AI大型语言模型企业级应用开发架构实战:Large Language Models用户画像与个性推送

本文介绍了大型语言模型在企业级应用中的实践,特别是用户画像和个性推送业务场景。通过数据获取、清洗、特征工程、模型训练等步骤,结合模型压缩与优化,实现用户画像的生成和个性化内容推送,提升用户体验和营销效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.背景介绍

关于什么是大型语言模型,以下是国内外相关的介绍:

  1. 大型语言模型是指具有大量训练数据的自然语言处理(NLP)模型,比如谷歌的BERT、Facebook的RoBERTa等;
  2. 在某些特定任务上,有些语言模型甚至可以训练得比传统方法更好,比如文本分类、文本匹配等;
  3. 不仅如此,一些大的公司内部也都有专门的资源建设用来进行大型语言模型的研究开发工作。 这些词语或许会让人产生一种错觉,觉得语言模型只是深度学习模型的一个子集,其实不尽然。

相对于深度学习模型来说,语言模型所占用的硬件计算资源是少得可怜的,但是其训练数据及参数量却远远超过了深度学习模型。因此,如果想要真正发挥语言模型的潜力,需要结合大数据、分布式训练、高性能硬件等方面进行更加复杂的工程实践。为了能够在实际生产环境中落地大型语言模型,企业级应用开发者必须懂得如何进行架构设计、技术选型、模型压缩、部署管理等一系列工程技术,才能确保系统的稳定性、性能和可用性。本文将从企业级的视角出发,以“用户画像”和“个性推送”两个场景,介绍大型语言模型在这两个业务场景下的应用架构设计。

2.核心概念与联系

2.1 用户画像

首先,我们看一下用户画像这个业务场景。用户画像是通过对用户的行为数据分析得到用户的一系列特征,包括但不限于年龄、性别、兴趣爱好、教育水平、职业、居住区域、消费习惯等信息。这些特征有助于企业精准地向用户提供个性化服务,提升用户体验,提高用户黏性,实现营销转化效益。基于用户画像的数据挖掘技术,如机器学习、数据分析、搜索推荐、个性化推荐、广告投放等方式被广泛应用。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值