作者:禅与计算机程序设计艺术
自从2017年NIPS在美国召开后,越来越多的研究者开始关注并试图将神经网络模型引入到自然语言处理任务中。近年来最火爆的技术当属Attention Is All You Need(AIAYN)、BERT等。这些技术通过学习各种预训练数据集对模型进行初始化,在训练过程中就能取得优秀的结果。不过,这些技术也存在一些问题,比如其训练速度慢、内存占用过高、需要大量计算资源等。因此,作者希望通过分析和总结这一过程,提供一种更加高效的预训练方法。
本文将详细介绍Transformer预训练过程,以及如何利用预训练数据提升模型的性能。预训练过程包括了词嵌入、位置编码、Transformer模型结构和微调器三个阶段。其中词嵌入将输入序列转换成向量表示形式,位置编码则提供信息量大的位置特征;Transformer模型结构负责将特征映射到上下文理解层和输出层上,进而完成预测任务;微调器即权重初始化后的模型参数微调,通过调整模型的参数让其达到更好的效果。最后,本文还会阐述预训练过程中的注意力机制、优化方法、数据集选择等相关知识。