推荐系统之新闻推荐(News Recommendation for Recommendation System)

本文介绍了新闻推荐系统,特别是基于神经递归自动编码器(NR-RNN)的推荐方法。NR-RNN模型能直接利用用户点击序列和文本序列,解决了传统协同过滤算法在大数据流和用户兴趣变化时的不足。模型包括用户点击序列编码器、文本序列编码器和预测模型,通过训练数据集进行学习和优化,实现对用户新闻偏好的精确预测。

作者:禅与计算机程序设计艺术

1.简介

推荐系统(Recommender Systems)是指通过分析用户行为、历史记录、物品特征等信息,向用户推荐其可能感兴趣的商品或服务,或给出个性化推荐。随着互联网经济的蓬勃发展,推荐系统在电子商务领域也占据了重要的地位。推荐系统通过分析消费者的购买习惯、偏好、喜爱的内容,推荐相关产品、服务,进而提高市场竞争力,提升客户满意度并促进销售额增长。推荐系统可以帮助企业更好地理解消费者需求,为他们提供更精准的服务,从而实现商业利益最大化。

推荐系统技术已经逐渐成为互联网行业的标配技术。例如,YouTube的推荐系统就利用算法推荐观看视频的用户可能会喜欢的视频;美团外卖App的推荐系统根据用户的消费习惯、地理位置、喜好等生成推荐列表,帮助用户快速找到感兴趣的商家。然而,推荐系统面临的主要挑战仍然是如何有效地计算、存储和处理海量数据。例如,新闻推荐场景中,每天产生数十亿条新闻数据,传统基于协同过滤的推荐算法无法胜任这种高速数据流,需要采用深度学习和神经网络的方法。另一个关键问题是时效性。即使是基于线上推荐的数据,由于数据爆炸带来的时效性问题,仍然存在着明显延迟。

为了解决推荐系统面临的两大难题,本文将重点介绍一种新的新闻推荐模型——基于神经递归自动编码器(NR-RNN)的新闻推荐方法。NR-RNN模型是一个端到端的深度学习模型,不需要手工特征工程,直接利用用户点击序列及其对应的文本序列,对用户对不同新闻的喜好进行建模。

2.基本概念术语说明

2.1 用户与兴趣

推荐系统首先要考虑的是用户,即推荐对象。推荐对象通常包括

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值