深度学习的可解释性

本文探讨深度学习的可解释性,包括局部解释(Saliency Map, Integrated gradient, DeepLIFT, SmoothGrad)、全局解释(Activation Maximization, Constraint from Generator)和模型解释(LIME, Decision Tree Regularization)。通过这些方法,可以理解复杂模型如何对输入做出响应,以及优化解释的准确性和可信度。" 133824928,15265080,Java实现的电影推荐系统设计与实现,"['Java', '课程设计', '开发语言', 'Springboot', 'Mybatis']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

深度学习的可解释性

Explainable Deep Learning.

简单的机器学习模型具有一定的可解释性(explanation or interpretation),如线性回归、决策树;而深度学习模型过于复杂,可解释性差。

所谓可解释性,并不是指对模型是如何工作的完全了解,而是从人类的角度给出可以接受的解释。

将每一个输入样本表示为$${x_1,...,x_N}$$。对于计算机视觉,$x_i$可以表示每一个像素或每一部分像素;对于自然语言处理,$x_i$可以表示每一个单词或每一个字符。

本文目录

  1. Local Explanation
  2. Global Explanation
  3. Model Explanation

1. Local Explanation

Local Explanation是指改变输入中的每一个$x_i$,对输出会有怎样的影响。

(1)Saliency Map

计算并显示损失对每一个输入的梯度:

基于梯度的方法的缺陷是:<

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值