables to initialize global structures. Members of structures such as the

st _mysql _pl ugi n structure should be initialized only with constant variables. The si npl e_par ser
descriptor shown earlier is permissible in a C++ plugin because it satisfies that requirement:

nysql _decl are_pl ugi n(ftexanpl e)

{

MYSQL_FTPARSER PLUG N, /* type &l
&si npl e_parser_descriptor, /* descriptor */
"si npl e_parser", /* nane */
"Oracl e Corporation”, /* aut hor */
"Sinple Full-Text Parser", [* description */
PLUG N_LI CENSE_GPL, /* plugin |icense */
sinpl e_parser_plugin_init, /* init function (when | oaded) */
sinpl e_parser_plugin_deinit,/* deinit function (when unl oaded) */
0x0001, /* version */
si npl e_st at us, /* status vari abl es */
si npl e_system vari abl es, /* system vari abl es */
NULL,

0

nysql _decl are_pl ugi n_end;

Here is another valid way to write the general descriptor. It uses constant variables to indicate the
plugin name, author, and description:

const char *sinpl e_parser_nane = "sinple_parser"”;
const char *sinple_parser_author = "Oracle Corporation”;
const char *sinple_parser_description = "Sinple Full-Text Parser";

nmysql _decl are_pl ugi n(ftexanpl e)

{

MYSQL_FTPARSER_PLUG N, /* type */
&si npl e_par ser _descriptor, /* descriptor */
si npl e_par ser _nane, /* nane */
si npl e_par ser _aut hor, /* aut hor */
si npl e_parser_description, /* description */
PLUG N_LI CENSE_GPL, /* plugin |icense */
sinpl e_parser_plugin_init, /* init function (when | oaded) */
si npl e_parser_plugin_deinit,/* deinit function (when unl oaded) */
0x0001, /* version */
si npl e_st at us, /* status vari abl es */
si npl e_system vari abl es, /* system vari abl es */
NULL,

0

nmysql _decl are_pl ugi n_end;

However, the following general descriptor is invalid. It uses structure members to indicate the plugin
name, author, and description, but structures are not considered constant initializers in C++:

typedef struct

{
const char *nane;
const char *aut hor;
const char *description;

21

Plugin Data Structures

} plugin_info;

plugi n_info parser_info = {
"si npl e_parser",
"Oracl e Corporation”,
"Sinple Full-Text Parser"

iE

nysql _decl are_pl ugi n(ftexanpl e)

{
MYSQL_FTPARSER_PLUG N, /* type */
&si npl e_par ser _descriptor, [/* descriptor */
par ser _i nf 0. nane, /[* nanme */
par ser _i nf 0. aut hor, /* aut hor */
parser _i nfo. descri pti on, /* description */
PLUG N_LI CENSE_GPL, /* plugin |icense */
sinpl e_parser_plugin_init, /* init function (when | oaded) */
si npl e_parser_plugin_deinit,/* deinit function (when unl oaded) */
0x0001, /* version */
si npl e_st at us, /* status vari abl es */
si npl e_system vari abl es, /* system vari abl es */
NULL,
0

nmysql _decl ar e_pl ugi n_end;
4.4.2.2 Server Plugin Status and System Variables

The server plugin interface enables plugins to expose status and system variables using the
status_vars and syst em var s members of the general plugin descriptor.

The st at us_var s member of the general plugin descriptor, if not 0, points to an array of
st _mysql show var structures, each of which describes one status variable, followed by a structure
with all members setto 0. The st _nysql _show var structure has this definition:

struct st_nysqgl _show var {

const char *nane;

char *val ue;

enum enum nysql _show_t ype type;

b

The following table shows the permissible status variable t ype values and what the corresponding
variable should be.

Table 4.1 Server Plugin Status Variable Types

Variable Type Meaning

SHOW BOOL Pointer to a boolean variable

SHOW | NT Pointer to an integer variable

SHOW LONG Pointer to a long integer variable

SHOW LONGLONG Pointer to a longlong integer variable

SHOW CHAR A string

SHOW CHAR_PTR Pointer to a string

SHOW ARRAY Pointer to another st _nysql _show var array
SHOW FUNC Pointer to a function

SHOW DOUBLE Pointer to a double

For the SHOW FUNC type, the function is called and fills in its out parameter, which then provides
information about the variable to be displayed. The function has this signature:

#def i ne SHOW VAR FUNC BUFF_S| ZE 1024

22

Plugin Data Structures

typedef int (*nysqgl _show var_func) (void *thd,
struct st_nysqgl _show var *out,
char *buf);

The syst em var s member, if not 0, points to an array of st _nysqgl _sys_var structures, each of
which describes one system variable (which can also be set from the command-line or configuration
file), followed by a structure with all members setto 0. The st _nysqgl _sys_var structure is defined as
follows:

struct st_mysqgl _sys_var {

int flags;

const char *name, *comment;

int (*check)(THD*, struct st_nysqgl _sys_var *, void*, st_nysql _val ue*);
voi d (*update)(THD*, struct st_nysql _sys_var *, void*, const void*);

}
Additional fields are append as required depending upon the flags.

For convenience, a number of macros are defined that make creating new system variables within a
plugin much simpler.

Throughout the macros, the following fields are available:
* nane: An unquoted identifier for the system variable.
« var nane: The identifier for the static variable. Where not available, it is the same as the nane field.

» opt : Additional use flags for the system variable. The following table shows the permissible flags.

Table 4.2 Server Plugin System Variable Flags

Flag Value Description

PLUG N_VAR_READONLY The system variable is read only

PLUG N_VAR NOSYSVAR The system variable is not user visible at runtime

PLUG N_VAR_ NOCNMDOPT The system variable is not configurable from the
command line

PLUG N_VAR_ NOCMDARG No argument is required at the command line
(typically used for boolean variables)

PLUG N_VAR RQCMDARG An argument is required at the command line
(this is the default)

PLUG N_VAR OPCNMDARG An argument is optional at the command line

PLUG N_VAR MEMALLOC Used for string variables; indicates that memory
is to be allocated for storage of the string

e conmment : A descriptive comment to be displayed in the server help message. NULL if this variable is
to be hidden.

» check: The check function, NULL for default.

» updat e: The update function, NULL for default.
» def aul t : The variable default value.

e m ni mum The variable minimum value.

» maxi mum The variable maximum value.

» bl ocksi ze: The variable block size. When the value is set, it is rounded to the nearest multiple of
bl ocksi ze.

23

Plugin Data Structures

A system variable may be accessed either by using the static variable directly or by using the
SYSVAR() accessor macro. The SYSVAR() macro is provided for completeness. Usually it should be
used only when the code cannot directly access the underlying variable.

For example:

static int nmy_foo;

stati c MYSQ._SYSVAR I NT(foo_var, ny_foo,
PLUG N_VAR RQCMDARG "foo comment ",
NULL, NULL, 0, 0, INT_MAX, 0);

SYSVAR(f oo_var) = val ue;
val ue= SYSVAR(foo_var);
ny_foo= val ue;
val ue= ny_f oo;

Session variables may be accessed only through the THDVAR() accessor macro. For example:

static MYSQL_THDVAR BOOL(sone_f | ag,
PLUG N_VAR_NOCMDARG, "flag comment",
NULL, NULL, FALSE);

if (THDVAR(thd, sone_flag))
{
do_sonet hi ng() ;
THDVAR(t hd, sone_fl ag)= FALSE;

}

All global and session system variables must be published to nysql d before use. This is done by
constructing a NULL-terminated array of the variables and linking to it in the plugin public interface. For
example:

static struct st_nysql _sys_var *my_plugin_vars[]= {
MYSQL_SYSVAR(foo_var),
MYSQL_SYSVAR(sone_f I ag),
NULL

}s
nmysql _decl are_pl ugi n(f oopl ug)
{
MYSQL_... PLUGQ N,
&pl ugi n_dat a,
"f oopl ug",
"foo author",
"This does foo!",
PLUG N_LI CENSE_GPL,
foo_init,
foo_fini,
0x0001,
NULL,
nmy_pl ugi n_vars,
NULL,
0

nmysql _decl are_pl ugi n_end;
The following convenience macros enable you to declare different types of system variables:
» Boolean system variables of type bool , which is a 1-byte boolean. (0 =f al se, 1 =true)

MYSQ._THDVAR BOOL(nane, opt, conment, check, update, default)
MYSQ._SYSVAR BOOL(nane, varnane, opt, conment, check, update, default)

» String system variables of type char *, which is a pointer to a null-terminated string.

MYSQL_THDVAR _STR(nane, opt, comment, check, update, default)
MYSQL_SYSVAR _STR(nane, varnanme, opt, conment, check, update, default)

 Integer system variables, of which there are several varieties.

24

Plugin Data Structures

Ani nt system variable, which is typically a 4-byte signed word.

MYSQL_THDVAR | NT(nane, opt, comment, check, update, default, mn, max, blk)
MYSQL_SYSVAR | NT(nane, varname, opt, comment, check, update, default,
m ni mum nmaxi mum bl ocksi ze)

An unsi gned i nt system variable, which is typically a 4-byte unsigned word.

MYSQL_THDVAR_Ul NT(name, opt, comment, check, update, default, mn, max, blk)
MYSQL_SYSVAR Ul NT(nanme, varname, opt, comment, check, update, default,
m ni mum nmaxi mum bl ocksi ze)

A | ong system variable, which is typically either a 4- or 8-byte signed word.

MYSQL_THDVAR_LONGE nane, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR _LONG nane, varname, opt, comment, check, update, default,
m ni mum nmaxi mum bl ocksi ze)

Anunsi gned | ong system variable, which is typically either a 4- or 8-byte unsigned word.

MYSQL_THDVAR_ULONG nane, opt, comment, check, update, default, min, max, blk)
MYSQL_SYSVAR ULONGE nane, varname, opt, comment, check, update, default,
m ni mum nmexi mum bl ocksi ze)

Al ong | ong system variable, which is typically an 8-byte signed word.

MYSQL_THDVAR_LONGLONG(nane, opt, comment, check, update,
default, mnimum maxi mum bl ocksi ze)
MYSQL_SYSVAR LONGLONG(nane, varname, opt, comment, check, update,
default, mnimum maxi mum bl ocksi ze)

Anunsi gned | ong | ong system variable, which is typically an 8-byte unsigned word.

MYSQL_THDVAR_ULONGLONG(nane, opt, comment, check, update,
default, mnimum maxi mum bl ocksi ze)
MYSQL_SYSVAR ULONGLONG(nane, varnane, opt, comment, check, update,
default, mnimum maxi mum bl ocksi ze)

A doubl e system variable, which is typically an 8-byte signed word.

MYSQL_THDVAR _DOUBLE(nanme, opt, comment, check, update,
default, mninmm maxi mum bl ocksize)
MYSQL_SYSVAR DOUBLE(nane, varnane, opt, comment, check, update,
default, mnimm maxi mum bl ocksize)

An unsi gned | ong system variable, which is typically either a 4- or 8-byte unsigned word. The
range of possible values is an ordinal of the number of elements in the t ypel i b, starting from 0.

MYSQL_THDVAR_ENUM nane, opt, comment, check, update, default, typelib)
MYSQL_SYSVAR_ENUM nane, varnane, opt, comment, check, update,
default, typelib)

Anunsi gned | ong | ong system variable, which is typically an 8-byte unsigned word. Each bit
represents an elementin the t ypel i b.

MYSQL_THDVAR_SET(nane, opt, comment, check, update, default, typelib)
MYSQL_SYSVAR _SET(nane, varnane, opt, comment, check, update,
default, typelib)

Internally, all mutable and plugin system variables are stored in a HASH structure.

Display of the server command-line help text is handled by compiling a DYNAM C_ARRAY of all
variables relevant to command-line options, sorting them, and then iterating through them to display
each option.

When a command-line option has been handled, it is then removed from the ar gv by the
handl e_opti on() function (my_get opt . c); in effect, it is consumed.

25

Plugin Data Structures

The server processes command-line options during the plugin installation process, immediately after
the plugin has been successfully loaded but before the plugin initialization function has been called

Plugins loaded at runtime do not benefit from any configuration options and must have usable defaults.
Once they are installed, they are loaded at mysql d initialization time and configuration options can be
set at the command line or within my. cnf .

Plugins should consider the t hd parameter to be read only.

4.4.2.3 Client Plugin Descriptors

Each client plugin must have a descriptor that provides information to the client plugin API. The
descriptor structure begins with a fixed set of members common to all client plugins, followed by any
members specific to the plugin type.

The st _nysql client_plugin structure inthe cl i ent _pl ugi n. h file defines a “generic”
descriptor that contains the common members:

struct st_nysqgl _client_plugin
{ .

int type;

unsigned int interface_version;

const char *nane;

const char *aut hor;

const char *desc;

unsi gned int version[3];

const char *license;

voi d *nysql _api ;

int (*init)(char *, size_t, int, va_list);
int (*deinit)();

int (*options)(const char *option, const void *);

b

The common st _nysql _client pl ugi n descriptor structure members are used as follows. char *
members should be specified as null-terminated strings.

» type: The plugin type. This must be one of the plugin-type values from cl i ent _pl ugi n. h, such as
MYSQL_CLI ENT_AUTHENTI CATI ON_PLUG N.

* interface_version: The plugin interface version. For example, this is
MYSQL_CLI ENT_AUTHENTI CATI ON_PLUG N_| NTERFACE_VERSI ON for an authentication plugin.

e nane: A string that gives the plugin name. This is the name by which you refer to the plugin when
you call nysql _opti ons() with the M\YSQL_DEFAULT_AUTH option or specify the - - def aul t -
aut h option to a MySQL client program.

» aut hor : A string naming the plugin author. This can be whatever you like.
» desc: A string that provides a general description of the plugin. This can be whatever you like.

« versi on: The plugin version as an array of three integers indicating the major, minor, and teeny
versions. For example, { 1, 2, 3} indicates version 1.2.3.

* | i cense: A string that specifies the license type.
* nysql _api : For internal use. Specify it as NULL in the plugin descriptor.

e init:Aonce-only initialization function, or NULL if there is no such function. The client library
executes this function when it loads the plugin. The function returns zero for success and nonzero for
failure.

The i ni t function uses its first two arguments to return an error message if an error occurs. The first
argument is a pointer to a char buffer, and the second argument indicates the buffer length. Any
message returned by the i ni t function must be null-terminated, so the maximum message length is

26

https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Plugin Data Structures

the buffer length minus one. The next arguments are passed to nysql | oad_pl ugi n() . The first
indicates how many more arguments there are (0 if none), followed by any remaining arguments.

» dei ni t : A once-only deinitialization function, or NULL if there is no such function. The client library
executes this function when it unloads the plugin. The function takes no arguments. It returns zero
for success and nonzero for failure.

» opti ons: A function for handling options passed to the plugin, or NULL if there is no such function.
The function takes two arguments representing the option name and a pointer to its value. The
function returns zero for success and nonzero for failure.

For a given client plugin type, the common descriptor members may be followed by

additional members necessary to implement plugins of that type. For example, the

st _mysql _client plugi n_ AUTHENTI CATI ON structure for authentication plugins has a function at
the end that the client library calls to perform authentication.

To declare a plugin, use the nysql _decl are_client _plugi n() and
mysql _end_cl i ent pl ugi n macros:

nysql _decl are_client_pl ugi n(pl ugi n_type)
menbers common to all client plugins ...
. type-specific extra nmenbers ...
nysql _end_cl i ent_pl ugin;

Do not specify the t ype ori nt er f ace_ver si on member explicitly. The
nysqgl declare_client_ plugi n() macro uses the pl ugi n_t ype argument to generate their
values automatically. For example, declare an authentication client plugin like this:

nysql _decl are_cl i ent _pl ugi n(AUTHENTI CATI ON)
"my_aut h_pl ugi n",

"Aut hor Nange",

"My Cdient Authentication Plugin",
{1, 0, 0},

"GPL",

NULL,

ny_auth_init,

ny_auth_deinit,
ny_aut h_opti ons,
ny_aut h_mai n

nysql _end_cl i ent _pl ugi n;

This declaration uses the AUTHENTI CATI ON argument to set the t ype and
i nterface_versi on membersto MYSQL CLI ENT_AUTHENTI CATI ON_PLUGQ Nand
MYSQL_CLI ENT_AUTHENTI CATI ON_PLUG N_I NTERFACE_VERSI ON.

Depending on the plugin type, the descriptor may have other members following the common
members. For example, for an authentication plugin, there is a function (my_aut h_mai n() in the
descriptor just shown) that handles communication with the server. See Section 4.4.9, “Writing
Authentication Plugins”.

Normally, a client program that supports the use of authentication plugins causes a plugin to be loaded
by calling nysql options() to setthe M\ySQL_DEFAULT_AUTHand MYySQL_PLUG N_DI R options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugi n_nanme";

/* ... process command-line options ... */

nmysql _options(&mysqgl, MYSQL_PLUG N DI R, plugin_dir);
nmysql _opti ons(&mysql, MySQ._DEFAULT_AUTH, default_auth);

Typically, the program will also accept - - pl ugi n-di r and - - def aul t - aut h options that enable
users to override the default values.

Should a client program require lower-level plugin management, the client library contains functions
that take an st _nysql cl i ent _pl ugi n argument. See C API Client Plugin Interface.

27

https://dev.mysql.com/doc/c-api/8.0/en/mysql-load-plugin.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-plugin-interface.html

Compiling and Installing Plugin Libraries

4.4.3 Compiling and Installing Plugin Libraries

After your plugin is written, you must compile it and install it. The procedure for compiling shared
objects varies from system to system. If you build your library using CMake, it should be able to
generate the correct compilation commands for your system. If the library is named sonepl ugl i b, you
should end up with a shared library file that has a name something like sormepl ugl i b. so. (The . so
file name suffix might differ on your system.)

To use CVake, you'll need to set up the configuration files to enable the plugin to be compiled and
installed. Use the plugin examples under the pl ugi n directory of a MySQL source distribution as a
guide.

Create CMvakelLi st s. t xt, which should look something like this:

MYSQL_ADD PLUGQ N(sonepl ugli b sonepl uglib.c
MODULE_ONLY MODULE_OUTPUT_NAME "“sonepl ugli b")

When CVake generates the Makef i | e, it should take care of passing to the compilation command
the - DMYSQL_DYNAM C_PLUG Nflag, and passing to the linker the - | mysql ser vi ces flag, which
is needed to link in any functions from services provided through the plugin services interface. See
MySQL Plugin Services.

Run Cvake, then run nake:

$> cnake
$> make

If you need to specify configuration options to C\vake, see MySQL Source-Configuration Options, for
a list. For example, you might want to specify CMAKE | NSTALL_PREFI X to indicate the MySQL base
directory under which the plugin should be installed. You can see what value to use for this option with
SHOW VARI ABLES:

nmysqgl > SHOW VARI ABLES LI KE ' basedir';

dieoccoccsoocooco=o dimccccococccosocooos +
| Variabl e _nane | Val ue
dieoccoccsoocooco=o dimccccococccosocooos +
| base | /usr/local/nysql
dieoccoccsoocooco=o dimccccococccosocooos +

The location of the plugin directory where you should install the library is given by the pl ugi n_di r
system variable. For example:

mysql > SHOW VARI ABLES LI KE ' plugin_dir";

T S P S P S +
| Variabl e_nane | Val ue |
T S P S P S +
| plugin_dir | /usr/local/nysqgl/lib/mysqgl/plugin

T S P S P S +

To install the plugin library, use nmake:

$> nmake instal

Verify that make i nstal | installed the plugin library in the proper directory. After installing it, make
sure that the library permissions permit it to be executed by the server.

4.4.4 Writing Full-Text Parser Plugins

MySQL supports server-side full-text parser plugins with Myl SAMand | nnoDB. For introductory
information about full-text parser plugins, see Full-Text Parser Plugins.

A full-text parser plugin can be used to replace or modify the built-in full-text parser. This section
describes how to write a full-text parser plugin named si npl e_par ser . This plugin performs parsing

28

https://dev.mysql.com/doc/refman/8.0/en/plugin-services.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_cmake_install_prefix
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/myisam-storage-engine.html
https://dev.mysql.com/doc/refman/8.0/en/innodb-storage-engine.html

Writing Full-Text Parser Plugins

based on simpler rules than those used by the MySQL built-in full-text parser: Words are nonempty
runs of whitespace characters.

The instructions use the source code in the pl ugi n/ ful | t ext directory of MySQL source
distributions, so change location into that directory. The following procedure describes how the plugin
library is created:

1. To write a full-text parser plugin, include the following header file in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#i ncl ude <nysql/ pl ugi n. h>

pl ugi n. h defines the M\YSQL_FTPARSER PLUG N server plugin type and the data structures
needed to declare the plugin.

2. Set up the library descriptor for the plugin library file.

This descriptor contains the general plugin descriptor for the server plugin. For a full-text parser
plugin, the type must be MYSQL_FTPARSER PLUG N. This is the value that identifies the plugin as
being legal for use in a W TH PARSER clause when creating a FULLTEXT index. (No other plugin
type is legal for this clause.)

For example, the library descriptor for a library that contains a single full-text parser plugin named
si mpl e_par ser looks like this:

nysql _decl are_pl ugi n(ftexanpl e)

MYSQL_FTPARSER PLUGI N, I* type *|
&si npl e_parser_descriptor, /* descriptor */
"sinpl e_parser", /* nanme */
"Oracl e Corporation”, /* aut hor */
"Sinmple Full-Text Parser", [/* description */
PLUG N_LI CENSE_GPL, /* plugin license */
sinple_parser_plugin_init, /* init function (when | oaded) */
sinpl e_parser_plugin_deinit,/* deinit function (when unl oaded) */
0x0001, /* version */
si npl e_st at us, /* status vari abl es */
si npl e_system vari abl es, /* system vari abl es */
NULL,

0

}
nysql _decl ar e_pl ugi n_end;

The nanme member (si npl e_par ser) indicates the name to use for references to the plugin in
statements such as | NSTALL PLUG Nor UNI NSTALL PLUGQ N. This is also the name displayed
by SHOW PLUG NS or | NFORMATI ON_SCHEMA. PLUG NS.

For more information, see Section 4.4.2.1, “Server Plugin Library and Plugin Descriptors”.
3. Set up the type-specific plugin descriptor.

Each general plugin descriptor in the library descriptor points to a type-specific descriptor. For a full-
text parser plugin, the type-specific descriptor is an instance of the st _nysql _ft par ser structure
in the pl ugi n. h file:

struct st_nysql _ftparser
{

int interface_version

int (*parse)(MYSQL_FTPARSER PARAM * par anj ;
int (*init)(MSQ._FTPARSER PARAM *par anj;
int (*deinit)(MSQL_FTPARSER PARAM *par am)
i

As shown by the structure definition, the descriptor has an interface version number and contains
pointers to three functions.

29

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html

Writing Full-Text Parser Plugins

The interface version number is specified using a symbol, which is in the form:

MYSQL_xxx_| NTERFACE_ VERSI ON. For full-text parser plugins, the symbol is
MYSQL_FTPARSER | NTERFACE VERSI ON. In the source code, you will find the actual interface
version number for the full-text parser plugin defined in i ncl ude/ nysql / pl ugi n_ft parser. h.
The current interface version number is 0x0101.

Theinit and dei ni t members should point to a function or be set to 0 if the function is not
needed. The par se member must point to the function that performs the parsing.

In the si npl e_par ser declaration, that descriptor is indicated by

&si npl e_parser _descri pt or. The descriptor specifies the version number for the full-text
plugin interface (as given by MYSQL_FTPARSER | NTERFACE_VERSI ON), and the plugin's parsing,
initialization, and deinitialization functions:

static struct st_nysql _ftparser sinple_parser_descriptor=

{

MYSQL_FTPARSER | NTERFACE_VERSI ON, /* interface version */
si npl e_par ser _par se, /* parsing function */
si npl e_parser_init, /* parser init function */
si npl e_par ser_dei ni t /* parser deinit function */

}s

A full-text parser plugin is used in two different contexts, indexing and searching. In both contexts,
the server calls the initialization and deinitialization functions at the beginning and end of
processing each SQL statement that causes the plugin to be invoked. However, during statement
processing, the server calls the main parsing function in context-specific fashion:

« For indexing, the server calls the parser for each column value to be indexed.

» For searching, the server calls the parser to parse the search string. The parser might also be
called for rows processed by the statement. In natural language mode, there is no need for the
server to call the parser. For boolean mode phrase searches or natural language searches with
query expansion, the parser is used to parse column values for information that is not in the
index. Also, if a boolean mode search is done for a column that has no FULLTEXT index, the
built-in parser will be called. (Plugins are associated with specific indexes. If there is no index, no
plugin is used.)

The plugin declaration in the general plugin descriptor has i ni t and dei ni t members that point
initialization and deinitialization functions, and so does the type-specific plugin descriptor to which
it points. However, these pairs of functions have different purposes and are invoked for different
reasons:

« For the plugin declaration in the general plugin descriptor, the initialization and deinitialization
functions are invoked when the plugin is loaded and unloaded.

« For the type-specific plugin descriptor, the initialization and deinitialization functions are invoked
per SQL statement for which the plugin is used.

Each interface function named in the plugin descriptor should return zero for success or nonzero
for failure, and each of them receives an argument that points to a MYSQL_FTPARSER PARAM
structure containing the parsing context. The structure has this definition:

typedef struct st_nysql _ftparser_param
{
int (*mysql _parse)(struct st_nysql _ftparser_param *,
char *doc, int doc_len);
int (*nysql __add_word) (struct st_nysql _ftparser_param *,
char *word, int word_|en,
MYSQL_FTPARSER BOOLEAN | NFO *bool ean_i nf 0) ;
void *ftparser_state;
voi d *nysql _ftparam
struct charset_info_st *cs;

30

Writing Full-Text Parser Plugins

}

char *doc;
int |ength;
int flags;

enum enum ft parser _node node;
MYSQL_FTPARSER PARAM

The structure members are used as follows:

mysql _par se: A pointer to a callback function that invokes the server's built-in parser. Use
this callback when the plugin acts as a front end to the built-in parser. That is, when the plugin
parsing function is called, it should process the input to extract the text and pass the text to the
mysgl _par se callback.

The first parameter for this callback function should be the par amvalue itself:

par am >nysql _parse(param ...);

A front end plugin can extract text and pass it all at once to the built-in parser, or it can extract
and pass text to the built-in parser a piece at a time. However, in this case, the built-in parser
treats the pieces of text as though there are implicit word breaks between them.

mysqgl _add_wor d: A pointer to a callback function that adds a word to a full-text index or to the
list of search terms. Use this callback when the parser plugin replaces the built-in parser. That
is, when the plugin parsing function is called, it should parse the input into words and invoke the
mysqgl _add_wor d callback for each word.

The first parameter for this callback function should be the par amvalue itself:
par am >nysql _add_word(param ...);

ft parser_stat e: This is a generic pointer. The plugin can set it to point to information to be
used internally for its own purposes.

nysql _f t par am This is set by the server. It is passed as the first argument to the
nysql _parse ornysql _add_wor d callback.

cs: A pointer to information about the character set of the text, or O if no information is available.
doc: A pointer to the text to be parsed.
I engt h: The length of the text to be parsed, in bytes.

f | ags: Parser flags. This is zero if there are no special flags. The only nonzero flag is
MYSQL_FTFLAGS _NEED_COPY, which means that mysql _add_wor d() must save a copy of
the word (that is, it cannot use a pointer to the word because the word is in a buffer that will be
overwritten.)

This flag might be set or reset by MySQL before calling the parser plugin, by the parser plugin
itself, or by the mysql _par se() function.

node: The parsing mode. This value will be one of the following constants:

e MYSQL_FTPARSER SI MPLE_MODE: Parse in fast and simple mode, which is used for indexing
and for natural language queries. The parser should pass to the server only those words that
should be indexed. If the parser uses length limits or a stopword list to determine which words
to ignore, it should not pass such words to the server.

e MYSQL_FTPARSER W TH_STOPWORDS: Parse in stopword mode. This is used in boolean
searches for phrase matching. The parser should pass all words to the server, even stopwords
or words that are outside any normal length limits.

31

Writing Full-Text Parser Plugins

e MYSQL_FTPARSER FULL BOCOLEAN I NFG: Parse in boolean mode. This is used for parsing
boolean query strings. The parser should recognize not only words but also boolean-
mode operators and pass them to the server as tokens using the nysqgl _add _word
callback. To tell the server what kind of token is being passed, the plugin needs to fill in a
MYSQL_FTPARSER BOOLEAN | NFOstructure and pass a pointer to it.

Note

For Myl SAM the stopword listandft _m n_word_| en and

ft _max_wor d_I| en are checked inside the tokenizer. For | nnoDB,

the stopword list and equivalent word length variable settings
(innodb_ft _mn_token_sizeandinnodb ft_ nmax_token_size)
are checked outside of the tokenizer. As a result, | nnoDB plugin parsers
do not need to check the stopword list, i nnodb_ft _m n_t oken_si ze,
orinnodb_ft max_t oken_si ze. Instead, it is recommended that all
words be returned to | nnoDB. However, if you want to check stopwords
within your plugin parser, use M\YSQL_FTPARSER SI MPLE_MODE,

which is for full-text search index and natural language

search. For M\YSQL_FTPARSER W TH_ STOPWORDS and
MYSQL_FTPARSER FULL_ BOOLEAN | NFOmodes, it is recommended that
all words be returned to | nnoDB including stopwords, in case of phrase
searches.

If the parser is called in boolean mode, the par am >node value will be
MYSQL_FTPARSER_FULL_BOOLEAN | NFO. The MYSQL_FTPARSER_BOOLEAN | NFOstructure that
the parser uses for passing token information to the server looks like this:

typedef struct st_nysql _ftparser_bool ean_i nfo
{
enum enum ft_t oken_type type;
int yesno;
int wei ght_adj ust;
char wasi gn;
char trunc;
int position;
/* These are parser state and nmust be renopved. */
char prev;
char *quot;
} MYSQL_FTPARSER BOOLEAN | NFO,

The parser should fill in the structure members as follows:

e type: The token type. The following table shows the permissible types.

Table 4.3 Full-Text Parser Token Types

Token Value Meaning

FT_TOKEN EOF End of data

FT_TOKEN _WORD A regular word

FT_TOKEN _LEFT_PAREN The beginning of a group or subexpression
FT_TOKEN _RI GHT _PAREN The end of a group or subexpression
FT_TOKEN_STOPWORD A stopword

< yesno: Whether the word must be present for a match to occur. 0 means that the word is
optional but increases the match relevance if it is present. Values larger than 0 mean that the
word must be present. Values smaller than 0 mean that the word must not be present.

e wei ght _adj ust : A weighting factor that determines how much a match for the word counts. It
can be used to increase or decrease the word's importance in relevance calculations. A value

32

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ft_min_word_len
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_ft_max_word_len
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_min_token_size
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_max_token_size
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_min_token_size
https://dev.mysql.com/doc/refman/8.0/en/innodb-parameters.html#sysvar_innodb_ft_max_token_size

Writing Full-Text Parser Plugins

of zero indicates no weight adjustment. Values greater than or less than zero mean higher or
lower weight, respectively. The examples at Boolean Full-Text Searches, that use the < and >
operators illustrate how weighting works.

« wasi gn: The sign of the weighting factor. A negative value acts like the ~ boolean-search
operator, which causes the word's contribution to the relevance to be negative.

e t runc: Whether matching should be done as if the boolean-mode * truncation operator had
been given.

e posi ti on: Start position of the word in the document, in bytes. Used by | nnoDB full-text search.
For existing plugins that are called in boolean mode, support must be added for the position
member.

Plugins should not use the pr ev and quot members of the MYSQL_FTPARSER BOOLEAN | NFO
structure.

Note

The plugin parser framework does not support:
e The @li st ance boolean operator.

* A leading plus sign (+) or minus sign (-) boolean operator followed by a
space and thenaword (' + appl e’ or' - appl e'). The leading plus or
minus sign must be directly adjacent to the word, for example: ' +appl e’
or' -apple'.

For information about boolean full-text search operators, see Boolean Full-
Text Searches.

Set up the plugin interface functions.

The general plugin descriptor in the library descriptor names the initialization and deinitialization
functions that the server should invoke when it loads and unloads the plugin. For si npl e_par ser,
these functions do nothing but return zero to indicate that they succeeded:

static int sinple_parser_plugin_init(void *arg __attribute__((unused)))

return(0);

}

static int sinple_parser_plugin_deinit(void *arg __attribute__((unused)))

{

return(0);

}

Because those functions do not actually do anything, you could omit them and specify O for each of
them in the plugin declaration.

The type-specific plugin descriptor for si npl e_par ser names the initialization, deinitialization,
and parsing functions that the server invokes when the plugin is used. For si npl e_par ser, the
initialization and deinitialization functions do nothing:

static int sinple_parser_init(MSQ._FTPARSER PARAM *par am
__attribute_ ((unused)))
{

return(0);

}

static int sinple_parser_deinit(MSQ_FTPARSER PARAM *par am
__attribute_ ((unused)))
{

return(0);

33

https://dev.mysql.com/doc/refman/8.0/en/fulltext-boolean.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-boolean.html
https://dev.mysql.com/doc/refman/8.0/en/fulltext-boolean.html

Writing Full-Text Parser Plugins

}

Here too, because those functions do nothing, you could omit them and specify O for each of them
in the plugin descriptor.

The main parsing function, si npl e_par ser _par se(), acts as a replacement for the built-in
full-text parser, so it needs to split text into words and pass each word to the server. The parsing
function's first argument is a pointer to a structure that contains the parsing context. This structure
has a doc member that points to the text to be parsed, and a | engt h member that indicates how
long the text is. The simple parsing done by the plugin considers nonempty runs of whitespace
characters to be words, so it identifies words like this:

static int sinple_parser_parse(MYSQL_FTPARSER _PARAM * par am)
{

char *end, *start, *docend= param >doc + param >l engt h;
for (end= start= param >doc;; end++)

if (end == docend)
{
if (end > start)
add_word(param start, end - start);
br eak;

else if (isspace(*end))
{
if (end > start)
add_word(param start, end - start);
start= end + 1;
}
}

return(0);

}

As the parser finds each word, it invokes a function add_wor d() to pass the word to the server.
add_wor d()) is a helper function only; it is not part of the plugin interface. The parser passes the
parsing context pointer to add_wor d() , as well as a pointer to the word and a length value:

static void add_word(MYSQL_FTPARSER PARAM *param char *word, size_t |en)

MYSQL_FTPARSER _BOOLEAN_| NFO bool _i nf o=
{ FT_TOKEN.WORD, 0, O, 0, 0, O, ' ', 0 };

par am >nysql _add_wor d(param word, |en, &bool _info);

}

For boolean-mode parsing, add_wor d() fills in the members of the bool _i nf o structure as
described earlier in the discussion of the st _nysql ft parser_bool ean_i nf o structure.

Set up the status variables. For the si npl e_par ser plugin, the following status variable array sets
up one status variable with a value that is static text, and another with a value that is stored in a
long integer variable:

| ong nunber _of _cal | s= 0;

struct st_mysqgl _show var sinple_status[]=
{"sinple_parser_static", (char *)"just a static text", SHOW CHAR},
{"sinple_parser_cal |l ed", (char *)&nunber_of _calls, SHOW LONG} ,

{0, 0, 0}
}s

By using status variable names that begin with the plugin name, you can easily display the
variables for a plugin with SHOW STATUS:

nmysql > SHOW STATUS LI KE ' si npl e_parser % ;
S S +

34

https://dev.mysql.com/doc/refman/8.0/en/show-status.html

Writing Full-Text Parser Plugins

|

+

| sinple_parser_static | just a static text |

| sinple_parser_called | O |
+

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory
(the directory named by the pl ugi n_di r system variable). For the si npl e_par ser plugin,

it is compiled and installed when you build MySQL from source. It is also included in binary
distributions. The build process produces a shared object library with a name of nmypl ugl i b. so
(the . so suffix might differ depending on your platform).

To use the plugin, register it with the server. For example, to register the plugin at runtime, use this
statement, adjusting the . so suffix for your platform as necessary:

I NSTALL PLUG N si npl e_parser SONAME ' nypl uglib. so';
For additional information about plugin loading, see Installing and Uninstalling Plugins.

To verify plugin installation, examine the | NFORVATI ON_SCHEMA. PLUG NS table or use the SHOW
PLUG NS statement. See Obtaining Server Plugin Information.

Test the plugin to verify that it works properly.

Create a table that contains a string column and associate the parser plugin with a FULLTEXT index
on the column:

mysql > CREATE TABLE t (c VARCHAR(255),
-> FULLTEXT (c) W TH PARSER si npl e_par ser
->) ENG NE=My| SAM

Query OK, 0 rows affected (0.01 sec)

Insert some text into the table and try some searches. These should verify that the parser plugin
treats all nonwhitespace characters as word characters:

rrysql > |NSERT INTO t VALUES

("utf8nmb4_0900 as_cs is a case-sensitive collation'),
("I\'d like a case of oranges'),

("this is sensitive information'),

(' anot her row),

("yet another row);

Q.lery K, 5 rows affected (0.02 sec)

Records: 5 Duplicates: 0 Warnings: O

V

I
VVVV

nmysql > SELECT ¢ FROM t;

| utf8nb4_0900_as_cs is a case-sensitive collation |
| 1'"d like a case of oranges [
| this is sensitive information [
| another row [
| yet another row [

5 rows in set (0.00 sec)

mysql > SELECT MATCH(c) AGAI NST(' case') FROM t;

5 rows in set (0.00 sec)

35

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html

Writing Daemon Plugins

mysql > SELECT MATCH(c) AGAI NST('sensitive') FROM t;

5 rows in set (0.01 sec)

mysql > SELECT MATCH(c) AGAI NST(' case-sensitive') FROM t;

S +
| MATCH(c) AGAI NST(' case-sensitive')
S +
| 1.3109166622162
| 0 |
| 0 |
| 0 |
| 0 |
S +

5 rows in set (0.01 sec)

nysql > SELECT MATCH(c) AGAINST('I\'d') FROMt;

5 rows in set (0.01 sec)

Neither “case” nor “insensitive” match “case-insensitive” the way that they would for the built-in
parser.

4.4.5 Writing Daemon Plugins

A daemon plugin is a simple type of plugin used for code that should be run by the server but

that does not communicate with it. This section describes how to write a daemon server plugin,
using the example plugin found in the pl ugi n/ daenon_exanpl e directory of MySQL source
distributions. That directory contains the daenon_exanpl e. cc source file for a daemon plugin
named daenmon_exanpl e that writes a heartbeat string at regular intervals to a file named nysql -
heart beat . | og in the data directory.

To write a daemon plugin, include the following header file in the plugin source file. Other MySQL or
general header files might also be needed, depending on the plugin capabilities and requirements.

#i ncl ude <nysql/ pl ugi n. h>

pl ugi n. h defines the M\YSQL_DAEMON_PLUG N server plugin type and the data structures needed to
declare the plugin.

The daenon_exanpl e. cc file sets up the library descriptor as follows. The library descriptor includes
a single general server plugin descriptor.

nysql _decl ar e_pl ugi n(daenon_exanpl e)

MySQL_DAEMON PLUG N,

&Jaenon_exanpl e_pl ugi n,

" daenon_exanpl e",

"Brian Aker",

"Daenon exanple, creates a heartbeat beat file in nmysql-heartbeat.| og",
PLUG N_LI CENSE_GPL,

daenon_exanpl e_plugin_init, /* Plugin Init */

36

Writing INFORMATION_SCHEMA Plugins

daenon_exanpl e_plugin_deinit, /* Plugin Deinit */
0x0100 /* 1.0 */,

NULL, /* status vari abl es */
NULL, /* system vari abl es */
NULL, /* config options */
0, /* flags */

nmysql _decl are_pl ugi n_end

The name member (daenon_exanpl e) indicates the name to use for references to the plugin in
statements such as | NSTALL PLUG Nor UNI NSTALL PLUG N. This is also the name displayed by
SHOW PLUGQ NS or | NFORVATI ON_SCHENMA. PLUGQ NS.

The second member of the plugin descriptor, daenon_exanpl e_pl ugi n, points to the type-specific
daemon plugin descriptor. This structure consists only of the type-specific API version number:

struct st_nysqgl _daenon daenon_exanpl e_pl ugi n=
{ MYSQL_DAEMON | NTERFACE VERSI ON };

The type-specific structure has no interface functions. There is no communication between the server
and the plugin, except that the server calls the initialization and deinitialization functions from the
general plugin descriptor to start and stop the plugin:

» daenon_exanpl e_pl ugi n_i ni t () opens the heartbeat file and spawns a thread that wakes up
periodically and writes the next message to the file.

» daenon_exanpl e_pl ugi n_dei nit () closes the file and performs other cleanup.

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the
directory named by the pl ugi n_di r system variable). For the daenon_exanpl e plugin, it is compiled
and installed when you build MySQL from source. It is also included in binary distributions. The build
process produces a shared object library with a name of | i bdaenon_exanpl e. so (the . so suffix
might differ depending on your platform).

To use the plugin, register it with the server. For example, to register the plugin at runtime, use this
statement, adjusting the . so suffix for your platform as necessary:

I NSTALL PLUG N daenpn_exanpl e SONAME ' | i bdaenon_exanpl e. so'
For additional information about plugin loading, see Installing and Uninstalling Plugins.

To verify plugin installation, examine the | NFORVATI ON_ SCHEMA. PLUG NS table or use the SHOW
PLUG NS statement. See Obtaining Server Plugin Information.

While the plugin is loaded, it writes a heartbeat string at regular intervals to a file named nysql -
heart beat . | og in the data directory. This file grows without limit, so after you have satistifed yourself
that the plugin operates correctly, unload it:

UNI NSTALL PLUG N daenon_exanpl e;

4.4.6 Writing INFORMATION_SCHEMA Plugins

This section describes how to write a server-side | NFORVATI ON_SCHENA table plugin. For example
code that implements such plugins, see the sql / sgl _show. cc file of a MySQL source distribution.
You can also look at the example plugins found in the | nnoDB source. See the handl er/i _s. cc and
handl er/ ha_i nnodb. cc files within the | nnoDB source tree (in the st or age/ i nnobase directory).

To write an | NFORVATI ON_SCHEMA table plugin, include the following header files in the plugin source
file. Other MySQL or general header files might also be needed, depending on the plugin capabilities
and requirements.

#i ncl ude <sql _cl ass. h>
#i ncl ude <tabl e. h>

37

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html

Writing INFORMATION_SCHEMA Plugins

These header files are located in the sql directory of MySQL source distributions. They contain C++
structures, so the source file for an | NFORVATI ON_SCHENA plugin must be compiled as C++ code.

The source file for the example plugin developed here is named si npl e_i _s_t abl e. cc. It creates a
simple | NFORVATI ON_SCHENA table named SI MPLE_| _ S TABLE that has two columns named NANVE
and VALUE. The general descriptor for a plugin library that implements the table looks like this:

nmysql _declare_plugin(sinple_i_s library)

{
MYSQL_| NFORVATI ON_SCHEMA PLUG N,

&si npl e_t abl e_i nf o, /* type-specific descriptor */
"SI MPLE_| _S TABLE", /* table nane */

" Aut hor Nane", /* author */

" Si npl e | NFORVATI ON_SCHEMA t abl e", /* description */

PLUG N_LI CENSE_GPL, /* license type */
sinple_table_init, /* init function */

NULL,

0x0100, /* version = 1.0 */

NULL, /* no status variables */
NULL, /* no system variables */
NULL, /* no reserved informati on */
0 /* no flags */

nysql _decl are_pl ugi n_end;

The nane member (SI MPLE | _S TABLE) indicates the name to use for references to the plugin in

statements such as | NSTALL PLUG Nor UNI NSTALL PLUG N. This is also the name displayed by
SHOW PLUG NS or | NFORVATI ON_SCHEMA. PLUGQ NS.

The si npl e_t abl e_i nf o member of the general descriptor points to the type-specific descriptor,
which consists only of the type-specific API version number:

static struct st_nysql _i nformati on_schema sinple_table_info =
{ MYSQL_I NFORVATI ON_SCHEMA | NTERFACE_VERSI ON } ;

The general descriptor points to the initialization and deinitialization functions:

 The initialization function provides information about the table structure and a function that populates
the table.

» The deinitialization function performs any required cleanup. If no cleanup is needed, this descriptor
member can be NULL (as in the example shown).

The initialization function should return 0 for success, 1 if an error occurs. The function receives a
generic pointer, which it should interpret as a pointer to the table structure:

static int table_init(void *ptr)

{
ST_SCHEMA TABLE *scheme_t abl e= (ST_SCHEMA TABLE*)ptr

schema_t abl e->fi el ds_i nf o= si npl e_tabl e_fi el ds;
schema_table->fill _table= sinple_fill_table;
return O;

}

The function should set these two members of the table structure:

» fields_info:Anarray of ST_FI ELD | NFOstructures that contain information about each column.
« fill _tabl e: A function that populates the table.

The array pointed to by f i el ds_i nf o should contain one element per column of the

| NFORVATI ON_SCHENMA plus a terminating element. The following si npl e_t abl e_fi el ds array for
the example plugin indicates that SI MPLE | S TABLE has two columns. NAME is string-valued with a
length of 10 and VALUE is integer-valued with a display width of 20. The last structure marks the end of
the array.

38

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html

Writing INFORMATION_SCHEMA Plugins

static ST_FIELD I NFO sinple_table_ fields[]=

{
{"NAME", 10, MYSQL_TYPE STRING 0, 0 0, 0},

{"VALUE", 6, MYSQL_TYPE LONG 0, MY_l_S UNSIGNED, 0, O},
{0, 0, MYSQL_TYPE NULL, 0, 0, 0, 0}

}s

For more information about the column information structure, see the definition of ST_FI ELD | NFOin
the t abl e. h header file. The permissible MYSQL_TYPE xxx type values are those used in the C API;
see C API Basic Data Structures.

The fill _tabl e member should be set to a function that populates the table and returns O for
success, 1 if an error occurs. For the example plugin, the si npl e_fi || _tabl e() function looks like
this:

static int sinple_fill_table(THD *thd, TABLE LI ST *tables, |tem *cond)

{
TABLE *t abl e= t abl es- >t abl e;

tabl e->field[0]->store("Nane 1", 6, system charset_info);
tabl e->field[1]->store(1);
if (schema_table_store_record(thd, table))
return 1;
tabl e->field[0]->store("Nane 2", 6, system charset_info);
tabl e->field[1]->store(2);
if (schema_table_store_record(thd, table))
return 1;
return O;

}

For each row of the | NFORIVATI ON_SCHEMA table, this function initializes each column, then calls
schenma_t abl e_store_record() toinstall the row. The st or e() method arguments depend on
the type of value to be stored. For column O (NANVE, a string), st or e() takes a pointer to a string, its
length, and information about the character set of the string:

store(const char *to, uint |ength, CHARSET | NFO *cs);

For column 1 (VALUE, an integer), st or e() takes the value and a flag indicating whether it is
unsigned:

store(l ongl ong nr, bool unsigned_val ue);

For other examples of how to populate | NFORVATI ON_SCHENA tables, search for instances of
schena_tabl e_store_record() insqgl _show. cc.

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the
directory named by the pl ugi n_di r system variable).

To test the plugin, install it:

nysqgl > | NSTALL PLUG N SI MPLE | _S TABLE SONAME 'sinple_i_s_table.so';

Verify that the table is present:

nysql > SELECT TABLE NAME FROM | NFORMVAT| ON_SCHEMA. TABLES
-> WHERE TABLE_NAME = ' SIMPLE | _S TABLE ;

frmcccccoscoscosooss +
| TABLE_NAME |
frmcccccoscoscosooss +
| SIMPLE_| _S TABLE |
frmcccccoscoscosooss +

Try to select from it:

nysqgl > SELECT * FROM | NFORMATI ON_SCHEMA. SI MPLE | _S TABLE;
doooooooo dooooooo +

39

https://dev.mysql.com/doc/c-api/8.0/en/c-api-data-structures.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

Writing Semisynchronous Replication Plugins

| NAME | VALUE |
C C +
| Nane 1 | 1|
| Nane 2 | 2 |
C C +
Uninstall it:

nysql > UNI NSTALL PLUG N SI MPLE_I _S TABLE;

4.4.7 Writing Semisynchronous Replication Plugins

This section describes how to write server-side semisynchronous replication plugins, using the
example plugins found in the pl ugi n/ sem sync directory of MySQL source distributions. That
directory contains the source files for source and replica plugins named r pl _sem _sync_nast er
andrpl _sem _sync_sl ave. The information here covers only how to set up the plugin framework.
For details about how the plugins implement replication functions, see the source.

To write a semisynchronous replication plugin, include the following header file in the plugin source file.
Other MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#i ncl ude <nysql/ pl ugi n. h>

pl ugi n. h defines the MYSQL_REPLI CATI ON_PLUG N server plugin type and the data structures
needed to declare the plugin.

For the source side, seni sync_mast er _pl ugi n. cc contains this general descriptor for a plugin
named rpl _sem _sync_naster:

nysql _decl are_pl ugi n(seni _sync_mast er)

{
MYSQL_REPLI CATI ON_PLUG N,
&sem _sync_mast er _pl ugi n,
"rpl _sem _sync_nmster",
"He Zhenxing",
" Sem - synchronous replication master",
PLUG N_LI CENSE_GPL,
sem _sync_master_plugin_init, /* Plugin Init */
sem _sync_master_plugin_deinit, /* Plugin Deinit */
0x0100 /* 1.0 */,
sem _sync_master_status_vars, /* status variables */
sem _sync_master_systemvars, /* systemvariables */
NULL, /* config options */
0, /* flags */

nmysql _decl are_pl ugi n_end;

For the replica side, sem sync_sl ave_pl ugi n. cc contains this general descriptor for a plugin
named r pl _sem _sync_sl ave:

nysql _decl are_pl ugi n(seni _sync_sl ave)

MYSQL_REPL| CATI ON_PLUG N,
&sem _sync_sl ave_pl ugi n,

"rpl _sem _sync_sl ave",

"He Zhenxi ng",

"Sem - synchronous replication slave",

PLUG N_LI CENSE_GPL,

sem _sync_slave _plugin_init, /* Plugin Init */

sem _sync_sl ave_plugin_deinit, /* Plugin Deinit */
0x0100 /* 1.0 */,

sem _sync_sl ave_status_vars, /* status variables */
sem _sync_sl ave_systemvars, /* systemvariables */
NULL, /* config options */
0, /* flags */

}
nysql _decl are_pl ugi n_end;

40

Writing Audit Plugins

For both the source and replica plugins, the general descriptor has pointers to the type-specific
descriptor, the initialization and deinitialization functions, and to the status and system variables
implemented by the plugin. For information about variable setup, see Section 4.4.2.2, “Server Plugin
Status and System Variables”. The following remarks discuss the type-specific descriptor and the
initialization and deinitialization functions for the source plugin but apply similarly to the replica plugin.

The sem _sync_mast er _pl ugi n member of the source general descriptor points to the type-specific
descriptor, which consists only of the type-specific API version number:

struct Mysqgl _replication sem _sync_master_plugin= {
MYSQL_REPL| CATI ON_| NTERFACE_VERSI ON
it

The initialization and deinitialization function declarations look like this:

static int sem _sync_master_plugin_init(void *p);
static int sem _sync_master_plugin_deinit(void *p);

The initialization function uses the pointer to register transaction and binary logging “observers”

with the server. After successful initialization, the server takes care of invoking the observers at the
appropriate times. (For details on the observers, see the source files.) The deinitialization function
cleans up by deregistering the observers. Each function returns 0 for success or 1 if an error occurs.

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory

(the directory named by the pl ugi n_di r system variable). For the r pl _sem _sync_nast er and
rpl _sem _sync_sl ave plugins, they are compiled and installed when you build MySQL from source.
They are also included in binary distributions. The build process produces shared object libraries with
names of sem sync_mast er. so and sem sync_sl ave. so (the . so suffix might differ depending
on your platform).

4.4.8 Writing Audit Plugins

This section describes how to write a server-side audit plugin, using the example plugin found
in the pl ugi n/ audi t _nul | directory of MySQL source distributions. The audi t _nul | . ¢ and
audit _nul |l _vari abl es. h source files in that directory implement an audit plugin named
NULL _AUDI T.

Note

Other examples of plugins that use the audit plugin API are the query rewrite
plugin (see The Rewriter Query Rewrite Plugin) and the Version Tokens plugin
(see Version Tokens).

Within the server, the pluggable audit interface is implemented in the sql _audi t . h and

sql _audi t. cc filesin the sqgl directory of MySQL source distributions. Additionally, several places in
the server call the audit interface when an auditable event occurs, so that registered audit plugins can
be notified about the event if necessary. To see where such calls occur, search the server source files
for invocations of functions with names of the form nysql _audi t _xxx() . Audit notification occurs for
server operations such as these:

» Client connect and disconnect events

» Writing a message to the general query log (if the log is enabled)
» Writing a message to the error log

» Sending a query result to a client

To write an audit plugin, include the following header file in the plugin source file. Other MySQL or
general header files might also be needed, depending on the plugin capabilities and requirements.

41

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/rewriter-query-rewrite-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/version-tokens.html

Writing Audit Plugins

#i ncl ude <nysql /pl ugi n_audi t. h>

pl ugi n_audi t . h includes pl ugi n. h, so you need not include the latter file explicitly. pl ugi n. h
defines the MYSQL_AUDI T_PLUG N server plugin type and the data structures needed to declare the
plugin. pl ugi n_audi t . h defines data structures specific to audit plugins.

Audit Plugin General Descriptor

Audit Plugin Type-Specific Descriptor

Audit Plugin Notification Function

Audit Plugin Error Handling

Audit Plugin Usage

Audit Plugin General Descriptor

An audit plugin, like any MySQL server plugin, has a general plugin descriptor (see Section 4.4.2.1,
“Server Plugin Library and Plugin Descriptors”) and a type-specific plugin descriptor. In
audi t _nul | . c, the general descriptor for audi t _nul | looks like this:

nysql _decl are_pl ugi n(audi t_nul |)
{

MYSQL_AUDI T_PLUG N, /* type */
&audi t _nul | _descri ptor, /* descri ptor */
"NULL_AUDI T", /* nane */
"Oracl e Corporation", /* aut hor */
"Sinmple NULL Audit"”, /* description */
PLUG N_LI CENSE_GPL,

audi t _nul | _plugin_init, /* init function (when | oaded) */
audi t _nul | _pl ugi n_deinit, /* deinit function (when unl oaded) */
0x0003, /* version */
si npl e_st at us, /* status vari abl es */
system vari abl es, /* system vari abl es */
NULL,

0,

nmysql _decl are_pl ugi n_end;
The first member, M\YSQL_AUDI T_PLUGQ N, identifies this plugin as an audit plugin.
audi t _nul | _descri pt or points to the type-specific plugin descriptor, described later.

The nanme member (NULL_AUDI T) indicates the name to use for references to the plugin in
statements such as | NSTALL PLUG Nor UNI NSTALL PLUG N. This is also the name displayed by
| NFORVATI ON_SCHENMA. PLUG NS or SHOW PLUG NS.

The audit _nul | _plugi n_i nit initialization function performs plugin initialization when the plugin is
loaded. The audi t _nul | _pl ugi n_dei ni t function performs cleanup when the plugin is unloaded.

The general plugin descriptor also refers to si npl e_st at us and syst em vari abl es, structures
that expose several status and system variables. When the plugin is enabled, these variables can be
inspected using SHOWSstatements (SHOW STATUS, SHOW VARI ABLES) or the appropriate Performance
Schema tables.

The si npl e_st at us structure declares several status variables with names of the form

Audi t _nul | _xxx. NULL_AUDI T increments the Audi t _nul | _cal | ed status variable for every
notification that it receives. The other status variables are more specific and NULL_AUDI T increments
them only for notifications of specific events.

system vari abl es is an array of system variable elements, each of which is defined using a
MYSQL_THDVAR xxx macro. These system variables have names of the form nul | _audi t _xxx.
These variables can be used to communicate with the plugin at runtime.

42

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html

Writing Audit Plugins

Audit Plugin Type-Specific Descriptor

The audit _nul | _descri pt or value in the general plugin descriptor points to the type-specific plugin
descriptor. For audit plugins, this descriptor has the following structure (defined in pl ugi n_audi t . h):

struct st_nysql _audit
{

int interface_version

void (*rel ease_t hd) (MYSQL_THD) ;

int (*event_notify)(MYSQL_THD, nysql _event_class_t, const void *);
unsi gned | ong cl ass_mask[MYSQL_AUDI T_CLASS_MASK_SlI ZE] ;

b

The type-specific descriptor for audit plugins has these members:

e interface_versi on: By convention, type-specific plugin descriptors begin with the interface
version for the given plugin type. The server checks i nt er f ace_ver si on when it loads
the plugin to see whether the plugin is compatible with it. For audit plugins, the value of
theinterface versi on memberis MYSQL_AUDI T | NTERFACE VERSI ON (defined in
pl ugi n_audi t. h).

» rel ease_t hd: A function that the server calls to inform the plugin that it is being dissociated from
thread context. This should be NULL if there is no such function.

e event _noti fy: A function that the server calls to notify the plugin that an auditable event has
occurred. This function should not be NULL; that would not make sense because no auditing would
occur.

e cl ass_mmsk: An array of MYSQL_AUDI T_CLASS NASK_ SI ZE elements. Each element specifies
a bitmask for a given event class to indicate the subclasses for which the plugin wants notification.
(This is how the plugin “subscribes” to events of interest.) An element should be 0 to ignore all
events for the corresponding event class.

The server uses the event _noti fy andr el ease_t hd functions together. They are called within
the context of a specific thread, and a thread might perform an activity that produces several event
notifications. The first time the server calls event _noti fy for a thread, it creates a binding of the
plugin to the thread. The plugin cannot be uninstalled while this binding exists. When no more events
for the thread will occur, the server informs the plugin of this by calling the r el ease_t hd function,
and then destroys the binding. For example, when a client issues a statement, the thread processing
the statement might notify audit plugins about the result set produced by the statement and about the
statement being logged. The thread releases the plugin when the thread disconnects.

This design enables the plugin to allocate resources needed for a given thread in the first call to the
event noti fy function and release them in the r el ease_t hd function:

event _notify function
if menory is needed to service the thread
al | ocate nenory
rest of notification processing ...

rel ease_thd function
if menory was all ocated

rel ease nmenory
rest of release processing ...

That is more efficient than allocating and releasing memory repeatedly in the notification function.

For the NULL_AUDI T audit plugin, the type-specific plugin descriptor looks like this:

static struct st_nysql _audit audit_null_descriptor=

{
MYSQL_AUDI T_I NTERFACE_VERSI ON, /* interface version */
NULL, /* release_thd function */
audit_nul | _noti fy, /* notify function */

{ (unsigned | ong) MySQ._AUDI T_GENERAL_ALL

its

43

Writing Audit Plugins

(unsi gned | ong) MySQ._AUDI T_CONNECTI ON_ALL,

(unsi gned | ong) MYSQ._AUDI T_PARSE ALL,

(unsi gned | ong) MYSQ._AUDI T_AUTHORI ZATI ON_ALL,
(unsi gned | ong) MYSQ._AUDI T_TABLE ACCESS ALL,
(unsi gned | ong) MYSQ._AUDI T_GLOBAL_VARI ABLE_ALL,
(unsi gned | ong) MYSQ._AUDI T_SERVER STARTUP_ALL,
(unsi gned | ong) MYSQ._AUDI T_SERVER SHUTDOMN ALL,
(unsi gned | ong) MYSQ._AUDI T_COMMVAND_ALL,

(unsi gned | ong) MYSQ._AUDI T_QUERY_ALL,

(unsi gned | ong) MYSQ._AUDI T_STORED PROGRAM ALL }

}s

The server callsaudit _nul | _noti fy() to pass audit event information to the plugin. The plugin has
nor el ease_t hd function.

The cl ass_nmask member is an array that indicates which event classes the plugin subscribes to. As
shown, the array contents subscribe to all subclasses of all event classes that are available. To ignore
all notifications for a given event class, specify the corresponding cl ass_mask element as 0.

The number of cl ass_nask elements corresponds to the number of event classes, each of which is
listed in the mysql _event cl ass_t enumeration defined in pl ugi n_audi t. h:

typedef enum

{
MYSQL_AUDI T_GENERAL_CLASS
MYSQL_AUDI T_CONNECTI ON_CLASS
MYSQL_AUDI T_PARSE_CLASS
MYSQL_AUDI T_AUTHORI ZATI ON_CLASS
MYSQL_AUDI T_TABLE_ACCESS CLASS
MYSQL_AUDI T_GLOBAL_VARI ABLE_CLASS
MYSQL_AUDI T_SERVER STARTUP_CLASS
MYSQL_AUDI T_SERVER SHUTDOWN_CLASS
MYSQL_AUDI T_COMVAND_CLASS
MYSQL_AUDI T_QUERY_CLASS
MYSQL_AUDI T_STORED PROGRAM CLASS
/* This itemnust be last in the li
MYSQL_AUDI T_CLASS MASK_SI ZE

} nysql _event _class_t;

T T T TR T TR T TR TR T
PO®NDUTAWNE O

"
—
o
oS
-

For any given event class, pl ugi n_audi t . h defines bitmask symbols for individual event subclasses,
as well as an xxx_ALL symbol that is the union of the all subclass bitmasks. For example, for
MYSQL_AUDI T_CONNECTI ON_CLASS (the class that covers connect and disconnect events),

pl ugi n_audi t . h defines these symbols:

typedef enum

/** occurs after authentication phase is conpleted. */
MYSQL_AUDI T_CONNECTI ON_CONNECT =1 << 0,
/** occurs after connection is term nated. */
MYSQL_AUDI T_CONNECTI ON_DI SCONNECT =1 << 1,
/** occurs after COM CHANGE USER RPC is conpl eted. */
MYSQL_AUDI T_CONNECTI ON_CHANGE_USER =1 << 2,
/** occurs before authentication. */
MYSQL_AUDI T_CONNECTI ON_PRE_AUTHENTI CATE = 1 << 3

} nysqgl _event _connecti on_subcl ass_t;

#defi ne MYSQL_AUDI T_CONNECTI ON_ALL (MYSQL_AUDI T_CONNECTI ON_CONNECT | \
MYSQL_AUDI T_CONNECTI ON_DI SCONNECT | \
MYSQL_AUDI T_CONNECTI ON_CHANGE_USER | \
MYSQL_AUDI T_CONNECTI ON_PRE_AUTHENTI| CATE)

To subscribe to all subclasses of the connection event class (as the NULL_AUDI T plugin does), a
plugin specifies MYSQL_AUDI T_CONNECTI ON_ALL in the corresponding cl ass_nask element

(cl ass_nmsk][1] in this case). To subscribe to only some subclasses, the plugin sets the

cl ass_mask element to the union of the subclasses of interest. For example, to subscribe only to the
connect and change-user subclasses, the plugin sets cl ass_nmask|[1] to this value:

MYSQL_AUDI T_CONNECTI ON_CONNECT | MYSQL_AUDI T_CONNECTI ON_CHANGE_USER

44

Writing Audit Plugins

Audit Plugin Notification Function

Most of the work for an audit plugin occurs in the notification function (the event _noti f y member of
the type-specific plugin descriptor). The server calls this function for each auditable event. Audit plugin
notification functions have this prototype:

int (*event_notify)(MYSQ_THD, nysql_event_class_t, const void *);

The second and third parameters of the event _not i f y function prototype represent the event class
and a generic pointer to an event structure. (Events in different classes have different structures.

The notification function can use the event class value to determine which event structure applies.)
The function processes the event and returns a status indicating whether the server should continue
processing the event or terminate it.

For NULL_AUDI T, the notification function is audi t _nul | _noti fy() . This function increments a
global event counter (which the plugin exposes as the value of the Audi t _nul | _cal | ed status
value), and then examines the event class to determine how to process the event structure:

static int audit_null _notify(MYSQL_THD thd __attribute__((unused)),
nmysql _event _cl ass_t event _cl ass,
const void *event)

nunber _of _cal | s++;

if (event_class == MYSQL_AUDI T_GENERAL_CLASS)
{

const struct mysql _event _general *event_general =
(const struct mnysql _event _general *)event;

else if (event_class == MYSQL_AUDI T_CONNECTI ON_CLASS)

const struct mysqgl _event_connecti on *event _connecti on=
(const struct mysql _event _connection *) event;

}
else if (event_class == MYSQL_AUDI T_PARSE_CLASS)

{
const struct mysql _event_parse *event_parse =
(const struct mnysql _event _parse *)event;

}

The notification function interprets the event argument according to the value of event _cl ass. The
event argument is a generic pointer to the event record, the structure of which differs per event class.
(The pl ugi n_audi t . h file contains the structures that define the contents of each event class.) For
each class, audit _nul | _notify() casts the event to the appropriate class-specific structure and
then checks its subclass to determine which subclass counter to increment. For example, the code to
handle events in the connection-event class looks like this:

else if (event_class == MYSQL_AUDI T_CONNECTI ON_CLASS)
{

const struct mysqgl _event_connecti on *event _connecti on=
(const struct mysql _event _connection *) event;

switch (event_connecti on->event _subcl ass)

case MYSQ._AUDI T_CONNECTI ON_CONNECT:
nunber _of cal |l s_connecti on_connect ++;
br eak;

case MYSQ._AUDI T_CONNECTI ON_DI SCONNECT:
nunber _of cal | s_connecti on_di sconnect ++;

45

Writing Audit Plugins

br eak;
case MYSQL_AUDI T_CONNECTI ON_CHANGE_USER:
nunmber _of _cal | s_connecti on_change_user ++;
br eak;
case MYSQL_AUDI T_CONNECTI ON_PRE_AUTHENTI CATE:
nunmber _of _cal | s_connecti on_pre_aut henti cat e++;
br eak;
defaul t:
br eak;

}
}

Note

The general event class (MYSQL_AUDI T_GENERAL_CLASS) is deprecated and
will be removed in a future MySQL release. To reduce plugin overhead, it is
preferable to subscribe only to the more specific event classes of interest.

For some event classes, the NULL_AUDI T plugin performs other processing in addition to incrementing
a counter. In any case, when the notification function finishes processing the event, it should return a
status indicating whether the server should continue processing the event or terminate it.

Audit Plugin Error Handling

Audit plugin notification functions can report a status value for the current event two ways:

» Use the notification function return value. In this case, the function returns zero if the server should
continue processing the event, or nonzero if the server should terminate the event.

» Call the ny_nessage() function to set the error state before returning from the notification function.
In this case, the notification function return value is ignored and the server aborts the event and
terminates event processing with an error. The ny _nessage() arguments indicate which error to
report, and its message. For example:

ny_nessage(ER_AUDI T_API _ABORT, "This is ny error nessage.", MYF(0));

Some events cannot be aborted. A nonzero return value is not taken into consideration and the
my_nmessage() error call must follow ani s_error () check. For example:

if (!thd->get_stnmt _da()->is_error())

{
nmy_nmessage(ER_AUDI T_API _ABORT, "This is nmy error nessage.", MYF(0));

}
These events cannot be aborted:

o IMYSQL_AUDI T_CONNECTI ON_DI SCONNECT: The server cannot prevent a client from disconnecting.

e MYSQL_AUDI T_COMVAND END: This event provides the status of a command that has finished
executing, so there is no purpose to terminating it.

If an audit plugin returns nonzero status for a nonterminable event, the server ignores the status and
continues processing the event. This is also true if an audit plugin uses the ny_nessage() function to
terminate a nonterminable event.

Audit Plugin Usage

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory
(the directory named by the pl ugi n_di r system variable). For the NULL_AUDI T plugin, it is compiled
and installed when you build MySQL from source. It is also included in binary distributions. The build
process produces a shared object library with a name of adt _nul | . so (the . so suffix might differ
depending on your platform).

46

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

Writing Audit Plugins

To register the plugin at runtime, use this statement, adjusting the . so suffix for your platform as
necessary:

I NSTALL PLUG N NULL_AUDI T SONAME ' adt _nul | . so' ;
For additional information about plugin loading, see Installing and Uninstalling Plugins.

To verify plugin installation, examine the | NFORMATI ON_SCHENMA. PLUG NS table or use the SHOW
PLUG NS statement. See Obtaining Server Plugin Information.

While the NULL_AUDI T audit plugin is installed, it exposes status variables that indicate the events for
which the plugin has been called:

nysql > SHOW STATUS LI KE 'Audit_nul | % ;

foocccooccoccocooccoocoocoscoSoccoocooosoooooo oocccooo +
| Vari abl e_nane | Value |
foocccooccoccocooccoocoocoscoSoccoocooosoooooo oocccooo +
Audit_null _authorization_col um	O
Audit_null _authorization_db	O
Audit_null _authorization_procedure	O
Audit_null _authorization_proxy	O
Audit_null _authorization_table	O
Audit_null _authorization_user	O
Audit_null _called	185547
Audit_null_command_end	20999
Audit_null_conmmand_start	21001
Audit_null _connection_change_user	O
Audit_null _connection_connect	5823
Audit_null _connection_di sconnect	5818
Audit_null _connection_pre_authenticate	5823
Audit_null _general _error	1
Audit_null_general _I og	26559
Audit_null _general _result	19922
Audit_null _general _status	21000
Audit_null _gl obal _vari abl e_get	O
Audit_null _gl obal _vari abl e_set	O
Audit_null _nessage_internal	O
Audit_null _nessage_user	O
Audit_null _parse_postparse	14648
Audit_null _parse_preparse	14648
Audit_null _query nested_start	6
Audit_null_query_nested_status_end	6
Audit_null _query_start	14648
Audit_null_query_status_end	14647
Audit_null _server_shut down	O
Audit_null_server_startup	1
Audit_null _tabl e_access_del ete	104
Audit_null _table_access_insert	2839
Audit_null _tabl e_access_read	97842
Audit_null _tabl e_access_update	278
foocccooccoccocooccoocoocoscoSoccoocooosoooooo oocccooo +

Audit _nul | _cal | ed counts all events, and the other variables count instances of specific event
subclasses. For example, the preceding SHOW STATUS statement causes the server to send a result
to the client and to write a message to the general query log if that log is enabled. Thus, a client that
issues the statement repeatedly causes Audit _nul | _cal | ed, Audit_nul | _general result,
and Audi t _nul | _general _| og to be incremented each time. Notifications occur whether or not that
log is enabled.

The status variables values are global and aggregated across all sessions. There are no counters for
individual sessions.

NULL_AUDI T exposes several system variables that enable communication with the plugin at runtime:

nmysqgl > SHOW VARI ABLES LI KE 'nul | _audit % ;

47

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/8.0/en/show-status.html

Writing Audit Plugins

nul | _audi t _abort_nessage

nul | _audi t _abort _val ue 1
nul | _audi t _event _order_check
nul | _audi t _event _order_check_consume_i gnor e_count 0

| |
| |
| |
| |
nul | _audi t _event _order_check_exact | 1 |
| |
| |
| |

nul | _audi t _event _order_started 0

nul | _audi t _event _record

nul | _audi t _event _record_def
P P P P S holoioioio +

The NULL_AUDI T system variables have these meanings:
e null _audit_abort nessage: The custom error message to use when an event is aborted.
e nul | _audit_abort _val ue: The custom error code to use when an event is aborted.

« null _audit_event order_check: Prior to event matching, the expected event order. After event
matching, the matching outcome.

e null __audit_event order_check consune_i gnore_count : Number of times event matching
should not consume matched events.

e null _audit_event order_ check_exact : Whether event matching must be exact. Disabling
this variable enables skipping events not listed in nul | _audi t _event _or der _check during
event-order matching. Of the events specified, they must still match in the order given.

e null _audit_event order_start ed: Forinternal use.
e« null __audit_event record: The recorded events after event recording takes place.

« null _audit_event record_def: The names of the start and end events to match when
recording events, separated by a semicolon. The value must be set before each statement for which
events are recorded.

To demonstrate use of those system variables, suppose that a table db1. t 1 exists, created as follows:

CREATE DATABASE db1;
CREATE TABLE dbl.t1 (a VARCHAR(255));

For test-creation purposes, it is possible to record events that pass through the plugin. To start
recording, specify the start and end events inthe nul | _audit _event record_def variable. For
example:

SET @@nul | _audi t _event _record_def =
' MYSQL_AUDI T_COMVAND_START; MYSQL_AUDI T_COMVAND END ;

After a statement occurs that matches those start and end events, the nul | _audit _event record
system variable contains the resulting event sequence. For example, after recording the events for a
SELECT 1 statement, nul | _audit _event record is a string that has a value consisting of a set of
event strings:

MYSQL_AUDI T_COWAND_START; command_i d="3";
MYSQL_AUDI T_PARSE_PREPARSE; ;

MYSQL_AUDI T_PARSE_POSTPARSE; ;

MYSQL_AUDI T_GENERAL_LGCG ;

MYSQL_AUDI T_QUERY_START; sql _command_i d="0";
MYSQL_AUDI T_QUERY_STATUS_END; sql _command_i d="0";
MYSQL_AUDI T_GENERAL_RESULT; ;

MYSQL_AUDI T_GENERAL_STATUS; ;

MYSQL_AUDI T_COMVAND_END; conmand_i d="3";

After recording the events for an | NSERT | NTO dbl1.t1 VALUES ('sone data') statement,
nul | _audit_event record has this value:

MYSQL_AUDI T_COMVAND_START; conmand_i d="3";

48

Writing Audit Plugins

MYSQL_AUDI T_PARSE PREPARSE;

MYSQL_AUDI T_PARSE_POSTPARSE;

MYSQL_AUDI T_GENERAL_LCG ;

MYSQL_AUDI T_QUERY_START; sql _command_i d="5"
MYSQL_AUDI T_TABLE_ACCESS | NSERT; db="db1" tabl e="t1"
MYSQL_AUDI T_QUERY_STATUS_END; sql _command_i d="5"
MYSQL_AUDI T_GENERAL_RESULT;

MYSQL_AUDI T_GENERAL_STATUS;

MYSQL_AUDI T_COMVAND_END; conmand_i d="3"

Each event string has this format, with semicolons separating the string parts:

event _nane; event _dat a; conmand

Event strings have these parts:

* event _nane: The event name (a symbol that begins with MYSQL_AUDI T).

e event _dat a: Empty, or, as described later, data associated with the event.

» conmmand: Empty, or, as described later, a command to execute when the event is matched.
Note

A limitation of the NULL_AUDI T plugin is that event recording works for a single
session only. Once you record events in a given session, event recording in
subsequent sessions yields anul | _audit _event record value of NULL. To
record events again, it is necessary to restart the plugin.

To check the order of audit API calls, setthe nul | _audi t _event order _check variable to the
expected event order for a particular operation, listing one or more event strings, each containing two
semicolons internally, with additional semicolons separating adjacent event strings:

event _nane; event _dat a; command [; event _nane; event _dat a; comrand]

For example:

SET @@ul | _audi t _event _order_check =
' MYSQL._AUDI T_CONNECTI ON_PRE_AUTHENTI CATE; ; ;'
" MYSQL_AUDI T_GENERAL_LOG;; ;'
' MYSQL_AUDI T_CONNECTI ON_CONNECT; ; ' ;

For better readability, the statement takes advantage of the SQL syntax that concatenates adjacent
strings into a single string.

After you setthe nul | _audi t _event _or der _check variable to a list of event strings, the next
matching operation replaces the variable value with a value that indicates the operation outcome:

« If the expected event order was matched successfully, the resulting
nul | _audit_event order_check value is EVENT- ORDER- OK.

» Ifthenul | _audit _event order_check value specified aborting a matched event (as described
later), the resulting nul | _audi t _event order _check value is EVENT- ORDER- ABORT.

« If the expected event order failed with unexpected data, the resulting
nul | _audit _event order_check value is EVENT- ORDER- | NVALI D- DATA. This occurs, for
example, if an event was specified as expected to affect table t 1 but actually affected t 2.

When you assignto nul | _audi t _event order _check the list of events to be matched, some
events should be specified with a nonempty event _dat a part of the event string. The following table
shows the event _dat a format for these events. If an event takes multiple data values, they must be
specified in the order shown. Alternatively, it is possible to specify an event _dat a value as <I GNORE>
to ignore event data content; in this case, it does not matter whether or not an event haas data.

49

Writing Audit Plugins

Applicable Events

Event Data Format

MYSQL_AUDI T_COVMAND_START

MYSQL_AUDI T_COVVAND_END

comand_i d="id_val ue”

MYSQL_AUDI T_GLOBAL_VARI ABLE_GET

MYSQL_AUDI T_GLOBAL_VARI ABLE_SET

nanme="var _val ue" val ue="var _val ue"

MYSQL_AUDI T_QUERY_NESTED_START

sql _comuand_i d="id_val ue"

MYSQL_AUDI T_QUERY_NESTED_STATUS_END
MYSQL_AUDI T_QUERY_START

MYSQL_AUDI T_QUERY_STATUS_END

MYSQL_AUDI T_TABLE_ACCESS_DELETE db="db_nane" tabl e="tabl e_nane"
MySQL_AUDI T_TABLE_ACCESS_| NSERT

MYSQL_AUDI T_TABLE_ACCESS_READ

MYSQL_AUDI T_TABLE_ACCESS_UPDATE

Inthe nul | _audit _event order_check value, specifying ABORT _RET in the command part of
an event string makes it possible to abort the audit API call on the specified event. (Assuming that
the event is one that can be aborted. Those that cannot were described previously.) For example, as
shown previously, this is the expected order of events for an insertinto t 1:

MYSQL_AUDI T_COMVAND_START; conmand_i d="3";

MYSQL_AUDI T_PARSE_PREPARSE; ;

MYSQL_AUDI T_PARSE_POSTPARSE; ;

MYSQL_AUDI T_GENERAL_LOG; ;

MYSQL_AUDI T_QUERY_START; sql _command_i d="5";
MYSQL_AUDI T_TABLE_ACCESS | NSERT; db="db1" table="t1";
MYSQL_AUDI T_QUERY_STATUS_END; sql _command_i d="5";
MYSQL_AUDI T_GENERAL_RESULT; ;

MYSQL_AUDI T_GENERAL_STATUS; ;

MYSQL_AUDI T_COMVAND_END; conmand_i d="3";

To abort | NSERT statement execution when the MYSQL_AUDI T_QUERY_STATUS_END event occurs,
setnul | _audit_event _order _check like this (remember to add semicolon separators between
adjacent event strings):

SET @onul | _audit _event _order_check =
' MYSQ._AUDI T_COWWAND_START; conmand_i d="3"; ;"'
' MYSQL_AUDI T_PARSE_PREPARSE; ; ;'
' MYSQL_AUDI T_PARSE_POSTPARSE; ; ; *
" MYSQL_AUDI T_GENERAL_LOG; ; ;'
' MYSQL_AUDI T_QUERY_START; sql _conmand_i d="5"; ;"'
' MYSQL_AUDI T_TABLE _ACCESS | NSERT; db="db1" table="t1";;"
' M\YSQL_AUDI T_QUERY_STATUS END; sql _conmand_i d="5"; ABORT_RET" ;

It is not necesary to list events that are expected to occur after the event string that contains a
conmand value of ABORT _RET.

After the audit plugin matches the preceding sequence, it aborts event processing and sends an error
message to the client. It also sets nul | _audi t _event or der_check to EVENT- ORDER- ABORT:

nmysqgl > | NSERT | NTO dbl.t1 VALUES ('sone data');

ERROR 3164 (HY000): Aborted by Audit APl (' MYSQL_AUDI T_QUERY_STATUS END ;1) .
nmysql > SELECT @onul | _audit _event _order _check;

| EVENT- ORDER- ABORT |

50

https://dev.mysql.com/doc/refman/8.0/en/insert.html

Writing Authentication Plugins

Returning a nonzero value from the audit API notification routine is the standard way to
abort event execution. It is also possible to specify a custom error code by setting the
nul | _audit_abort val ue variable to the value that the notification routine should return:

SET @@nul | _audi t _abort_val ue = 123;

Aborting a sequence results in a standard message with the custom error code. Suppose that you
set audit log system variables like this, to abort on a match for the events that occur for a SELECT 1
statement:

SET @@ul | _audi t _abort_val ue = 123;
SET @@ul | _audi t _event _order_check =
' MYSQL_AUDI T_COMVAND_START; command_i d="3"; ;"'
' MYSQL_AUDI T_PARSE_PREPARSE; ; ;'
' MYSQL_AUDI T_PARSE_POSTPARSE; ; ;'
" MYSQL_AUDI T_GENERAL_LGCG ; ;'
' MYSQL_AUDI T_QUERY_START; sql _conmand_i d="0"; ABORT_RET" ;

Then execution of SELECT 1 results in this error message that includes the custom error code:

nmysql > SELECT 1;
ERROR 3164 (HY000): Aborted by Audit APl (' MYSQL_AUDI T_QUERY_START' ; 123).

nmysql > SELECT @@ul | _audit_event _order _check;

e +
| @@ul | _audit_event _order_check |
e +
| EVENT- ORDER- ABORT |
e +

An event can be also aborted with a custom message, specified by setting the
nul | _audit_abort _nessage variable. Suppose that you set audit log system variables like this:

SET @@ul | _audi t _abort_nessage = ' Custom error text.';
SET @oul | _audit_event _order_check =

' MYSQ._AUDI T_COWAND_START; conmand_i d="3"; ;"'

' MYSQL_AUDI T_PARSE PREPARSE; ; ;'

' MYSQL_AUDI T_PARSE POSTPARSE; ; ;'

' MYSQL_AUDI T_GENERAL_LGCG; ; ;'

' MYSQL_AUDI T_QUERY_START; sql _conmand_i d="0"; ABORT_RET" ;

Then aborting a sequence results in the following error message:

nmysql > SELECT 1;
ERROR 3164 (HY000): Customerror text.
nmysql > SELECT @@ul | _audit_event _or der _check;

fhmccoooooooooooooooooooooooooooos +
| @@ul | _audit_event _order_check |
fhmccoooooooooooooooooooooooooooos +
| EVENT- ORDER- ABORT |
fhmccoooooooooooooooooooooooooooos +

To disable the NULL_AUDI T plugin after testing it, use this statement to unload it:

UNI NSTALL PLUG N NULL_AUDI T;

4.4.9 Writing Authentication Plugins

MySQL supports pluggable authentication, in which plugins are invoked to authenticate client
connections. Authentication plugins enable the use of authentication methods other than the built-in
method of passwords stored in the nmysql . user system table. For example, plugins can be written
to access external authentication methods. Also, authentication plugins can support the proxy user
capability, such that the connecting user is a proxy for another user and is treated, for purposes of
access control, as having the privileges of a different user. For more information, see Pluggable
Authentication, and Proxy Users.

51

https://dev.mysql.com/doc/refman/8.0/en/pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/proxy-users.html

Writing Authentication Plugins

An authentication plugin can be written for the server side or the client side. Server-side plugins use the
same plugin API that is used for the other server plugin types such as full-text parser or audit plugins
(although with a different type-specific descriptor). Client-side plugins use the client plugin API.

Several header files contain information relevant to authentication plugins:
e pl ugi n. h: Defines the MYSQL_ AUTHENTI CATI ON_PLUGQ N server plugin type.

* client_plugin. h: Defines the API for client plugins. This includes the client plugin descriptor and
function prototypes for client plugin C API calls (see C API Client Plugin Interface).

e plugi n_aut h. h: Defines the part of the server plugin API specific to authentication plugins.
This includes the type-specific descriptor for server-side authentication plugins and the
MYSQL_SERVER_AUTH_| NFOstructure.

e plugin_auth_common. h: Contains common elements of client and server authentication plugins.
This includes return value definitions and the M\YSQL_PLUG N_VI Ostructure.

To write an authentication plugin, include the following header files in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

» For a source file that implements a server authentication plugin, include this file:

#i ncl ude <mysql / pl ugi n_aut h. h>

» For a source file that implements a client authentication plugin, or both client and server plugins,
include these files:

#i ncl ude <mysql / pl ugi n_aut h. h>
#i ncl ude <mysql/client_pl ugi n. h>
#i ncl ude <nmysql . h>

pl ugi n_aut h. hincludes pl ugi n. h and pl ugi n_aut h_conmon. h, so you need not include the
latter files explicitly.

This section describes how to write a pair of simple server and client authentication plugins that work
together.

Warning

These plugins accept any non-empty password and the password is sent as
cleartext. This is insecure, so the plugins should not be used in production
environments.

The server-side and client-side plugins developed here both are named aut h_si npl e. As described
in Section 4.4.2, “Plugin Data Structures”, the plugin library file must have the same base name

as the client plugin, so the source file name is aut h_si npl e. ¢ and produces a library named

aut h_si npl e. so (assuming that your system uses . so as the suffix for library files).

In MySQL source distributions, authentication plugin source is located in the pl ugi n/ aut h directory
and can be examined as a guide to writing other authentication plugins. Also, to see how the built-

in authentication plugins are implemented, see sql / sgl _acl . cc for plugins that are built in to the
MySQL server and sql - conmon/ cl i ent . ¢ for plugins that are built into the | i brmysql cl i ent
client library. (For the built-in client plugins, note that the aut h_pl ugi n_t structures used there differ
from the structures used with the usual client plugin declaration macros. In particular, the first two
members are provided explicitly, not by declaration macros.)

4.4.9.1 Writing the Server-Side Authentication Plugin

Declare the server-side plugin with the usual general descriptor format that is used for all server plugin
types (see Section 4.4.2.1, “Server Plugin Library and Plugin Descriptors”). For the aut h_si npl e
plugin, the descriptor looks like this:

52

https://dev.mysql.com/doc/c-api/8.0/en/c-api-plugin-interface.html

Writing Authentication Plugins

nysql _decl are_pl ugi n(aut h_si npl e)

{
MYSQL_AUTHENTI CATI ON_PLUG N,

&aut h_si npl e_handl er, /* type-specific descriptor */
"aut h_si npl e", /* plugin name */

" Aut hor Nane", [* aut hor */

" Any- password aut hentication plugin", /* description */

PLUG N_LI CENSE_GPL, /* license type */

NULL, /* no init function */

NULL, /* no deinit function */
0x0100, /* version = 1.0 */

NULL, /* no status variables */
NULL, /* no system variables */
NULL, /* no reserved informati on */
0 /* no flags */

nmysql _decl are_pl ugi n_end;

The nanme member (aut h_si npl e) indicates the name to use for references to the plugin in
statements such as | NSTALL PLUG Nor UNI NSTALL PLUG N. This is also the name displayed by
SHOW PLUG NS or | NFORVATI ON_SCHEMA. PLUGQ NS.

The aut h_si npl e_handl er member of the general descriptor points to the type-specific descriptor.
For an authentication plugin, the type-specific descriptor is an instance of the st _nysql _auth
structure (defined in pl ugi n_aut h. h):

struct st_nysqgl _auth

{
int interface_version;
const char *client_auth_pl ugin;
int (*authenticate_user)(MSQL_PLUG N_VI O *vi o, MYSQ._SERVER AUTH | NFO *i nf 0) ;
int (*generate_authentication_string)(char *outbuf,
unsi gned int *outbuflen, const char *inbuf, unsigned int inbuflen);
int (*validate_authentication_string)(char* const inbuf, unsigned int buflen);
int (*set_salt)(const char *password, unsigned int password_| en,
unsi gned char* salt, unsigned char *salt_|en);
const unsigned | ong authentication_fl ags;
g

The st _nysql _aut h structure has these members:

* interface_version: The type-specific API version number, always
MYSQL_AUTHENTI CATI ON_I NTERFACE_VERSI ON

e client _auth_plugin: The client plugin name
e aut henti cat e_user: A pointer to the main plugin function that communicates with the client

* generate_authentication_string: A pointer to a plugin function that generates a password
digest from an authentication string

» val i date_aut hentication_string: A pointer to a plugin function that validates a password
digest

» set _sal t: A pointer to a plugin function that converts a scrambled password to binary form
e authentication_flags:A flags word

The cl i ent _aut h_pl ugi n member should indicate the name of the client plugin if a specific plugin is
required. A value of NULL means “any plugin.” In the latter case, whatever plugin the client uses will do.
This is useful if the server plugin does not care about the client plugin or what user name or password
it sends. For example, this might be true if the server plugin authenticates only local clients and uses
some property of the operating system rather than the information sent by the client plugin.

For aut h_si npl e, the type-specific descriptor looks like this:

static struct st_mysqgl _auth auth_sinpl e_handl er =

53

https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html

Writing Authentication Plugins

{
MYSQL_AUTHENTI CATI ON_| NTERFACE_VERSI ON,
"aut h_si npl e", /* required client-side plugin nane */
aut h_si npl e_server /* server-side plugin main function */

generate_aut h_string_hash, /* generate digest from password string */
val i date_aut h_string_hash, /* validate password di gest */

set _salt, /* generate password salt val ue */
AUTH_FLAG PRI VI LEGED_USER FOR_PASSWORD CHANGE

}s

The main function, aut h_si npl e_ser ver (), takes two arguments representing an |/O structure and
a MYSQL_SERVER_AUTH_| NFOstructure. The structure definition, found in pl ugi n_aut h. h, looks
like this:

typedef struct st_nysql _server_auth_info

char *user_nane;
unsi gned i nt user_nane_| engt h;
const char *auth_string;
unsi gned | ong auth_string_| engt h;
char aut henti cat ed_as[MYSQL_USERNAME_LENGTH+1] ;
char external _user[512];
int password_used;
const char *host_or_ip;
unsi gned int host_or_ip_| engt h;
} MYSQL_SERVER AUTH | NFO,

The character set for string members is UTF-8. If there is a | engt h member associated with a string,
it indicates the string length in bytes. Strings are also null-terminated.

When an authentication plugin is invoked by the server, it should interpret the
MYSQL_SERVER AUTH I NFOstructure members as follows. Some of these are used to set the value
of SQL functions or system variables within the client session, as indicated.

» user _nane: The user name sent by the client. The value becomes the USER() function value.
» user_nane_| engt h: The length of user _nane in bytes.

e aut h_string: The value of the aut henti cati on_stri ng column of the row in the nmysql . user
system table for the matching account name (that is, the row that matches the client user name and
host name and that the server uses to determine how to authenticate the client).

Suppose that you create an account using the following statement:

CREATE USER ' ny_user' @1 ocal host"'
| DENTI FIED WTH nmy_plugin AS 'ny_auth_string';

When nmy_user connects from the local host, the server invokes ny_pl ugi n and passes
"nmy_auth_string' toitasthe aut h_string value.

e auth_string_| engt h: The length of aut h_st ri ng in bytes.

» aut henti cat ed_as: The server sets this to the user name (the value of user _nane). The plugin
can alter it to indicate that the client should have the privileges of a different user. For example, if
the plugin supports proxy users, the initial value is the name of the connecting (proxy) user, and the
plugin can change this member to the proxied user name. The server then treats the proxy user as
having the privileges of the proxied user (assuming that the other conditions for proxy user support
are satisfied; see Section 4.4.9.4, “Implementing Proxy User Support in Authentication Plugins”). The
value is represented as a string at most MYSQL_USER_NANME_LENGTH bytes long, plus a terminating
null. The value becomes the CURRENT USER() function value.

» external _user: The server sets this to the empty string (null terminated). Its value becomes the
ext ernal _user system variable value. If the plugin wants that system variable to have a different
value, it should set this member accordingly (for example, to the connecting user name). The value is
represented as a string at most 511 bytes long, plus a terminating null.

54

https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_external_user

Writing Authentication Plugins

e passwor d_used: This member applies when authentication fails. The plugin can set it or ignore it.
The value is used to construct the failure error message of Aut hentication fails. Password
used: %. The value of passwor d_used determines how %s is handled, as shown in the following

table.

passwor d_used % Handling

0 NO

1 YES

2 There will be no %s

* host _or _i p: The name of the client host if it can be resolved, or the IP address otherwise.
e host _or i p_I engt h: The length of host _or i p in bytes.

The aut h_si npl e main function, aut h_si npl e_ser ver (), reads the password (a null-terminated
string) from the client and succeeds if the password is nonempty (first byte not null):

static int auth_sinple_server (MYSQL_PLUG N VIO *vi o,
MYSQL_SERVER AUTH_ | NFO *i nf 0)
{
unsi gned char *pkt;
int pkt_|en;

/* read the password as null-term nated string, fail on error */
if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
return CR_ERROR

/* fail on enpty password */
if (!pkt_len || *pkt == "'\0")

{
i nf o- >passwor d_used= PASSWORD USED NG,

return CR_ERROR
}

/* accept any nonenpty password */
i nf o- >passwor d_used= PASSWORD USED YES;

return CR CK;
}

The main function should return one of the error codes shown in the following table.

Error Code Meaning

CR XK Success

CR_OK_HANDSHAKE COVPLETE Do not send a status packet back to client
CR_ERRCR Error

CR_AUTH_USER_ CREDENTI ALS Authentication failure
CR_AUTH_HANDSHAKE Authentication handshake failure
CR_AUTH _PLUG N_ERROR Internal plugin error

For an example of how the handshake works, see the pl ugi n/ aut h/ di al og. c source file.
The server counts plugin errors in the Performance Schema host _cache table.

aut h_si npl e_server () is so basic that it does not use the authentication information structure
except to set the member that indicates whether a password was received.

A plugin that supports proxy users must return to the server the name of the proxied user (the
MySQL user whose privileges the client user should get). To do this, the plugin must set the i nf o-

https://dev.mysql.com/doc/refman/8.0/en/performance-schema-host-cache-table.html

Writing Authentication Plugins

>aut hent i cat ed_as member to the proxied user name. For information about proxying, see Proxy
Users, and Section 4.4.9.4, “Implementing Proxy User Support in Authentication Plugins”.

The gener at e_aut henti cati on_stri ng member of the plugin descriptor takes the password and
generates a password hash (digest) from it:

» The first two arguments are pointers to the output buffer and its maximum length in bytes. The
function should write the password hash to the output buffer and reset the length to the actual hash
length.

» The second two arguments indicate the password input buffer and its length in bytes.
» The function returns 0 for success, 1 if an error occurred.

For the aut h_si npl e plugin, the gener at e_aut h_st ri ng_hash() function implements the
gener at e_aut henti cati on_stri ng member. It just makes a copy of the password, unless it is too
long to fit in the output buffer.

int generate_auth_string_hash(char *outbuf, unsigned int *buflen
const char *inbuf, unsigned int inbuflen)
{

/*
fail if buffer specified by server cannot be copied to output buffer
*/
if (*buflen < inbuflen)
return 1, /* error */
strncpy(out buf, inbuf, inbuflen)
*bufl en= strlen(inbuf)
return O; /* success */

}

The val i dat e_aut henti cati on_stri ng member of the plugin descriptor validates a password
hash:

* The arguments are a pointer to the password hash and its length in bytes.
» The function returns 0 for success, 1 if the password hash cannot be validated.

For the aut h_si npl e plugin, the val i dat e_aut h_stri ng_hash() function implements the
val i dat e_aut henti cati on_stri ng member. It returns success unconditionally:

int validate_auth_string_hash(char* const inbuf _ attribute__((unused)),
unsigned int buflen __attribute__ ((unused)))

{

return O; /* success */

}

The set _sal t member of the plugin descriptor is used only by the nysql nati ve password
plugin (see Native Pluggable Authentication). For other authentication plugins, you can use this trivial
implementation:

int set_salt(const char* password __attribute__ ((unused)),
unsi gned int password_len __attribute_ ((unused)),
unsi gned char* salt _ _attribute__ ((unused)),
unsi gned char* salt_|en)

{
*salt_len= 0
return O; /* success */

}

The aut hent i cati on_f | ags member of the plugin descriptor contains flags that affect plugin
operation. The permitted flags are:

e AUTH FLAG PRI VI LEGED USER FOR PASSWORD CHANGE: Credential changes are a privileged
operation. If this flag is set, the server requires that the user has the global CREATE USER privilege
or the UPDATE privilege for the nysql database.

56

https://dev.mysql.com/doc/refman/8.0/en/proxy-users.html
https://dev.mysql.com/doc/refman/8.0/en/proxy-users.html
https://dev.mysql.com/doc/refman/8.0/en/native-pluggable-authentication.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_create-user
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_update

Writing Authentication Plugins

e AUTH FLAG USES | NTERNAL STORAGE: Whether the plugin uses internal storage (in the
aut henti cation_string columnof nysql . user rows). If this flag is not set, attempts to set the
password fail and the server produces a warning.

 AUTH FLAG REQUI RES REG STRATI ON: This flag is set for authentication plugins that require a
registration process. It is checked for CREATE USER and ALTER USER statements, and when the
aut henti cation_pol i cy system variable is assigned a value. Added in MySQL 8.0.27.

4.4.9.2 Writing the Client-Side Authentication Plugin

Declare the client-side plugin descriptor with the nysql _decl are_cl i ent _pl ugi n() and
nysql _end_cl i ent _pl ugi n macros (see Section 4.4.2.3, “Client Plugin Descriptors”). For the
aut h_si npl e plugin, the descriptor looks like this:

nysql _decl are_cl i ent _pl ugi n(AUTHENTI CATI ON)

"aut h_si npl e", /* plugin name */

" Aut hor Nane", [* author */

"Any- password aut hentication plugin", /* description */

{1, 0, 0}, /* version = 1.0.0 */

"GPL", /* license type */

NULL, /* for internal use */

NULL, /* no init function */

NULL, /* no deinit function */

NULL, /* no option-handling function */
aut h_sinpl e_client /* main function */

nysql _end_client_plugin

The descriptor members from the plugin name through the option-handling function are common to all
client plugin types. (For descriptions, see Section 4.4.2.3, “Client Plugin Descriptors”.) Following the
common members, the descriptor has an additional member specific to authentication plugins. This is
the “main” function, which handles communication with the server. The function takes two arguments
representing an I/O structure and a connection handler. For our simple any-password plugin, the main
function does nothing but write to the server the password provided by the user:

static int auth_sinple_client (MYSQL_PLUG N VIO *vio, MYSQ *nysql)
{

int res;

/* send password as null-term nated string as cleartext */

res= vio->wite_packet(vio, (const unsigned char *) nysql ->passwd,
strlen(nysqgl - >passwd) + 1);

return res ? CR ERROR : CR XK
}

The main function should return one of the error codes shown in the following table.

Error Code Meaning

CR XK Success
CR_OK_HANDSHAKE COVPLETE Success, client done
CR_ERRCR Error

CR_OK_HANDSHAKE COVPLETE indicates that the client has done its part successfully and has read
the last packet. A client plugin may return CR_OK_HANDSHAKE COVPLETE if the number of round
trips in the authentication protocol is not known in advance and the plugin must read another packet to
determine whether authentication is finished.

4.4.9.3 Using the Authentication Plugins
To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and

Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the
directory named by the pl ugi n_di r system variable).

57

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/alter-user.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_authentication_policy
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

Writing Authentication Plugins

Register the server-side plugin with the server. For example, to load the plugin at server startup, use a
--pl ugi n-1 oad=aut h_si npl e. so option, adjusting the . so suffix for your platform as necessary.

Create a user for whom the server will use the aut h_si npl e plugin for authentication:

nysqgl > CREATE USER ' x' @I ocal host"'
-> | DENTI FI ED W TH aut h_si npl €;

Use a client program to connect to the server as user x. The server-side aut h_si npl e plugin
communicates with the client program that it should use the client-side aut h_si npl e plugin, and
the latter sends the password to the server. The server plugin should reject connections that send an
empty password and accept connections that send a nonempty password. Invoke the client program
each way to verify this:

$> nysql --user=x --skip-password
ERROR 1045 (28000): Access denied for user 'x' @I ocal host' (using password: NO

$> nysql --user=x --password
Ent er password: abc
nysql >

Because the server plugin accepts any honempty password, it should be considered insecure. After
testing the plugin to verify that it works, restart the server without the - - pl ugi n- | oad option so as not
to indavertently leave the server running with an insecure authentication plugin loaded. Also, drop the
user with DROP USER ' x' @1 ocal host " .

For additional information about loading and using authentication plugins, see Installing and
Uninstalling Plugins, and Pluggable Authentication.

If you are writing a client program that supports the use of authentication plugins, normally
such a program causes a plugin to be loaded by calling mysqgl _opti ons() to set the
MYSQL_DEFAULT_AUTHand MYySQL_PLUG N _DI R options:

char *plugin_dir = "path_to_plugin_dir";
char *default_auth = "plugi n_nanme";

/* ... process command-line options ... */

mysql _options(&mysqgl, MYSQ._PLUG N DI R, plugin_dir);
nmysql _opti ons(&rysql, MySQ._DEFAULT_AUTH, default_auth);

Typically, the program will also accept - - pl ugi n-di r and - - def aul t - aut h options that enable
users to override the default values.

Should a client program require lower-level plugin management, the client library contains functions
that take an st _nysql _cl i ent _pl ugi n argument. See C API Client Plugin Interface.

4.4.9.4 Implementing Proxy User Support in Authentication Plugins

One of the capabilities that pluggable authentication makes possible is proxy users (see Proxy Users).
For a server-side authentication plugin to participate in proxy user support, these conditions must be
satisfied:

» When a connecting client should be treated as a proxy user, the plugin must return a different name
in the aut hent i cat ed_as member of the M\YSQL_SERVER AUTH | NFOstructure, to indicate the
proxied user name. It may also optionally set the ext er nal _user member, to set the value of the
ext ernal _user system variable.

» Proxy user accounts must be set up to be authenticated by the plugin. Use the CREATE USER or
GRANT statement to associate accounts with plugins.

» Proxy user accounts must have the PROXY privilege for the proxied accounts. Use the GRANT
statement to grant this privilege.

58

https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_plugin-load
https://dev.mysql.com/doc/refman/8.0/en/drop-user.html
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/pluggable-authentication.html
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html
https://dev.mysql.com/doc/c-api/8.0/en/c-api-plugin-interface.html
https://dev.mysql.com/doc/refman/8.0/en/proxy-users.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_external_user
https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/grant.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_proxy
https://dev.mysql.com/doc/refman/8.0/en/grant.html

Writing Authentication Plugins

In other words, the only aspect of proxy user support required of the plugin is that it set
aut henti cat ed_as to the proxied user name. The rest is optional (setting ext er nal _user) or done
by the DBA using SQL statements.

How does an authentication plugin determine which proxied user to return when the proxy user
connects? That depends on the plugin. Typically, the plugin maps clients to proxied users based on the
authentication string passed to it by the server. This string comes from the AS part of the | DENTI FI ED
W TH clause of the CREATE USER statement that specifies use of the plugin for authentication.

The plugin developer determines the syntax rules for the authentication string and implements the
plugin according to those rules. Suppose that a plugin takes a comma-separated list of pairs that map
external users to MySQL users. For example:

CREATE USER '' @ % exanpl e. comnl

| DENTI FI ED W TH ny_pl ugi n AS ' ext user 1=nysql usera, extuser2=nysql userb’
CREATE USER '' @ % exanpl e. org’

| DENTI FI ED W TH ny_pl ugi n AS ' ext user 1=nysql userc, extuser2=nysql userd’

When the server invokes a plugin to authenticate a client, it passes the appropriate authentication
string to the plugin. The plugin is responsible to:

1. Parse the string into its components to determine the mapping to use
2. Compare the client user name to the mapping
3. Return the proper MySQL user name

For example, if ext user 2 connects from an exanpl e. comhost, the server passes
"extuser1=nysqgl usera, extuser2=nysql userb' to the plugin, and the plugin should copy
nmysql user b into aut hent i cat ed_as, with a terminating null byte. If ext user 2 connects from an
exanpl e. or g host, the server passes ' ext user 1=nysql userc, extuser2=mnysql userd', and
the plugin should copy nysql user d instead.

If there is no match in the mapping, the action depends on the plugin. If a match is required, the plugin
likely will return an error. Or the plugin might simply return the client name; in this case, it should not
change aut henti cat ed_as, and the server will not treat the client as a proxy.

The following example demonstrates how to handle proxy users using a plugin named

aut h_si npl e_pr oxy. Like the aut h_si npl e plugin described earlier, aut h_si npl e_pr oxy
accepts any nonempty password as valid (and thus should not be used in production environments). In
addition, it examines the aut h_st r i ng authentication string member and uses these very simple rules
for interpreting it:

« If the string is empty, the plugin returns the user name as given and no proxying occurs. That is, the
plugin leaves the value of aut hent i cat ed_as unchanged.

* If the string is nonempty, the plugin treats it as the name of the proxied user and copies it to
aut hent i cat ed_as so that proxying occurs.

For testing, set up one account that is not proxied according to the preceding rules, and one that is.
This means that one account has no AS clause, and one includes an AS clause that names the proxied
user:

CREATE USER ' pl ugi n_user1' @I ocal host'
| DENTI FI ED W TH aut h_si npl e_pr oxy;
CREATE USER ' pl ugi n_user2' @I ocal host'
| DENTI FI ED W TH aut h_si npl e_proxy AS ' proxi ed_user';

In addition, create an account for the proxied user and grant pl ugi n_user 2 the PROXY privilege for it:

CREATE USER ' proxi ed_user' @I ocal host'
| DENTI FI ED BY ' proxi ed_user _pass';
GRANT PROXY

59

https://dev.mysql.com/doc/refman/8.0/en/create-user.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_proxy

Writing Authentication Plugins

ON ' proxi ed_user' @Il ocal host*
TO ' pl ugi n_user2' @1 ocal host "' ;

Before the server invokes an authentication plugin, it sets aut hent i cat ed_as to the client user
name. To indicate that the user is a proxy, the plugin should set aut hent i cat ed_as to the proxied
user name. For aut h_si npl e_pr oxy, this means that it must examine the aut h_st ri ng value, and,
if the value is nonempty, copy it to the aut hent i cat ed_as member to return it as the name of the
proxied user. In addition, when proxying occurs, the plugin sets the ext er nal _user member to the
client user name; this becomes the value of the ext er nal _user system variable.

static int auth_sinple_proxy _server (MYSQL_PLUG N VIO *vi o,
MYSQL_SERVER_AUTH_I NFO *i nf 0)
{

unsi gned char *pkt;
int pkt_len;

/* read the password as null-termnated string, fail on error */
if ((pkt_len= vio->read_packet(vio, &pkt)) < 0)
return CR_ERROR

/* fail on enpty password */

if (!'pkt_len || *pkt == "'\0")

{
i nf 0- >passwor d_used= PASSWORD USED NG
return CR_ERROR

}

/* accept any nonenpty password */
i nf o- >passwor d_used= PASSWORD USED YES;

/* if authentication string i s nonenpty, use as proxied user nane */
/* and use client nane as external _user value */
if (info->auth_string_length > 0)
{
strcpy (info->authenticated_as, info->auth_string);
strcpy (info->external _user, info->user_nane);

}

return CR CK;
}

After a successful connection, the USER() function should indicate the connecting client user and host
name, and CURRENT _USER() should indicate the account whose privileges apply during the session.
The latter value should be the connecting user account if no proxying occurs or the proxied account if
proxying does occur.

Compile and install the plugin, then test it. First, connect as pl ugi n_user 1:

$> nysql --user=plugin_userl --password
Ent er password: x

In this case, there should be no proxying:

nysql > SELECT USER(), CURRENT_USER(), @oroxy_user, @®@xternal _user\G

khkkkhkkkhkkhkkhkkhkkhkkhkhkhkhkhkhkhkhkhkkkkkkk*x*x 1 r ow khkkkkkhkkhkkhkkhkkhkhkhkhkhkhkhkkhkhkhkkkkkkkx*x

USER(): plugin_user 1@ ocal host

CURRENT_USER(): pl ugi n_user 1@ ocal host
@@pr oxy_user: NULL
@oxt ernal _user: NULL

Then connect as pl ugi n_user 2:

$> nysql --user=plugin_user2 --password
Ent er password: x

In this case, pl ugi n_user 2 should be proxied to pr oxi ed_user:

nmysql > SELECT USER(), CURRENT_USER(), @obroxy_user, @@xternal user\G

60

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_external_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_user
https://dev.mysql.com/doc/refman/8.0/en/information-functions.html#function_current-user

Writing Password-Validation Plugins

LEEEEEEEEEEEEEEEEEEEEEEEEEE FOW *XX*hdkhhkkkhhhhkkxkhhkkkxkkk

USER(): pl ugi n_user 2@ ocal host

CURRENT_USER(): proxi ed_user @ ocal host
@opr oxy_user: ' plugin_user2' @I ocal host
@ext ernal _user: 'plugin_user2' @I ocal host

4.4.10 Writing Password-Validation Plugins

This section describes how to write a server-side password-validation plugin. The instructions are
based on the source code in the pl ugi n/ passwor d_val i dat i on directory of MySQL source
distributions. The val i dat e_passwor d. cc source file in that directory implements the plugin named
val i dat e_passwor d.

Note

In MySQL 8.0.4, the val i dat e_passwor d plugin was reimplemented as the
val i dat e_passwor d component. The plugin form of val i dat e_passwor d
is still available but is now deprecated and will be removed in a future version
of MySQL. MySQL installations that use the plugin should make the transition
to using the component instead. See Transitioning to the Password Validation
Component.

To write a password-validation plugin, include the following header file in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#i ncl ude <nysql/pl ugi n_val i dat e_password. h>

pl ugi n_val i dat e_passwor d. h includes pl ugi n. h, so you need not include the latter file
explicitly. pl ugi n. h defines the MYSQL_VALI DATE_PASSWORD PLUG N server plugin type and
the data structures needed to declare the plugin. pl ugi n_val i dat e_passwor d. h defines data
structures specific to password-validation plugins.

A password-validation plugin, like any MySQL server plugin, has a general plugin descriptor (see
Section 4.4.2.1, “Server Plugin Library and Plugin Descriptors”). In val i dat e_passwor d. cc, the
general descriptor for val i dat e_passwor d looks like this:

nysql _decl are_pl ugi n(val i dat e_passwor d)

{
MYSQL_VALI DATE_PASSWORD PLUG N, /* type &
&val i dat e_password_descri pt or, /* descri ptor */
"val i dat e_password", /* name */
"Oracl e Corporation", /* aut hor */
"check password strength", /* description */
PLUG N_LI CENSE_GPL,
val i dat e_password_init, [* init function (when | oaded) */
val i dat e_password_dei ni t, [* deinit function (when unl oaded) */
0x0100, [* ver si on */
NULL,
val i dat e_password_system vari abl es, /* system vari abl es */
NULL,
0

nmysql _decl are_pl ugi n_end;

The nanme member (val i dat e_passwor d) indicates the name to use for references to the plugin in
statements such as | NSTALL PLUG Nor UNI NSTALL PLUG N. This is also the name displayed by
| NFORMATI ON_SCHENA. PLUG NS or SHOW PLUG NS.

The general descriptor also refers to val i dat e_passwor d_syst em vari abl es, a structure that
exposes several system variables to the SHOWN VARI ABLES statement:

static struct st_mysqgl _sys_var* validate_password_systemvariabl es[]= {
MYSQL_SYSVAR(| engt h) ,
MYSQL_SYSVAR(nunber _count),

61

https://dev.mysql.com/doc/refman/8.0/en/validate-password-transitioning.html
https://dev.mysql.com/doc/refman/8.0/en/validate-password-transitioning.html
https://dev.mysql.com/doc/refman/8.0/en/install-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/uninstall-plugin.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html

Writing Password-Validation Plugins

MYSQL_SYSVAR(m xed_case_count)
MYSQL_SYSVAR(speci al _char _count)
MYSQL_SYSVAR(pol i cy),
MYSQL_SYSVAR(di ctionary_file)
NULL

}s

The val i dat e_passwor d_i ni t initialization function reads the dictionary file if one was specified,
and the val i dat e_passwor d_dei ni t function frees data structures associated with the file.

The val i dat e_passwor d_descri pt or value in the general descriptor points to the type-specific
descriptor. For password-validation plugins, this descriptor has the following structure:

struct st_nysqgl _val i date_password

{
int interface_version
/*
This function returns TRUE for passwords which satisfy the password
policy (as chosen by plugin variable) and FALSE for all other
password
*/
int (*validate_password) (nysqgl_string_handl e password)
/*
This function returns the password strength (0-100) dependi ng
upon the policies
*/
int (*get_password_strength)(nysqgl_string_handl e password)
it

The type-specific descriptor has these members:

e interface_versi on: By convention, type-specific plugin descriptors begin with the interface
version for the given plugin type. The server checks i nt er f ace_ver si on when it loads the plugin
to see whether the plugin is compatible with it. For password-validation plugins, the value of the
i nterface_versi on memberis MYSQL_VALI DATE_PASSWORD | NTERFACE_VERSI ON (defined
in pl ugi n_val i dat e_passwor d. h).

» val i dat e_passwor d: A function that the server calls to test whether a password satisfies the
current password policy. It returns 1 if the password is okay and 0 otherwise. The argument
is the password, passed as a nysql _string_handl e value. This data type is implemented
by the mysql _stri ng server service. For details, see the string_service. hand
string_service. cc source files in the sql directory.

» get _password_strengt h: A function that the server calls to assess the strength of a password.
It returns a value from 0 (weak) to 100 (strong). The argument is the password, passed as a
nysql _string_handl e value.

For the val i dat e_passwor d plugin, the type-specific descriptor looks like this:
static struct st_nysql _validate_password val i date_password_descri ptor=

MYSQL_VALI DATE_PASSWORD | NTERFACE_VERSI ON,
val i dat e_password, /* validate function */
get _password_strength /* validate strength function */

b

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory

(the directory named by the pl ugi n_di r system variable). For the val i dat e_passwor d plugin, it

is compiled and installed when you build MySQL from source. It is also included in binary distributions.
The build process produces a shared object library with a name of val i dat e_passwor d. so (the . so
suffix might differ depending on your platform).

To register the plugin at runtime, use this statement, adjusting the . so suffix for your platform as
necessary:

62

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

Writing Protocol Trace Plugins

I NSTALL PLUG N val i dat e_password SONAME ' val i dat e_password. so' ;
For additional information about plugin loading, see Installing and Uninstalling Plugins.

To verify plugin installation, examine the | NFORVATI ON_ SCHEMA. PLUG NS table or use the SHOWV
PLUG NS statement. See Obtaining Server Plugin Information.

While the val i dat e_passwor d plugin is installed, it exposes system variables that indicate the
password-checking parameters:

mysql > SHOW VARI ABLES LI KE ' val i dat e_passwor d% ;

val i dat e_password_dictionary_file |
val i dat e_password_| engt h | 8
val i dat e_passwor d_mni xed_case_count | 1
val i dat e_passwor d_nunber _count | 1
val i dat e_passwor d_pol i cy | MEDI UM
val i dat e_passwor d_speci al _char_count | 1
+

For descriptions of these variables, see Password Validation Options and Variables.

To disable the plugin after testing it, use this statement to unload it:

UNI NSTALL PLUG N val i dat e_passwor d;

4.4.11 Writing Protocol Trace Plugins

MySQL supports the use of protocol trace plugins: client-side plugins that implement tracing of
communication between a client and the server that takes place using the client/server protocol.

4.4.11.1 Using the Test Protocol Trace Plugin

MySQL includes a test protocol trace plugin that serves to illustrate the information available from such
plugins, and as a guide to writing other protocol trace plugins. To see how the test plugin works, use a
MySQL source distribution; binary distributions are built with the test plugin disabled.

Enable the test protocol trace plugin by configuring MySQL with the W TH_TEST_TRACE_PLUG N
ChMake option enabled. This causes the test trace plugin to be built and MySQL client programs to load
it, but the plugin has no effect by default. Control the plugin using these environment variables:

e MYSQL_TEST_TRACE DEBUG: Set this variable to a value other than 0 to cause the test plugin to
produce diagnostic output on st derr .

» MYSQL_TEST_ TRACE CRASH: Set this variable to a value other than 0 to cause the test plugin to
abort the client program if it detects an invalid trace event.

Caution

Diagnostic output from the test protocol trace plugin can disclose passwords
and other sensitive information.

Given a MySQL installation built from source with the test plugin enabled, you can see a trace of the
communication between the nysql client and the MySQL server as follows:

$> export MYSQL_TEST TRACE DEBUG=1

shqgl | > nysql

test_trace: Test trace plugin initialized

test _trace: Starting tracing in stage CONNECTI NG

test _trace: stage: CONNECTI NG event: CONNECTI NG

test _trace: stage: CONNECTING event: CONNECTED

test _trace: stage: WAIT_FOR I NI T_PACKET, event: READ PACKET

63

https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html
https://dev.mysql.com/doc/refman/8.0/en/validate-password-options-variables.html
https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_test_trace_plugin

Writing Protocol Trace Plugins

test_trace: stage: WAIT_FOR I NI T_PACKET, event: PACKET_RECEl VED
test_trace: packet received: 87 bytes
O0A 35 2E 37 2E 33 2D 6D 31 33 2D 64 65 62 75 67 .5.7. 3-nl3- debug
2D 6C 6F 67 00 04 00 00 00 2B 7C 4F 55 3F 79 67 -log..... +| OU?yg
test_trace: 004: stage: WAIT_FOR_ | NI T_PACKET, event: | N T_PACKET_RECElI VED
test_trace: 004: stage: AUTHENTI CATE, event: AUTH PLUG N
test_trace: 004: Using authentication plugin: nysqgl_native_password
test_trace: 004: stage: AUTHENTI CATE, event: SEND AUTH RESPONSE
test_trace: 004: sending packet: 188 bytes
85 A6 7F 00 00 00 00 01 21 00 OO OO OO OO OO 0O L2 Lo
00 00 00 00O OO OO OO OO 0O OO 00 00 00 00 00 OO

nmysql > quit

test _trace: 008: stage: READY_FOR COMVAND, event: SEND_ COVIVAND
test_trace: 008: QU T

test _trace: 008: stage: READY_FOR COMVAND, event: PACKET_SENT
test_trace: 008: packet sent: 0O bytes

test _trace: 008: stage: READY_FOR COMVAND, event: DI SCONNECTED
test_trace: 008: Connection closed

test_trace: 008: Tracing connection has ended

Bye

test_trace: Test trace plugin de-initialized

To disable trace output, do this:

$> MYSQL_TEST_TRACE_DEBUG=
4.4.11.2 Using Your Own Protocol Trace Plugins

Note

To use your own protocol trace plugins, you must configure MySQL with the

W TH TEST_TRACE PLUG N CMake option disabled because only one protocol
trace plugin can be loaded at a time and an error occurs for attempts to load a
second one. If you have already built MySQL with the test protocol trace plugin
enabled to see how it works, you must rebuild MySQL without it before you can
use your own plugins.

This section discusses how to write a basic protocol trace plugin named si npl e_trace. This

plugin provides a framework showing how to set up the client plugin descriptor and create

the trace-related callback functions. In si npl e_t r ace, these functions are rudimentary and

do little other than illustrate the arguments required. To see in detail how a trace plugin can

make use of trace event information, check the source file for the test protocol trace plugin

(test _trace_plugin.ccinthelibmysql directory of a MySQL source distribution). However, note
that the st _mysqgl client pl ugi n_TRACE structure used there differs from the structures used with
the usual client plugin declaration macros. In particular, the first two members are defined explicitly, not
implicitly by declaration macros.

Several header files contain information relevant to protocol trace plugins:

e client plugin. h: Defines the API for client plugins. This includes the client plugin descriptor and
function prototypes for client plugin C API calls (see C API Client Plugin Interface).

e plugi n_trace. h: Contains declarations for client-side plugins of type
MYSQL_CLI ENT_TRACE_PLUG N. It also contains descriptions of the permitted protocol stages,
transitions between stages, and the types of events permitted at each stage.

To write a protocol trace plugin, include the following header files in the plugin source file. Other
MySQL or general header files might also be needed, depending on the plugin capabilities and
requirements.

#i ncl ude <nysql/ pl ugi n_trace. h>
#i ncl ude <nysql . h>

pl ugi n_trace. hincludes cl i ent _pl ugi n. h, so you need not include the latter file explicitly.

64

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html#option_cmake_with_test_trace_plugin
https://dev.mysql.com/doc/c-api/8.0/en/c-api-plugin-interface.html

Writing Protocol Trace Plugins

Declare the client-side plugin descriptor with the nysql _decl are_cl i ent pl ugi n() and
nysqgl _end_client _plugi n macros (see Section 4.4.2.3, “Client Plugin Descriptors”). For the
si npl e_t r ace plugin, the descriptor looks like this:

nysql _decl are_cl i ent _pl ugi n(TRACE)

"sinple_trace", /*
" Aut hor Narme", /*
"Sinple protocol trace plugin", /*
{1, 0, 0}, [*
"GPL", /*
NULL, [*
plugin_init, [*
pl ugi n_deinit, [*
pl ugi n_opti ons, [*
trace_start, /*
trace_stop, [*
trace_event [*

nysql _end_cl i ent_pl ugin;

pl ugi n name */

aut hor */
description */
version = 1.0.0 */

license type */

for internal use */
initialization function */
deinitialization function */
option-handling function */
start-trace function */
stop-trace function */
event - handl i ng function */

The descriptor members from the plugin name through the option-handling function are common to all
client plugin types. The members following the common members implement trace event handling.

Function members for which the plugin needs no processing can be declared as NULL in the
descriptor, in which case you need not write any corresponding function. For illustration purposes and
to show the argument syntax, the following discussion implements all functions listed in the descriptor,

even though some of them do nothing,

The initialization, deinitialization, and options functions common to all client plugins are declared as
follows. For a description of the arguments and return values, see Section 4.4.2.3, “Client Plugin

Descriptors”.

static int
pl ugi n_i nit (char *errbuf,
{

return O;

}

static int
pl ugi n_dei nit ()
{

return O;

}

static int
pl ugi n_opti ons(const char *opti on,
{

return O;

}

size_t errbuf_|en,

int argc, va_list args)

const void *val ue)

The trace-specific members of the client plugin descriptor are callback functions. The following
descriptions provide more detail on how they are used. Each has a first argument that is a pointer to
the plugin instance in case your implementation needs to access it.

trace_start (): This function is called at the start of each traced connection (each connection that
starts after the plugin is loaded). It is passed the connection handler and the protocol stage at which
tracing starts. t race_st art () allocates memory needed by the t race_event () function, if any,
and returns a pointer to it. If no memory is needed, this function returns NULL.

static voi d*

trace_start(struct st_mnysql _client_plugi n_TRACE *sel f,

MYSQ. *conn,

enum pr ot ocol _st age st age)

struct st_trace_data *plugi n_data= nmal | oc(si zeof (struct st_trace_data));

fprintf(stderr,
if (plugin_data)

“Initializing trace:

stage %\ n", stage);

65

Writing Protocol Trace Plugins

menset (pl ugi n_data, 0, sizeof(struct st_trace_data));
fprintf(stderr, "Trace initialized\n");
return plugin_dat a;

}

fprintf(stderr, "Could not initialize trace\n");
exit(1);
}

trace_st op(): This function is called when tracing of the connection ends. That usually happens
when the connection is closed, but can happen earlier. For example, t race_event () can return a
nonzero value at any time and that causes tracing of the connection to terminate. t race_st op() is
then called even though the connection has not ended.

trace_stop() is passed the connection handler and a pointer to the memory allocated by
trace_start () (NULL if none). If the pointer is non-NULL, t r ace_st op() should deallocate the
memory. This function returns no value.

static void

trace_stop(struct st_nysql _client_plugi n_TRACE *sel f,
MYSQ. *conn,
voi d *pl ugi n_dat a)

{

fprintf(stderr, "Termi nating trace\n");
if (plugin_data)
free(plugin_data);
}

trace_event () : This function is called for each event occurrence. It is passed a pointer to the
memory allocated by t race_start () (NULL if none), the connection handler, the current protocol
stage and event codes, and event data. This function returns 0 to continue tracing, nonzero if tracing
should stop.

static int
trace_event (struct st_mnysql _client_plugi n_TRACE *sel f,
voi d *pl ugi n_dat a,
MYSQL *conn,
enum pr ot ocol _st age st age,
enum trace_event event,
struct st_trace_event_args args)

{

fprintf(stderr, "Trace event received: stage %, event %l\n", stage, event);
if (event == TRACE_EVENT_DI SCONNECTED)

fprintf(stderr, "Connection closed\n");
return O;

}

The tracing framework shuts down tracing of the connection when the connection ends, so
trace_event () should return nonzero only if you want to terminate tracing of the connection early.
Suppose that you want to trace only connections for a certain MySQL account. After authentication,
you can check the user name for the connection and stop tracing if it is not the user in whom you are
interested.

Foreachcalltotrace_event (), thest trace_event args structure contains the event data. It
has this definition:

struct st_trace_event_args

{
const char *pl ugi n_nane;
int cd;
const unsigned char *hdr;
size_t hdr _I en;
const unsigned char *pkt;
size_t pkt _I en;

ik

For different event types, the st _trace_event _ar gs structure contains the information described
following. All lengths are in bytes. Unused members are set to O/NULL.

66

Writing Protocol Trace Plugins

AUTH_PLUG N event:

pl ugi n_nane The nanme of the plugin

SEND_COWVIVAND event:

cnd The command code

hdr Poi nter to the command packet header
hdr _| en Length of the header

pkt Pointer to the command argunents

pkt Il en Length of the argunents

Other SEND xxx and xxx_RECEI VED events:

pkt Pointer to the data sent or received
pkt | en Length of the data

PACKET_SENT event:

pkt | en Nunber of bytes sent

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the
directory named by the pl ugi n_di r system variable).

After the plugin library file is compiled and installed in the plugin directory, you can test it easily by
setting the LI BMYSQL_PLUG NS environment variable to the plugin name, which affects any client
program that uses that variable. mysql is one such program:

$> export LIBMYSQL PLUG NS=sinpl e_trace
shqgl | > nysq

Initializing trace: stage O

Trace initialized

Trace event received: stage 0, event 1
Trace event received: stage 0, event 2

Wel cone to the MySQL nonitor. Commands end with ; or \g
Trace event received
Trace event received

nysql > SELECT 1,
Trace event received: stage 4, event 12
Trace event received: stage 4, event 16

Trace event received: stage 8, event 14
Trace event received: stage 8, event 15
+---+

| 1]

+---+

| 1]

+---+

1 rowin set (0.00 sec)

nysql > quit

Trace event received: stage 4, event 12
Trace event received: stage 4, event 16
Trace event received: stage 4, event 3
Connection cl osed

Term nating trace

Bye

To stop the trace plugin from being loaded, do this:

$> LI BWSQL_PLUG NS=

It is also possible to write client programs that directly load the plugin. You can tell the client where the
plugin directory is located by calling mysql _opti ons() to setthe M\YySQL_PLUG N_DI R option:

char *plugin_dir = "path_to_plugin_dir";

67

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/c-api/8.0/en/mysql-options.html

Writing Keyring Plugins

/* ... process command-line options ... */
mysql _options(&mysqgl, MYSQL_PLUG N DI R, plugin_dir);

Typically, the program will also accept a - - pl ugi n- di r option that enables users to override the
default value.

Should a client program require lower-level plugin management, the client library contains functions
that take an st _nysql _cl i ent _pl ugi n argument. See C API Client Plugin Interface.

4.4.12 Writing Keyring Plugins

MySQL Server supports a keyring service that enables internal server components and plugins to
securely store sensitive information for later retrieval. This section describes how to write a server-
side keyring plugin that can be used by service functions to perform key-management operations. For
general keyring information, see The MySQL Keyring.

The instructions here are based on the source code in the pl ugi n/ keyri ng directory of MySQL
source distributions. The source files in that directory implement a plugin named keyri ng_fi | e that
uses a file local to the server host for data storage.

To write a keyring plugin, include the following header file in the plugin source file. Other MySQL or
general header files might also be needed, depending on the plugin capabilities and requirements.

#i ncl ude <nysql/pl ugi n_keyri ng. h>

pl ugi n_keyri ng. hincludes pl ugi n. h, so you need not include the latter file explicitly. pl ugi n. h
defines the MYSQL_KEYRI NG_PLUG N server plugin type and the data structures needed to declare
the plugin. pl ugi n_keyri ng. h defines data structures specific to keyring plugins.

A keyring plugin, like any MySQL server plugin, has a general plugin descriptor (see Section 4.4.2.1,
“Server Plugin Library and Plugin Descriptors”). In keyr i ng. cc, the general descriptor for
keyring_fil e looks like this:

nysql _decl are_pl ugi n(keyring_file)

{
MYSQL_KEYRI NG _PLUG N, /* type f
&eyring_descriptor, /* descri ptor */
"keyring_file", /* nane */
"Oracl e Corporation", /* aut hor */

"store/fetch authentication data to/froma flat file", /* description */
PLUG N_LI CENSE_GPL,

keyring_init, /* init function (when | oaded) */
keyring_deinit, /* deinit function (when unl oaded) */
0x0100, [* version */
NULL, /* status vari abl es */
keyring_systemvariabl es, /* system vari abl es */
NULL,

0,

nysql _decl are_pl ugi n_end;

The nanme member (keyri ng_fi | e) indicates the plugin name. This is the name displayed by
| NFORMATI ON_SCHENA. PLUG NS or SHOW PLUG NS.

The general descriptor also refers to keyri ng_syst em vari abl es, a structure that exposes a
system variable to the SHOW VARI ABLES statement:

static struct st_nysql _sys_var *keyring_systemvariabl es[]= {
MYSQL_SYSVAR(dat a) ,
NULL

h

The keyring_init initialization function creates the data file if it does not exist, then reads it and
initializes the keystore. The keyri ng_dei ni t function frees data structures associated with the file.

68

https://dev.mysql.com/doc/c-api/8.0/en/c-api-plugin-interface.html
https://dev.mysql.com/doc/refman/8.0/en/keyring.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-variables.html

Writing Keyring Plugins

The keyri ng_descri pt or value in the general descriptor points to the type-specific descriptor. For
keyring plugins, this descriptor has the following structure:

struct st_mnysqgl _keyring
{
int interface_version;
bool (*mysql _key_store)(const char *key_id, const char *key_type,
const char* user_id, const void *key, size_t key_len);
bool (*mysql _key_fetch)(const char *key_id, char **key_type,
const char *user_id, void **key, size_t *key_len);
bool (*mysql _key_renove)(const char *key_ id, const char *user_id);
bool (*nysql _key_generate)(const char *key_id, const char *key_type,
const char *user_id, size_t key_len);

g
The type-specific descriptor has these members:

* interface_version: By convention, type-specific plugin descriptors begin with the interface
version for the given plugin type. The server checks i nt er f ace_ver si on when it loads
the plugin to see whether the plugin is compatible with it. For keyring plugins, the value of
theinterface versi on memberis MYSQL_KEYRI NG | NTERFACE VERSI ON (defined in
pl ugi n_keyri ng. h).

» nysql key_ st ore: A function that obfuscates and stores a key in the keyring.

e nysqgl _key_ fetch: A function that deobfuscates and retrieves a key from the keyring.

* mysql _key_renove: A function that removes a key from the keyring.

* nysql _key_gener at e: A function that generates a new random key and stores it in the keyring.

For the keyri ng_fi | e plugin, the type-specific descriptor looks like this:

static struct st_mysqgl _keyring keyring_descriptor=
{

MYSQL_KEYRI NG_| NTERFACE_VERSI ON,

nysql _key_store,

nysql _key_fetch,

nysql _key_renove,

nysql _key_generat e
b

The nysql _key xxx functions implemented by a keyring plugin are analogous to the ny_key xxx
functions exposed by the keyring service API. For example, the nysql _key st or e plugin function
is analogous to the ny_key st or e keyring service function. For information about the arguments to
keyring service functions and how they are used, see The Keyring Service.

To compile and install a plugin library file, use the instructions in Section 4.4.3, “Compiling and
Installing Plugin Libraries”. To make the library file available for use, install it in the plugin directory (the
directory named by the pl ugi n_di r system variable). For the keyri ng_fi | e plugin, it is compiled
and installed when you build MySQL from source. It is also included in binary distributions. The build
process produces a shared object library with a name of keyring _fil e. so (the . so suffix might
differ depending on your platform).

Keyring plugins typically are loaded early during the server startup process so that they are available to
built-in plugins and storage engines that might depend on them. For keyri ng _fi |l e, use these lines in
the server ny. cnf file, adjusting the . so suffix for your platform as necessary:

[nysgl d]
ear | y-pl ugi n-1 oad=keyring_file.so

For additional information about plugin loading, see Installing and Uninstalling Plugins.

To verify plugin installation, examine the | NFORVATI ON_ SCHEMA. PLUG NS table or use the SHOWV
PLUG NS statement (see Obtaining Server Plugin Information). For example:

69

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/plugin-loading.html
https://dev.mysql.com/doc/refman/8.0/en/information-schema-plugins-table.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/show-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/obtaining-plugin-information.html

Writing Keyring Plugins

nysql > SELECT PLUG N_NAME, PLUG N_STATUS
FROM | NFORVATI ON_SCHEMA. PLUG NS
WHERE PLUG N_NAME LI KE ' keyring%

dooccocccococooan doococococoocoooao +
| PLUG N_.NAME | PLUG N_STATUS |
dooccocccococooan doococococoocoooao +
| keyring_file | ACTIVE |
dooccocccococooan doococococoocoooao +

While the keyri ng_fil e plugin is installed, it exposes a system variable that indicates the location of
the data file it uses for secure information storage:

nysql > SHOW VARI ABLES LI KE ' keyring fil e%;

e - +
| Vari abl e_nane | Val ue |
e - +
| keyring_file_data | /usr/local/nysql/keyring/keyring |
e - +

For a description of the keyri ng_fil e_dat a variable, see Server System Variables.

To disable the plugin after testing it, restart the server without an - - ear | y- pl ugi n- | oad option that
names the plugin.

70

https://dev.mysql.com/doc/refman/8.0/en/keyring-system-variables.html#sysvar_keyring_file_data
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_early-plugin-load

Chapter 5 MySQL Services for Plugins

MySQL server plugins have access to server “plugin services.” The plugin services interface exposes
server functionality that plugins can call. It complements the plugin API and has these characteristics:

» Services enable plugins to access code inside the server using ordinary function calls. Services are
also available to loadable functions.

» Services are portable and work on multiple platforms.

» The interface includes a versioning mechanism so that service versions supported by the server
can be checked at load time against plugin versions. Versioning protects against incompatibilities
between the version of a service that the server provides and the version of the service expected or
required by a plugin.

» For information about plugins for testing plugin services, see the Plugins for Testing Plugin Services
section of the MySQL Server Doxygen documentation, available at https://dev.mysql.com/doc/index-
other.html.

The plugin services interface differs from the plugin API as follows:

* The plugin API enables plugins to be used by the server. The calling initiative lies with the server to
invoke plugins. This enables plugins to extend server functionality or register to receive notifications
about server processing.

« The plugin services interface enables plugins to call code inside the server. The calling initiative lies
with plugins to invoke service functions. This enables functionality already implemented in the server
to be used by many plugins; they need not individually implement it themselves.

To determine what services exist and what functions they provide, look in the i ncl ude/ nysq|l
directory of a MySQL source distribution. The relevant files are:

* plugin. hincludes servi ces. h, which is the “umbrella” header that includes all available service-
specific header files.

» Service-specific headers have names of the form ser vi ce_xxx. h.

Each service-specific header should contain comments that provide full usage documentation for a
given service, including what service functions are available, their calling sequences, and return values.

For developers who wish to modify the server to add a new service, see MySQL Internals: MySQL
Services for Plugins.

Available services include the following:

» get _sysvar _sour ce: A service that enables plugins to retrieve the source of system variable
settings.

» | ocki ng_servi ce: A service that implements locks with three attributes: Lock namespace, lock
name, and lock mode. This locking interface is accessible at two levels: 1) At the SQL level, as a set
of loadable functions that each map onto calls to the service routines; 2) As a C language interface,
callable as a plugin service from server plugins or loadable functions. For more information, see The
Locking Service.

* my_plugi n_|l og_servi ce: A service that enables plugins to report errors and specify error
messages. The server writes the messages to its error log.

e status_variabl e_regi stration. A service for registering status variables.

 ny_t hd _schedul er: A service for plugins to select a thread scheduler.

71

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/internals/en/mysql-services-for-plugins.html
https://dev.mysql.com/doc/internals/en/mysql-services-for-plugins.html
https://dev.mysql.com/doc/refman/8.0/en/locking-service.html
https://dev.mysql.com/doc/refman/8.0/en/locking-service.html

e nysqgl _keyring: A service for keyring storage, accessible at two levels: 1) At the SQL level, as
a set of loadable functions that each map onto calls to the service routines; 2) As a C language
interface, callable as a plugin service from server plugins or loadable functions. For more
information, see The Keyring Service.

» nysql password_policy: A service for password validation and strength checking.

e plugin_registry_service: MySQL Server includes a component-based infrastructure for
improving server extensibility; see MySQL Components. However, MySQL plugins use an interface
that predates the component interface. The pl ugi n_regi stry_ser vi ce enables plugins to
access the component registry and its services.

e security_context: A service that enables plugins to examine or manipulate thread security
contexts. This service provides setter and getter routines to access attributes of the server
Security_context class, which includes attributes such as operating system user and host,
authenticated user and host, and client IP address.

t hd_al | oc: A memory-allocation service.
» thd_wai t : A service for plugins to report when they are going to sleep or stall.

The remainder of this section describes how a plugin uses server functionality that is available as a
service. See also the source for the “daemon” example plugin, which uses the ny_snpri nt f service.
Within a MySQL source distribution, that plugin is located in the pl ugi n/ daenon_exanpl e directory.

To use a service or services from within a plugin, the plugin source file must include the pl ugi n. h
header file to access service-related information:

#i ncl ude <nysql/ pl ugi n. h>

This does not represent any additional setup cost. A plugin must include that file anyway because it
contains definitions and structures that every plugin needs.

To access a service, a plugin calls service functions like any other function.

To report an error that the server will write to it error log, first choose an error level. nysql /
servi ce_mny_pl ugi n_I og. h defines these levels:

enum pl ugi n_| og_| evel
MY_ERROR _LEVEL,
MY_WARNI NG_LEVEL,

MY_| NFORVATI ON_LEVEL
b

Then invoke ny_pl ugi n_| og_nessage():

int ny_plugin_| og_nessage(MYSQL_PLUG N *pl ugi n, enum plugin_|l og_| evel |evel,
const char *format, ...);

For example:

ny_pl ugi n_| og_nessage(pl ugi n_ptr, MY_ERROR LEVEL, "Cannot initialize plugin");

Some services for plugins may be provided by plugins and thus are available only if the service-
providing plugin is loaded. Any MySQL component that uses such a service should check whether the
service is available.

When you build your plugin, use the - | nysql ser vi ces flag at link time to link in the
I'i brysqgl servi ces library. For example, for CVake, put this in the top-level CVakelLi st s. t xt file:

FI ND_LI BRARY(MYSQLSERVI CES_LI B nysql servi ces
PATHS "${ MYSQL_SRCDI R}/ | i bservi ces" NO _DEFAULT_PATH)

72

https://dev.mysql.com/doc/refman/8.0/en/keyring-service.html
https://dev.mysql.com/doc/refman/8.0/en/components.html

Put this in the C\VakelLi st s. t xt file in the directory containing the plugin source:

the plugin needs the nmysql services library for error |ogging
TARGET_LI NK LI BRARI ES (your _plugin_library name ${MYSQLSERVI CES LI B})

73

74

Chapter 6 Adding Functions to MySQL

Table of Contents

L0 Ao [[T o = W N = LAY T o £ o o 76
6.2 Adding a Loadable FUNCLONcouiiii e e e e e e e e ean s 77

There are three ways to add a new function to MySQL.:

» Create a stored function (a type of stored object). A stored function is written using SQL statements
rather than by compiling object code. The syntax for writing stored functions is not covered here. See
Using Stored Routines.

» Create a native (built-in) MySQL function. A native function is added by modifying the MySQL source
code to be compiled into the nysql d server and become available on a permanent basis. See
Section 6.1, “Adding a Native Function”.

» Use the loadable function interface. A loadable function is compiled as a library file and then loaded
and unloaded from the server dynamically using the CREATE FUNCTI ON and DROP FUNCTI ON
statements. See Section 6.2, “Adding a Loadable Function”.

In some cases, loadable functions are included in component or plugin library files and are loaded
and unloaded automatically when the component or plugin is installed or uninstalled.

Note

Loadable functions previously were known as user-defined functions (UDFs).
That terminology was something of a misnomer because “user-defined” also
can apply to stored functions written using SQL and native functions added by
modifying the server source code.

Each method of creating compiled functions has advantages and disadvantages:

» Adding a native function requires modifying a source distribution. Adding a loadable function does
not; it can be added to a binary MySQL distribution with no access to MySQL source necessary.

» A loadable function is contained in an object file that you must install in addition to the server itself.
For a function compiled into the server, that is unnecessary. (This point does not apply for loadable
functions that are loaded automatically by a component or plugin.)

* If you upgrade your MySQL distribution, you can continue to use previously installed loadable
functions, unless you upgrade to a newer MySQL version for which the loadable function interface
changes. For native functions, you must repeat your source code modifications each time you
upgrade.

Regardless of the method used to add a function, it can be invoked in SQL statements just like native
functions such as ABS() or SOUNDEX() .

For the rules describing how the server interprets references to different kinds of functions, see
Function Name Parsing and Resolution.

The following sections describe features of the loadable function interface, provide instructions for
writing loadable functions, discuss security precautions that MySQL takes to prevent loadable function
misuse, and describe how to add native MySQL functions.

For example source code that illustrates how to write loadable functions, take a look at the sql /
udf _exanpl e. cc file that is provided in MySQL source distributions.

75

https://dev.mysql.com/doc/refman/8.0/en/stored-routines.html
https://dev.mysql.com/doc/refman/8.0/en/create-function-loadable.html
https://dev.mysql.com/doc/refman/8.0/en/drop-function-loadable.html
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_abs
https://dev.mysql.com/doc/refman/8.0/en/string-functions.html#function_soundex
https://dev.mysql.com/doc/refman/8.0/en/function-resolution.html

Adding a Native Function

Note

The MySQL source code contains internal documentation written using
Doxygen. This documentation is useful for understanding how MySQL works
from a developer perspective. The generated Doxygen content is available
at https://dev.mysql.com/doc/index-other.html. It is also possible to generate
this content locally from a MySQL source distribution using the instructions at
Generating MySQL Doxygen Documentation Content.

6.1 Adding a Native Function

To add a native MySQL function, use the procedure described here, which requires that you use a
source distribution. You cannot add native functions to a binary distribution because it is necessary to
modify MySQL source code and compile MySQL from the modified source. If you migrate to another
version of MySQL (for example, when a new version is released), you must repeat the procedure with
the new version.

If the native function will be referred to in statements that will be replicated to replicas, you must ensure
that every replica also has the function available. Otherwise, replication will fail on the replicas when
they attempt to invoke the function.

To add a native function, follow these steps to modify source files in the sql directory:

1.

Create a subclass for the functioninit em create. cc:

« If the function takes a fixed number of arguments, create a subclass of Creat e_f unc_ar g0,
Create func_argl,Create func_arg2,or Create_func_arg3, respectively, depending
on whether the function takes zero, one, two, or three arguments. For examples, see the
Create_func_uuid,Create func_abs, Create_func_pow, and Create_ func_| pad
classes.

« If the function takes a variable number of arguments, create a subclass of
Create_native_func. Foran example, see Create func_concat.

To provide a name by which the function can be referred to in SQL statements, register the name in
i tem create. cc byadding a line to this array:

static Native func_registry func_array[]

You can register several names for the same function. For example, see the lines for " LCASE" and
"LOWER', which are aliases for Cr eat e_func_I case.

Initem func. h, declare a class inheriting from | t em num func or I t em st r_f unc, depending
on whether your function returns a number or a string.

Initem func. cc, add one of the following declarations, depending on whether you are defining a
numeric or string function:

doubl e I tem func_newnane: : val ()
I onglong I'tem func_newnane: :val _int()
String *ltemfunc_newnane::Str(String *str)

If you inherit your object from any of the standard items (like | t em num f unc), you probably only
have to define one of these functions and let the parent object take care of the other functions. For
example, the |l tem str_func class defines aval () function that executes at of () on the value
returned by : :str ().

If the function is nondeterministic, include the following statement in the item constructor to indicate
that function results should not be cached:

current _t hd- >l ex->safe_t o_cache_quer y=0;

76

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation-doxygen.html

Adding a Loadable Function

A function is nondeterministic if, given fixed values for its arguments, it can return different results
for different invocations.

6. You should probably also define the following object function:

void |tem func_newnane::fix_| ength_and_dec()

This function should at least calculate max_| engt h based on the given arguments. nax_| engt h
is the maximum number of characters the function may return. This function should also set

maybe nul | = 0 if the main function cannot return a NULL value. The function can check whether
any of the function arguments can return NULL by checking the arguments' naybe_nul | variable.
Look atltem func_nod: : fix_| ength_and_dec for a typical example of how to do this.

All functions must be thread-safe. In other words, do not use any global or static variables in the
functions without protecting them with mutexes.

If you want to return NULL from: :val (),::val _int(),or::str(),youshouldsetnull _val ue
to 1 and return 0.

For: :str () object functions, these additional considerations apply:

* The String *str argument provides a string buffer that may be used to hold the result. (For more
information about the St ri ng type, take a look at the sgl _st ri ng. h file.)

e The::str() function should return the string that holds the result, or (char *) 0 if the result is
NULL.

 All current string functions try to avoid allocating any memory unless absolutely necessary!

6.2 Adding a Loadable Function

The MySQL interface for loadable functions provides the following features and capabilities:
» Functions can return string, integer, or real values and can accept arguments of those same types.

» You can define simple functions that operate on a single row at a time, or aggregate functions that
operate on groups of rows.

« Information is provided to functions that enables them to check the number, types, and names of the
arguments passed to them.

* You can tell MySQL to coerce arguments to a given type before passing them to a function.
* You can indicate that a function returns NULL or that an error occurred.

For the loadable function mechanism to work, functions must be written in C++ and your

operating system must support dynamic loading. MySQL source distributions include a file sql /

udf _exanpl e. cc that defines five loadable function interface functions. Consult this file to see how
loadable function calling conventions work. The i ncl ude/ nysqgl _com h header file defines loadable
function-related symbols and data structures, although you need not include this header file directly; it
is included by nmysql . h.

A loadable function contains code that becomes part of the running server, so when you write a
loadable function, you are bound by any and all constraints that apply to writing server code. For
example, you may have problems if you attempt to use functions from the | i bst dc++ library. These
constraints may change in future versions of the server, so it is possible that server upgrades will
require revisions to loadable functions that were originally written for older servers. For information
about these constraints, see MySQL Source-Configuration Options, and Dealing with Problems
Compiling MySQL.

To be able to use loadable functions, you must link nysgl d dynamically. If you want to use a loadable
function that needs to access symbols from nysql d (for example, the net aphone function in sql /

77

https://dev.mysql.com/doc/refman/8.0/en/source-configuration-options.html
https://dev.mysql.com/doc/refman/8.0/en/compilation-problems.html
https://dev.mysql.com/doc/refman/8.0/en/compilation-problems.html

Loadable Function Interface Functions

udf _exanpl e. cc uses def aul t _char set i nf 0), you must link the program with - r dynamni c (see
man dl open).

For each function that you want to use in SQL statements, you should define corresponding C+

+ functions. In the following discussion, the name “xxx” is used for an example function name. To
distinguish between SQL and C++ usage, XXX() (uppercase) indicates an SQL function call, and
xxx() (lowercase) indicates a C++ function call.

Note

When using C++, encapsulate your C functions within this construct:

extern "C' { ... }

This ensures that your C++ function names remain readable in the completed
function.

» Loadable Function Interface Functions

» Loadable Function Calling Sequences for Simple Functions

» Loadable Function Calling Sequences for Aggregate Functions
» Loadable Function Argument Processing

» Loadable Function Return Values and Error Handling

» Loadable Function Character Set Handling

» Loadable Function Compiling and Installing

» Loadable Function Security Precautions

Loadable Function Interface Functions

The following list describes the C++ functions that you write to implement the interface for a function
named XXX(') . The main function, xxx() , is required. In addition, a loadable function requires at
least one of the other functions described here, for reasons discussed in Loadable Function Security
Precautions.

o xxx()

The main function. This is where the function result is computed. The correspondence between the
SQL function data type and the return type of your C++ function is shown here.

SQL Type C++ Type
STRI NG char *

| NTEGER | ong | ong
REAL doubl e

It is also possible to declare a DECI MAL function, but the value is returned as a string, so you should
write the function as though it were a STRI NG function. RONfunctions are not implemented.

o XXX_init()
The initialization function for xxx () . If present, it can be used for the following purposes:
* To check the number of arguments to XXX() .

< To verify that the arguments are of a required type or, alternatively, to tell MySQL to coerce
arguments to the required types when the main function is called.

78

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html

Loadable Function Calling Sequences for Simple Functions

To allocate any memory required by the main function.
« To specify the maximum length of the result.
» To specify (for REAL functions) the maximum number of decimal places in the result.
» To specify whether the result can be NULL.

e xxx_deinit()

The deinitialization function for xxx() . If present, it should deallocate any memory allocated by the
initialization function.

When an SQL statement invokes XXX() , MySQL calls the initialization function xxx_i nit () to let

it perform any required setup, such as argument checking or memory allocation. If xxx_i ni t ()
returns an error, MySQL aborts the SQL statement with an error message and does not call the main
or deinitialization functions. Otherwise, MySQL calls the main function xxx () once for each row. After
all rows have been processed, MySQL calls the deinitialization function xxx_dei ni t () so that it can
perform any required cleanup.

For aggregate functions that work like SUM) , you must also provide the following functions:
e xxx_clear ()

Reset the current aggregate value but do not insert the argument as the initial aggregate value for a
new group.

e xxx_add()
Add the argument to the current aggregate value.
MySQL handles aggregate loadable functions as follows:
1. Callxxx_init() to letthe aggregate function allocate any memory it needs for storing results.
2. Sort the table according to the GROUP BY expression.
3. Call xxx_cl ear () for the first row in each new group.
4. Call xxx_add() for each row that belongs in the same group.

5. Call xxx() to get the result for the aggregate when the group changes or after the last row has
been processed.

6. Repeat steps 3 to 5 until all rows has been processed
7. Call xxx_deinit () to let the function free any memory it has allocated.

All functions must be thread-safe. This includes not just the main function, but the initialization and
deinitialization functions as well, and also the additional functions required by aggregate functions. A
consequence of this requirement is that you are not permitted to allocate any global or static variables
that change! If you need memory, you must allocate it in xxx_i ni t () and free itin xxx_deinit ().

Loadable Function Calling Sequences for Simple Functions

This section describes the different interface functions that you must define to create a simple loadable
function. For information about the order in which MySQL calls these functions, see Loadable Function
Interface Functions.

The main xxx() function should be declared as shown in this section. Note that the return type and
parameters differ, depending on whether you declare the SQL function XXX() to return STRI NG,
| NTEGER, or REAL in the CREATE FUNCTI ON statement:

79

https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/aggregate-functions.html#function_sum
https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/create-function-loadable.html

Loadable Function Calling Sequences for Simple Functions

For STRI NG functions:

char *xxx(UDF_INIT *initid, UDF_ARGS *args,
char *result, unsigned |ong *|ength,
char *is_null, char *error);

For | NTEGER functions:

long long xxx(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

For REAL functions:

doubl e xxx(UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

DECI MAL functions return string values and are declared the same way as STRI NG functions. ROV
functions are not implemented.

Declare the initialization and deinitialization functions like this:
bool xxx_init(UDF_INIT *initid, UDF_ARGS *args, char *nessage);

void xxx_deinit(UDF_INIT *initid);

The i ni ti d parameter is passed to all three functions. It points to a UDF_| NI T structure that is
used to communicate information between functions. The UDF_| NI T structure members follow. The
initialization function should fill in any members that it wishes to change. (To use the default for a
member, leave it unchanged.)

* bool nmaybe nul |

xxx_init() should set maybe nul | to 1 if xxx() can return NULL. The default value is 1 if any of
the arguments are declared naybe_nul | .

e unsigned int decinals

The number of decimal digits to the right of the decimal point. The default value is the maximum
number of decimal digits in the arguments passed to the main function. For example, if the function is
passed 1. 34, 1. 345, and 1. 3, the default would be 3, because 1. 345 has 3 decimal digits.

For arguments that have no fixed number of decimals, the deci nal s value is set to 31, which is 1
more than the maximum number of decimals permitted for the DECI MAL, FLOAT, and DOUBLE data
types. This value is available as the constant NOT_FI XED DECin the mysqgl _com h header file.

A deci nal s value of 31 is used for arguments in cases such as a FLOAT or DOUBLE column
declared without an explicit number of decimals (for example, FLOAT rather than FLOAT(10, 3))
and for floating-point constants such as 1345E- 3. It is also used for string and other nonnumber
arguments that might be converted within the function to numeric form.

The value to which the deci mal s member is initialized is only a default. It can be changed within the
function to reflect the actual calculation performed. The default is determined such that the largest
number of decimals of the arguments is used. If the number of decimals is NOT_FI XED DEC for even
one of the arguments, that is the value used for deci nmal s.

e unsigned int nmax_length

The maximum length of the result. The default mex_| engt h value differs depending on the result
type of the function. For string functions, the default is the length of the longest argument. For integer
functions, the default is 21 digits. For real functions, the default is 13 plus the number of decimal
digits indicated by i ni t i d- >deci nmal s. (For numeric functions, the length includes any sign or
decimal point characters.)

80

https://dev.mysql.com/doc/refman/8.0/en/integer-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/floating-point-types.html

Loadable Function Calling Sequences for Aggregate Functions

If you want to return a blob value, you can set max_| engt h to 65KB or 16MB. This memory is not
allocated, but the value is used to decide which data type to use if there is a need to temporarily
store the data.

e char *ptr

A pointer that the function can use for its own purposes. For example, functions can use i ni ti d-
>pt r to communicate allocated memory among themselves. xxx_i ni t () should allocate the
memory and assign it to this pointer:

initid->ptr = all ocated_nenory;
In xxx() and xxx_deinit(),refertoinitid->ptr touse ordeallocate the memory.
* bool const _item

xxxX_init() shouldsetconst itemto1ifxxx() always returns the same value and to 0
otherwise.

Loadable Function Calling Sequences for Aggregate Functions

This section describes the different interface functions that you need to define when you create an
aggregate loadable function. For information about the order in which MySQL calls these functions, see
Loadable Function Interface Functions.

e XXX_reset()

This function is called when MySQL finds the first row in a new group. It should reset any internal
summary variables and then use the given UDF_ARGS argument as the first value in your internal
summary value for the group. Declare xxx_r eset () as follows:

void xxx_reset (UDF_INIT *initid, UDF_ARGS *args,
char *is_null, char *error);

xxx_reset () is not needed or used in MySQL 8.0, in which the loadable function interface uses
xxx_cl ear () instead. However, you can define both xxx_r eset () and xxx_cl ear () if you want
to have your function work with older versions of the server. (If you do include both functions, the
xxx_reset () function in many cases can be implemented internally by calling xxx_cl ear () to
reset all variables, and then calling xxx_add() to add the UDF_ARGS argument as the first value in
the group.)

e xxx_clear()

This function is called when MySQL needs to reset the summary results. It is called at the beginning
for each new group but can also be called to reset the values for a query where there were no
matching rows. Declare xxx_cl ear () as follows:

voi d xxx_clear(UDF_INIT *initid, char *is_null, char *error);
i s_nul | is set to point to CHAR(0) before calling xxx_cl ear ().

If something went wrong, you can store a value in the variable to which the er r or argument points.
error points to a single-byte variable, not to a string buffer.

xxx_cl ear () is required by MySQL 8.0.
e Xxx_add()

This function is called for all rows that belong to the same group. You should use it to add the value
in the UDF_ ARGS argument to your internal summary variable.

voi d xxx_add(UDF_INIT *initid, UDF_ARGS *args,

81

Loadable Function Argument Processing

char *is_null, char *error);

The xxx() function for an aggregate loadable function should be declared the same way as for a
nonaggregate loadable function. See Loadable Function Calling Sequences for Simple Functions.

For an aggregate loadable function, MySQL calls the xxx () function after all rows in the group have
been processed. You should normally never access its UDF_ARGS argument here but instead return a
value based on your internal summary variables.

Return value handling in xxx() should be done the same way as for a nonaggregate loadable
function. See Loadable Function Return Values and Error Handling.

The xxx_reset () and xxx_add() functions handle their UDF_ARGS argument the same way as
functions for nonaggregate UDFs. See Loadable Function Argument Processing.

The pointer argumentstoi s_nul | and error are the same for all calls to xxx_reset (),
xxx_clear (), xxx_add() and xxx() . You can use this to remember that you got an error or
whether the xxx() function should return NULL. You should not store a string into *error!error
points to a single-byte variable, not to a string buffer.

*is_nul | is reset for each group (before calling xxx_cl ear ()). *error is never reset.

If*is null or*error are set when xxx() returns, MySQL returns NULL as the result for the group
function.

Loadable Function Argument Processing

The ar gs parameter points to a UDF_ARGS structure that has the members listed here:
e unsigned int arg_count

The number of arguments. Check this value in the initialization function if you require your function to
be called with a particular number of arguments. For example:

if (args->arg_count != 2)
strcpy(nmessage, "XXX() requires two argunents");

return 1;

}

For other UDF_ARGS member values that are arrays, array references are zero-based. That is, refer
to array members using index values from O to ar gs- >ar g_count - 1.

e enumlitemresult *arg_type

A pointer to an array containing the types for each argument. The possible type values are
STRI NG _RESULT, | NT_RESULT, REAL_RESULT, and DECI MAL_RESULT.

To make sure that arguments are of a given type and return an error if they are not, check the
ar g_type array in the initialization function. For example:

if (args->arg_type[0] != STRING RESULT | |
args->arg_type[1] !'= I NT_RESULT)
{

strcpy(nmessage, "XXX() requires a string and an integer");
return 1;

}

Arguments of type DEClI MAL_RESULT are passed as strings, so you handle them the same way as
STRI NG_RESULT values.

As an alternative to requiring your function's arguments to be of particular types, you can use the
initialization function to set the ar g_t ype elements to the types you want. This causes MySQL to

82

Loadable Function Argument Processing

coerce arguments to those types for each call to xxx() . For example, to specify that the first two
arguments should be coerced to string and integer, respectively, do thisin xxx_init():

args->arg_type[0]
args->arg_type[1]

STRI NG_RESULT;
I NT_RESULT;

Exact-value decimal arguments such as 1. 3 or DECI MAL column values are passed with a type
of DECI MAL_RESULT. However, the values are passed as strings. To receive a number, use the
initialization function to specify that the argument should be coerced to a REAL_RESULT value:

args->arg_type[2] = REAL_RESULT,;
e char **args

ar gs- >ar gs communicates information to the initialization function about the general nature of
the arguments passed to your function. For a constant argument i , ar gs- >ar gs[i | points to the
argument value. (See later for instructions on how to access the value properly.) For a nonconstant
argument, ar gs- >ar gs[i] is 0. A constant argument is an expression that uses only constants,
such as 3 or4*7-2 or SI N(3. 14) . A nonconstant argument is an expression that refers to

values that may change from row to row, such as column names or functions that are called with
nonconstant arguments.

For each invocation of the main function, ar gs- >ar gs contains the actual arguments that are
passed for the row currently being processed.

If argument i represents NULL, ar gs- >ar gs[i] is a null pointer (0). If the argument is not NULL,
functions can refer to it as follows:

< An argument of type STRI NG_RESULT is given as a string pointer plus a length, to enable handling
of binary data or data of arbitrary length. The string contents are available as ar gs- >ar gs|[i]
and the string length is ar gs- >l engt hs[i] . Do not assume that the string is null-terminated.

For additional information about string arguments, see Loadable Function Character Set Handling.

» For an argument of type | NT_RESULT, you must cast ar gs- >args[i] toal ong | ong value:

long long int_val;
int_val = *((long |long*) args->args[i]);

e For an argument of type REAL_RESULT, you must cast ar gs- >ar gs[i] to a doubl e value:

doubl e real _val;
real _val = *((double*) args->args[i]);

« For an argument of type DECI MAL_RESULT, the value is passed as a string and should be
handled like a STRI NG_RESULT value.

e ROW RESULT arguments are not implemented.
e unsigned |l ong *Il engths

For the initialization function, the | engt hs array indicates the maximum string length for each
argument. You should not change these. For each invocation of the main function, | engt hs
contains the actual lengths of any string arguments that are passed for the row currently being
processed. For arguments of types | NT_RESULT or REAL_RESULT, | engt hs still contains the
maximum length of the argument (as for the initialization function).

e char *maybe_nul |

For the initialization function, the maybe_ nul | array indicates for each argument whether the
argument value might be null (0 if no, 1 if yes).

e char **attributes

83

https://dev.mysql.com/doc/refman/8.0/en/fixed-point-types.html
https://dev.mysql.com/doc/refman/8.0/en/mathematical-functions.html#function_sin

Loadable Function Return Values and Error Handling

args->attri but es communicates information about the names of the function arguments. For
argument i , the attribute name is available as a string in ar gs- >attri but es[i] and the attribute
lengthis ar gs->attri bute_ | engt hs[i]. Do not assume that the string is null-terminated.

By default, the name of a function argument is the text of the expression used to specify the
argument. For loadable functions, an argument may also have an optional [AS] al i as_nane
clause, in which case the argument name is al i as_nane. The at t r i but es value for each
argument thus depends on whether an alias was given.

Suppose that a loadable function my _udf () is invoked as follows:

SELECT ny_udf (exprl, expr2 AS aliasl, expr3 alias2);

In this case, the attri butes and attri but e_| engt hs arrays will have these values:

args->attributes[0] = "exprl"
args->attribute_|lengths[0] =5

args->attributes[1] = "aliasl"
args->attribute_|lengths[1] = 6

args->attributes[2] = "alias2"
args->attribute_lengths[2] = 6

e unsigned long *attribute_l engths

The attri bute_| engt hs array indicates the length of each argument name.

Loadable Function Return Values and Error Handling

The initialization function should return O if no error occurred and 1 otherwise. If an error occurs,
xxx_init() should store a null-terminated error message in the nessage parameter. The message
is returned to the client. The message buffer is MYSQL_ERRMSG_SI ZE characters long. Try to keep the
message to less than 80 characters so that it fits the width of a standard terminal screen.

The return value of the main function xxx() is the function value, for| ong | ong and doubl e
functions. A string function should return a pointer to the result and set *| engt h to the length (in bytes)
of the return value. For example:

mencpy(result, “"result string", 13)
*l ength = 13

MySQL passes a buffer to the xxx () function using the r esul t parameter. This buffer is sufficiently
long to hold 255 characters, which can be multibyte characters. The xxx() function can store the
result in this buffer if it fits, in which case the return value should be a pointer to the buffer. If the
function stores the result in a different buffer, it should return a pointer to that buffer.

If your string function does not use the supplied buffer (for example, if it needs to return a string

longer than 255 characters), you must allocate the space for your own buffer with mal | oc() inthe
xxX_init () function or the xxx() function and free it in your xxx_dei ni t () function. You can store
the allocated memory in the pt r slot in the UDF_| NI T structure for reuse by future xxx() calls. See
Loadable Function Calling Sequences for Simple Functions.

For additional information about string arguments, see Loadable Function Character Set Handling.
To indicate a return value of NULL in the main function, set*i s_nul | to 1:
*is null =1

To indicate an error return in the main function, set *err or to 1:

*error = 1;

84

Loadable Function Character Set Handling

If xxx() sets *error to 1 for any row, the function value is NULL for the current row and for any
subsequent rows processed by the statement in which XXX() was invoked. (xxx() is not even called
for subsequent rows.)

Loadable Function Character Set Handling

Prior to MySQL 8.0.19, loadable functions take no account of the character set or collation of string
arguments or return values. In effect, string arguments and return values are treated as binary strings,
with the implication that only string arguments containing single-byte characters can be handled
reliably.

As of MySQL 8.0.19, loadable function behavior is still the same by default, but the interface for writing
loadable functions has been extended to enable loadable functions to determine the character set and
collation of string arguments, and to return strings that have a particular character set and collation.
These capabilities are optional for loadable function writers, who may take advantage of them as
desired.

Of the loadable functions distributed with MySQL, those associated with the following features and
extensions have been modified to take advantage of the character-set capabilities: MySQL Enterprise
Audit, MySQL Enterprise Firewall, MySQL Enterprise Data Masking and De-ldentification, MySQL
Keyring (the general-purpose keyring loadable functions only, not those specific to particular keyring
plugins), and Group Replication. The modification applies only where it make sense. For example, a
loadable function that returns encrypted data is intended to return a binary string, not a character string.

Character-set capabilities for loadable functions are implemented using the nysql _udf net adat a
server component service. For information about this service, see the MySQL Server

Doxygen documentation, available at https://dev.mysql.com/doc/index-other.html (search for

s_nysqgl _nysqgl udf netadata and udf net adat a_i np). Source code for the MySQL Keyring
loadable functions is available in Community source distributions and may be examined as examples
for third-party loadable function writers who wish to modify their own loadable functions to be character
set-aware.

If a loadable function takes string arguments or returns a string value and is modified to be character
set-aware, the following compatibility considerations apply:

» With respect to the arguments they pass to the loadable function, applications will continue to work
because the function is now capable of handling string arguments in any character set, including
binary strings.

« If aloadable function is to return a string result in a character set different from the character set of
its arguments, the function must perform the character set conversion internally. For example, this is
the case if a function accepts | at i n1 arguments but returns a ut f 8nb4 result.

Loadable Function Compiling and Installing

Files implementing loadable functions must be compiled and installed on the host where the server
runs. The process is described here for the example loadable function file sql / udf _exanpl e. cc
that is included in MySQL source distributions. For additional information about loadable function
installation, see Installing and Uninstalling Loadable Functions.

If a loadable function will be referred to in statements that will be replicated to replicas, you must
ensure that every replica also has the function available. Otherwise, replication fails on the replicas
when they attempt to invoke the function.

The udf _exanpl e. cc file contains the following functions:

« net aphon() returns a metaphon string of the string argument. This is something like a soundex
string, but it is more tuned for English.

e nyfunc_doubl e() returns the sum of the ASCII values of the characters in its arguments, divided
by the sum of the length of its arguments.

85

https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/8.0/en/function-loading.html

Loadable Function Compiling and Installing

e nyfunc_int() returns the sum of the length of its arguments.

» sequence([const int]) returns a sequence starting from the given number or 1 if no number
has been given.

» | ookup() returns the IP address for a host name.

e reverse_ | ookup() returns the host name for an IP address. The function may be called either
with a single string argument of the form ' xxx. xxx. xxx. xxx" or with four numbers.

» avgcost () returns an average cost. This is an aggregate function.
On Unix and Unix-like systems, compile loadable functions using the following procedure:

A dynamically loadable file should be compiled as a sharable library file, using a command something
like this:

gcc -shared -o udf_exanpl e. so udf _exanpl e. cc

If you are using gcc with CVake (which is how MySQL itself is configured), you should be able to
create udf _exanpl e. so with a simpler command:

make udf _exanpl e

After compiling a shared object containing loadable functions, you must install it and tell MySQL
about it. Compiling a shared object from udf _exanpl e. cc using gcc directly produces a file
named udf _exanpl e. so. Copy the shared object to the server's plugin directory and name it
udf _exanpl e. so. This directory is given by the value of the pl ugi n_di r system variable.

On some systems, the | dconf i g program that configures the dynamic linker does not recognize
a shared object unless its name begins with | i b. In this case you should rename a file such as
udf _exanpl e. sotol i budf _exanpl e. so.

On Windows, compile loadable functions using the following procedure:
1. Obtain a MySQL source distribution. See How to Get MySQL.

2. Obtain the Cake build utility, if necessary, from http://www.cmake.org. (Version 2.6 or later is
required).

3. Inthe source tree, look in the sql directory for files named udf _exanpl e. def and
udf _exanpl e. cc. Copy both files from this directory to your working directory.

4. Create a C\Vake makefi | e (CMakelLi st s. t xt) with these contents:
PRQIECT(udf _exanpl e)

Path for MySQL include directory
I NCLUDE_DI RECTORI ES(" c: / mysql /i ncl ude")

ADD_DEFI NI TI ONS(" - DHAVE_DLOPEN')

ADD_LI| BRARY(udf _exanpl e MODULE udf _exanpl e. cc udf _exanpl e. def)
TARGET_LI NK_LI BRARI ES(udf _exanpl e wsock32)

5. Create the VC project and solution files, substituting an appropriate gener at or value:

cmake -G "generator"
Invoking cnake - - hel p shows you a list of valid generators.

6. Create udf _exanple.dl|:

devenv udf_exanple.sln /build Rel ease

On all platforms, after the shared library file has been copied to the pl ugi n_di r directory, notify
nmysql d about the new functions with the following statements. The file name suffix differs per platform

https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/getting-mysql.html
http://www.cmake.org
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir

Loadable Function Security Precautions

(for example, . so for Unix and Unix-like systems, . dl | for Windows), so adjust the . so suffix for your
platform as necessary.

CREATE FUNCTI ON net aphon RETURNS STRI NG
SONAME ' udf _exanpl e. so' ;

CREATE FUNCTI ON nyf unc_doubl e RETURNS REAL
SONAME ' udf _exanpl e. so' ;

CREATE FUNCTI ON nyfunc_i nt RETURNS | NTEGER
SONAME ' udf _exanpl e. so' ;

CREATE FUNCTI ON sequence RETURNS | NTEGER
SONAME ' udf _exanpl e. so' ;

CREATE FUNCTI ON | ookup RETURNS STRI NG
SONAME ' udf _exanpl e. so' ;

CREATE FUNCTI ON reverse_| ookup RETURNS STRI NG
SONAME ' udf _exanpl e. so' ;

CREATE AGGREGATE FUNCTI ON avgcost RETURNS REAL
SONAME ' udf _exanpl e. so' ;

Once installed, a function remains installed until it is uninstalled.

To remove functions, use DROP FUNCTI ON:

DROP FUNCTI ON net aphon;

DROP FUNCTI ON nyf unc_doubl e;
DROP FUNCTI ON nyfunc_i nt;
DROP FUNCTI ON sequence;

DROP FUNCTI ON | ookup;

DROP FUNCTI ON rever se_| ookup;
DROP FUNCTI ON avgcost ;

The CREATE FUNCTI ONand DROP FUNCTI ON statements update the mysql . f unc system table that
serves as a loadable function registry. These statements require the | NSERT and DELETE privilege,
respectively, for the mysql database.

During the normal startup sequence, the server loads functions registered in the nysql . f unc table. If
the server is started with the - - ski p- gr ant - t abl es option, functions registered in the table are not
loaded and are unavailable.

Loadable Function Security Precautions

MySQL takes several measures to prevent misuse of loadable functions.

Loadable function library files cannot be placed in arbitrary directories. They must be located in the
server's plugin directory. This directory is given by the value of the pl ugi n_di r system variable.

To use CREATE FUNCTI ON or DROP FUNCTI QN, you must have the | NSERT or DELETE privilege,
respectively, for the mysql database. This is necessary because those statements add and delete
rows from the nysql . f unc table.

Loadable functions should have at least one symbol defined in addition to the xxx symbol that
corresponds to the main xxx() function. These auxiliary symbols correspond to the xxx_i nit (),
xxx_deinit(),xxx_reset(),xxx_clear(),andxxx_add() functions. nysql d also supports
an - - al | ow suspi ci ous- udf s option that controls whether Loadable functions that have only an
xxx symbol can be loaded. By default, the option is disabled, to prevent attempts at loading functions
from shared library files other than those containing legitimate Loadable functions. If you have older
Loadable functions that contain only the xxx symbol and that cannot be recompiled to include an
auxiliary symbol, it may be necessary to specify the - - al | ow suspi ci ous- udf s option. Otherwise,
you should avoid enabling it.

87

https://dev.mysql.com/doc/refman/8.0/en/drop-function-loadable.html
https://dev.mysql.com/doc/refman/8.0/en/create-function-loadable.html
https://dev.mysql.com/doc/refman/8.0/en/drop-function-loadable.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_skip-grant-tables
https://dev.mysql.com/doc/refman/8.0/en/server-system-variables.html#sysvar_plugin_dir
https://dev.mysql.com/doc/refman/8.0/en/create-function-loadable.html
https://dev.mysql.com/doc/refman/8.0/en/drop-function-loadable.html
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_insert
https://dev.mysql.com/doc/refman/8.0/en/privileges-provided.html#priv_delete
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_allow-suspicious-udfs
https://dev.mysql.com/doc/refman/8.0/en/server-options.html#option_mysqld_allow-suspicious-udfs

88

Chapter 7 Porting MySQL

Before attempting to port MySQL to other operating systems, check the list of currently supported
operating systems first. See https://www.mysql.com/support/supportedplatforms/database.html.

Note

If you create a new port of MySQL, you are free to copy and distribute it under
the GPL license, but it does not make you a copyright holder of MySQL.

A working POSIX thread library is needed for the server.

To build MySQL from source, your system must satisfy the tool requirements listed at Installing MySQL
from Source.

If you run into problems with a new port, you may have to do some debugging of MySQL! See
Debugging a MySQL Server.

Note

Before you start debugging nysql d, first get the test program nysys/
t hr _| ock to work. This ensures that your thread installation has even a remote
chance to work!

Note

The MySQL source code contains internal documentation written using
Doxygen. This documentation is useful for understanding how MySQL works
from a developer perspective. The generated Doxygen content is available

at https://dev.mysql.com/doc/index-other.html. It is also possible to generate
this content locally from a MySQL source distribution using the instructions at
Generating MySQL Doxygen Documentation Content.

89

https://www.mysql.com/support/supportedplatforms/database.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/debugging-server.html
https://dev.mysql.com/doc/index-other.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation-doxygen.html

90

Index

A
adding
loadable functions, 77
native functions, 76
argument processing, 82
audit plugins, 10
authentication plugins, 11

C

calling sequences for aggregate functions
loadable functions, 81

calling sequences for simple functions
loadable functions, 79

compiling
loadable functions, 85

component service
status_variable_registration, 71

D

daemon plugins, 10

E

environment variable
MYSQL_TEST_TRACE_CRASH, 63
MYSQL_TEST_TRACE_DEBUG, 63
errors
handling for loadable functions, 84

F

full-text parser plugins, 9
functions
adding, 75
loadable, 75
adding, 77
native
adding, 76

G

get_sysvar_source plugin service, 71

H

handling
errors, 84

INFORMATION_SCHEMA plugins, 10
installing
loadable functions, 85

K
keyring plugins, 12, 68

L
Loadable function (UDF) plugins, 8

loadable functions, 75

adding, 77

compiling, 85

return values, 84
locking_service plugin service, 71

M

MySQL internals, 1
mysqltest

MySQL Test Suite, 5
mysql_keyring plugin service, 72
mysql_password_policy plugin service, 72
MYSQL_SERVER_AUTH_INFO plugin structure, 54
MYSQL_TEST_TRACE_CRASH environment variable,
63
MYSQL_TEST_TRACE_DEBUG environment variable,
63
my_plugin_log_service plugin service, 71
my_thd_scheduler plugin service, 71

N

native functions
adding, 76

P

plugin API, 7

plugin service
get_sysvar_source, 71
locking_service, 71
mysql_keyring, 72
mysql_password_policy, 72
my_plugin_log_service, 71
my_thd_scheduler, 71
plugin_registry_service, 72
security_context, 72
thd_alloc, 72
thd_wait, 72

plugin services, 71

plugins
adding, 7
audit, 10
authentication, 11
conditions for writing, 15
daemon, 10
full-text parser, 9
INFORMATION_SCHEMA, 10
keyring, 12, 68
Loadable function (UDF), 8
protocol trace, 11
protocol trace plugin, 63
query rewrite, 12
semisynchronous replication, 10
storage engine, 9
test protocol trace plugin, 63

plugin_registry_service service, 72

porting
to other systems, 89

91

processing
arguments, 82
protocol trace plugins, 11

Q

query rewrite plugins, 11

R

return values
loadable functions, 84

S

security_context plugin service, 72
semisynchronous replication plugins, 10
services

for plugins, 71
status_variable_registration component service, 71
storage engine plugins, 9

T

test protocol trace plugin, 63
testing mysqld

mysqltest, 5
thd_alloc plugin service, 72
thd_wait plugin service, 72
threads, 3

U

UDFs (see loadable functions)
user-defined functions (see loadable functions)

92

	Extending MySQL 8.0
	Table of Contents
	Preface and Legal Notices
	Chapter 1 Introduction
	Chapter 2 MySQL Threads
	Chapter 3 The MySQL Test Suite
	Chapter 4 The MySQL Plugin API
	4.1 Types of Plugins
	4.2 Plugin API Characteristics
	4.3 Plugin API Components
	4.4 Writing Plugins
	4.4.1 Overview of Plugin Writing
	4.4.2 Plugin Data Structures
	4.4.2.1 Server Plugin Library and Plugin Descriptors
	4.4.2.2 Server Plugin Status and System Variables
	4.4.2.3 Client Plugin Descriptors

	4.4.3 Compiling and Installing Plugin Libraries
	4.4.4 Writing Full-Text Parser Plugins
	4.4.5 Writing Daemon Plugins
	4.4.6 Writing INFORMATION_SCHEMA Plugins
	4.4.7 Writing Semisynchronous Replication Plugins
	4.4.8 Writing Audit Plugins
	4.4.9 Writing Authentication Plugins
	4.4.9.1 Writing the Server-Side Authentication Plugin
	4.4.9.2 Writing the Client-Side Authentication Plugin
	4.4.9.3 Using the Authentication Plugins
	4.4.9.4 Implementing Proxy User Support in Authentication Plugins

	4.4.10 Writing Password-Validation Plugins
	4.4.11 Writing Protocol Trace Plugins
	4.4.11.1 Using the Test Protocol Trace Plugin
	4.4.11.2 Using Your Own Protocol Trace Plugins

	4.4.12 Writing Keyring Plugins

	Chapter 5 MySQL Services for Plugins
	Chapter 6 Adding Functions to MySQL
	6.1 Adding a Native Function
	6.2 Adding a Loadable Function

	Chapter 7 Porting MySQL
	Index

