作者:禅与计算机程序设计艺术
1.简介
许多数据科学领域都在探索使用机器学习(ML)方法进行高效、自动化、可靠的数据分析。传统的聚类方法依赖于标注数据的标签信息,而标记数据往往耗费大量的人力、时间成本;此外,大型数据集往往难以获取足够的标签信息。因此,如何利用数据自身的分布特性对数据进行聚类,成为一个热点研究方向。
人们一直在寻找新的聚类模型,从而解决传统方法中存在的一些缺陷。其中,生成式对抗网络(GANs)被证明是一个有效的解决方案,通过学习生成数据的属性,能够提取出高维空间中的内在结构,并进一步用于聚类任务。
近年来,基于GANs的无监督聚类技术已经引起了越来越多的关注。然而,如何将GANs应用到真实世界的问题上,仍然是一个重要的研究方向。这篇文章就主要介绍GANs的一种变体——生成对抗网络(Generative Adversarial Networks,GAN),以及如何将其应用到聚类问题中。
2.基本概念与术语说明
2.1 GAN概述
生成式对抗网络(Generative Adversarial Networks,GAN),是在GAN模型中由两个相互竞争的神经网络所组成的深度学习模型,分别生成样本数据和识别真实样本。两者之间的博弈在生成器网络和判别器网络之间展开,并不断迭代,最终使得两者达到平衡。由于训练过程是非监督的,因而不需要标记数据,仅需输入图像即可得到分类结果或生成图像。
GAN模型最初被提出是在2014年的ImageNet图像识别挑战赛上,在图像合成方面取得了重大突破。随后,GAN在其他图像处理领域也受到了广泛关注,如生成物体模型、风