【大模型应用开发 动手做AI Agent】Agent的规划和决策能力系列

本文深入探讨了大模型如何赋能AI Agent的规划和决策能力,通过感知、规划、决策三个核心步骤,构建具备自主行动能力的智能体。文章以LLM为例,阐述了其在记忆、规划和工具使用方面的应用,并通过实例展示了如何在智能客服、无人驾驶和游戏AI中应用这些技术。此外,还讨论了未来发展趋势和面临的挑战,包括计算效率、安全性、伦理问题等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OpenAI应用研究主管Lilian Weng在一篇长文中提出了

Agent = LLM(大型语言模型)+记忆+规划技能+工具使用

这一概念。AI Agent需要具备感知环境、做出决策并执行适当行动的能力。在这些关键步骤中,最重要的是理解输入给Agent的内容、进行推理、规划、做出准确决策,并将其转化为可执行的原子动作序列,以实现最终目标。

在这里插入图片描述

一个精简的Agent决策流程:

感知(Perception)→ 规划(Planning)→ 行动(Action)

  • 感知(Perception)是指Agent从环境中收集信息并从中提取相关知识的能力。
  • 规划(Planning)是指Agent为了某一目标而作出的决策过程。
  • 行动(Action)是指基于环境和规划做出的动作。

Agent通过感知从环境中收集信息并提取相关知识。然后通过规划为了达到某个目标做出决策。最后,通过行动基于环境和规划做出具体的动作。Planning是Agent做出行动的核心决策,而行动又为进一步感知提供了观察的前提和基础,形成了一个自主的闭环学习过程。

借用网上的一个案例来解释agent的执行:

  • 当一个人问Agent是否会下雨时,感知模块将指令转换为LLM可以理解的表示。
  • 然后,大脑模块开始根据当前天气和互联网上的天气预报进行推理。
  • 最后,动作模块做出响应,将伞交给人类。
    通过重复上述过程,智能体可以不断地获得反馈并与环境进行交互。

在这里插入图片描述

在以LLM驱动的Agent系统中,LLM扮演着Agent的大脑角色,并辅以几个关键组件:

  • 规划:LLM能够进行全面的规划,不仅仅是简单的任务拆分。它可以评估不同的路径和策略,制定最佳的行动计划,以实现用户给出的目标。

  • 记忆:可以利用LLM具有的记忆功能,存储和检索过去的信息和经验。这使得它能够在处理用户查询时,利用之前学到的知识和经验,提供更准确和个性化的答案。

  • 工具使用:LLM通过理解工具的描述,来学习使用各种工具和资源,并灵活运用它们来支持任务的完成,在构建Agent的时候可以让Agent感知自己可以使用什么工具。工具的实现可以是利用搜索引擎、数据库、调用API等,获取和整理相关信息,以满足用户的需求。

文章目录

### 关于大模型应用开发动手制作AI代理的资源 对于希望深入理解并实际操作大型语言模型LLM)以及构建基于这些模型的应用程序而言,存在多种途径获取所需的知识技术文档。一方面,《大规模语言模型:从理论到实践》这本书籍提供了详细的指导,涵盖了如何利用现有的框架来创建自己的自然语言处理解决方案[^2]。 另一方面,在GitHub上有一个名为`awesome-LLM-resources`的仓库,它不仅包含了丰富的学习材料,还特别提到了一些实用的手册指南,可以帮助开发者更好地理解运用大模型技术进行创新性的项目开发[^3]。尽管该链接主要指向网页形式的内容集合,但其中确实也推荐了一些可以下载为PDF格式的教学文件或白皮书,供读者离线阅读研究。 此外,考虑到构建AI代理涉及到多个方面的工作,包括但不限于对话管理、意图识别服务集成等,因此建议关注那些专注于特定应用场景下的案例分析技术分享的文章或报告。这类资料往往能够提供更加具体的操作步骤说明支持代码样例,有助于加速原型设计过程中的试错周期。 ```python import requests from bs4 import BeautifulSoup def fetch_pdf_links(url): response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') pdf_links = [] for link in soup.find_all('a'): href = link.get('href') if href and '.pdf' in href.lower(): pdf_links.append(href) return pdf_links url = "https://github.com/WangRongsheng/awesome-LLM-resourses" print(fetch_pdf_links(url)) ``` 此段Python脚本可用于抓取指定URL页面内的所有PDF链接,方便用户快速定位感兴趣的PDF教程或指南。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值