介绍一下贝叶斯网络的基本原理

本文详细介绍了贝叶斯网络的基本原理,包括可观测变量、隐藏变量、边缘概率分布和条件概率分布等核心概念。通过学习准则如最大熵、变分法和EM算法进行模型参数学习。文章还探讨了推理问题和推断算法,如变分推断和求积蒙特卡洛,并给出了结构化推理框架。最后,通过实例展示了贝叶斯网络在图片分类和文本情感分析中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

1956年,艾伦·图灵提出了著名的“图灵测试”,作为计算机科学的里程碑事件。“图灵测试”要求参加者要通过一个测试,让机器模仿人的语言表达能力、思维速度和决策准确率。在这项测试中,图灵给出的答案基本都是正确的,人们只能认为他成功地通过了测试。然而,即使是美国计算机界最杰出的顶级程序员蒂姆·伯纳斯-李(Tim Berners-Lee)也未能通过“图灵测试”。
在20世纪80年代末,随着贝叶斯统计的发明,人们发现可以从数据中学习到很多知识。于是,人们开始思考如何用数据驱动机器学习、推理和预测。如何建模、训练、更新和推断都成为一个重要研究课题。2000年左右,卡内基梅隆大学等一些著名学府开设了关于概率论和统计学习的课程。这些课程帮助学生了解到,统计学习的核心就是贝叶斯方法。
1997年,美国MIT的教授罗纳德·费尔德()教授领导了一个项目,对贝叶斯网络进行研究。贝叶斯网络是一种基于贝叶斯定理的概率模型,由一组可观测变量X和一组隐藏变量Z组成。其中,X表示可观测的数据变量,比如图像中的像素值;Z表示隐含的随机变量,比如图像中的边缘、角点、颜色等。每当我们观察到一个样本数据x时,我们可以通过计算条件概率P(z|x)来得到每个隐含变量的值,然后根据贝叶斯定理得到P(x),P(z),P(x|z)。这套模型可以用于分类、聚类、异常检测、推荐系统等诸多应用场景。
20世纪90年代后期,贝叶斯网络越来越受到关注。它已经成为自然语言处理、生物信息学、神经网络、人机交互等领域的基础工具。随着深度学习技术的发展,人工智能领域的很多任务都离不开深度学习技术,因此,贝叶斯网络也逐渐成为各个领域的必备技能。

2.基本概念术

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值