推荐系统简介

本文介绍了推荐系统的基本概念、相关工作、分类、业务场景、需求分析以及技术演进。推荐系统是一个信息过滤系统,通过用户行为数据进行个性化推荐。其分类包括基于规则、模型和混合方法。随着技术发展,推荐系统正朝着多任务学习、深度学习和个性化工具方向发展,以提升推荐的准确性和多样性。

作者:禅与计算机程序设计艺术

1.简介

图书推荐、音乐推荐、电影推荐、购物推荐、新闻推荐、情感分析等,本文将讨论一下目前存在的主要的研究方向,并针对不同业务领域,选择最有价值的论文做进一步的研究,希望能够提供给读者一些建议。

2.相关工作

2.1 推荐系统综述

**推荐系统(Recommender System)**是一个基于用户行为数据的信息过滤系统,它可以帮助用户发现他可能感兴趣的信息或产品。目前,推荐系统有着广泛的应用,如网页搜索引擎、视频播放器、手机应用程序、电子商务网站的产品推荐、电视节目推荐等。推荐系统背后的核心思想是“用户喜好聚合”,也就是通过分析用户的历史记录、兴趣偏好、上下文环境等,预测用户对某些目标商品或服务的喜好程度,根据这个喜好程度进行个性化推荐,从而提高用户体验、提升效率。

推荐系统研究的研究领域

根据英国科技协会(ACS)发布的最新报告——“2019年科技创新十大趋势”中指出的,2019年科技创新的十大趋势有四项与推荐系统有关,分别是“数据和人口的增长带动创新”,“虚拟现实技术推动创新”,“机器学习与大数据技术促进创新”,“物联网技术带动创新”。此外,“第三次浪潮之巅”迫在眉睫。在推荐系统这一研究领域,正在形成一个重要研究热点——“多任务学习及其在推荐系统中的应用”。
如上图所示,推荐系统的多任务学习也面临着越来越多的挑战。早期的多任务学习方法主要集中在文本分类、图像识别等简单任务上。但是随着推荐系统的需求变得越来越复杂、任务数量也越来越多,这些传统的多任务学习方法就不再适用了。

评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值