深度学习的可解释性
Explainable Deep Learning.
简单的机器学习模型具有一定的可解释性(explanation or interpretation),如线性回归、决策树;而深度学习模型过于复杂,可解释性差。
所谓可解释性,并不是指对模型是如何工作的完全了解,而是从人类的角度给出可以接受的解释。
将每一个输入样本表示为$${x_1,...,x_N}$$。对于计算机视觉,$x_i$可以表示每一个像素或每一部分像素;对于自然语言处理,$x_i$可以表示每一个单词或每一个字符。
本文目录:
- Local Explanation
- Global Explanation
- Model Explanation
1. Local Explanation
Local Explanation是指改变输入中的每一个$x_i$,对输出会有怎样的影响。
(1)Saliency Map
计算并显示损失对每一个输入的梯度:
基于梯度的方法的缺陷是:<