数据标签化:如何通过标签化数据进行文本分类和自然语言处理自然语言处理教程

本文详细介绍了数据标签化的概念,包括词性标注、命名实体识别等,探讨了标签平衡问题及其解决方案,并讲解了神经网络语言模型,如n-gram和RNN。此外,还涉及概率图模型、贝叶斯网络、生成式和判别式模型,以及对抗训练在自然语言处理中的应用。最后,提供了数据处理和模型训练的具体实例。

在这里插入图片描述

作者:禅与计算机程序设计艺术

1.前言

在自然语言处理中,词性标注、命名实体识别、句法分析、语义理解、语音合成、信息检索、文档摘要等功能需要对输入文本进行分析处理。这些任务通常都涉及到大量的数据处理工作。例如,给定一个文本序列(如一段话或一篇文章),如何自动地确定其中的名词短语、动词短语、介词短语、形容词短语?这个过程被称之为词性标注。再比如,给定一段文本,如何识别出其中的人物、组织机构、地点、时间、日期、货币金额等实体?这个过程被称之为命名实体识别。每当我们阅读、回复、输入文字时,都离不开这些功能,它们的背后都是复杂的计算过程。

机器学习和深度学习技术也经常用于处理文本分类和自然语言处理问题。但这些技术并非通用型且可迁移到各个领域,它们面临着严重的性能限制。解决这一问题的一个关键就是借助于高质量的标注数据集。而数据的获取往往既费时又费力,因此如何快速有效地收集和标记大量的数据成为难题。而借助于现代计算机集群的硬件优势,如何利用人工智能方法有效地处理海量数据,则成为了更加重要的问题。

本文将会详细介绍数据标签化的基本概念,以及如何通过标签化数据进行文本分类和自然语言处理。

2.基本概念术语说明

2.1 数据标签化

数据标签化(data labeling)即根据数据的特点对其进行适当的描

评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值