BERT FineTuning Tutorial with PyTorch.

本文详述了BERT模型的基本概念,如双向Transformer、Masked Language Modeling、Next Sentence Prediction,以及预训练数据。接着介绍了BERT Fine-tuning的核心算法,包括WordPiece Tokenizer、Positional Encoding、Attention机制和MLP分类头。最后,通过实践部分展示了如何使用PyTorch进行BERT的文本分类任务,涵盖数据预处理、模型定义、训练和测试全过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

BERT(Bidirectional Encoder Representations from Transformers)模型是自然语言处理任务中最具代表性的预训练模型之一。其在通用语言理解三项性能基准GLUE、SQuAD、MNLI上均取得了不俗的成绩,被广泛应用于文本分类、问答匹配等领域。本文将详细讲述BERT模型及其Fine-tuning过程,并结合PyTorch实现了一个完整的BERT Finetune实践案例。

2.基本概念

2.1 BERT模型简介

BERT(Bidirectional Encoder Representations from Transformers)是一种基于Transformer模型的预训练语言模型。它最大的特点是在于能够同时考虑左右两边的信息。它通过对上下文进行建模,使得模型可以识别出哪些词对于句子的表现更重要。其通过三种类型的层(encoder layers)来构建Transformer模型,这三种层包括Embedding层、Attention层和MLP层。其中,Embedding层负责对输入的token进行embedding映射,Attention层负责学习句子内部的关系,MLP层则用于做特征抽取。

2.1.1 模型架构

BERT主要由以下三个模块组成:

  1. WordPiece Embedding Layer: 对input token进行wordpiece分词,并通过WordPiece embedding将单词转换成固定维度的向量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值