作者:禅与计算机程序设计艺术
1.简介
图书推荐、音乐推荐、电影推荐、购物推荐、新闻推荐、情感分析等,本文将讨论一下目前存在的主要的研究方向,并针对不同业务领域,选择最有价值的论文做进一步的研究,希望能够提供给读者一些建议。
2.相关工作
2.1 推荐系统综述
**推荐系统(Recommender System)**是一个基于用户行为数据的信息过滤系统,它可以帮助用户发现他可能感兴趣的信息或产品。目前,推荐系统有着广泛的应用,如网页搜索引擎、视频播放器、手机应用程序、电子商务网站的产品推荐、电视节目推荐等。推荐系统背后的核心思想是“用户喜好聚合”,也就是通过分析用户的历史记录、兴趣偏好、上下文环境等,预测用户对某些目标商品或服务的喜好程度,根据这个喜好程度进行个性化推荐,从而提高用户体验、提升效率。
推荐系统研究的研究领域
根据英国科技协会(ACS)发布的最新报告——“2019年科技创新十大趋势”中指出的,2019年科技创新的十大趋势有四项与推荐系统有关,分别是“数据和人口的增长带动创新”,“虚拟现实技术推动创新”,“机器学习与大数据技术促进创新”,“物联网技术带动创新”。此外,“第三次浪潮之巅”迫在眉睫。在推荐系统这一研究领域,正在形成一个重要研究热点——“多任务学习及其在推荐系统中的应用”。
如上图所示,推荐系统的多任务学习也面临着越来越多的挑战。早期的多任务学习方法主要集中在文本分类、图像识别等简单任务上。但是随着推荐系统的需求变得越来越复杂、任务数量也越来越多,这些传统的多任务学习方法就不再适用了。