视觉Transformer原理与代码实例讲解(1)
1. 背景介绍
近年来,Transformer在自然语言处理(NLP)领域取得了巨大的成功,如BERT和GPT模型。受其启发,研究人员开始将Transformer应用到计算机视觉(CV)领域,提出了视觉Transformer(Vision Transformer, ViT)。视觉Transformer通过将图像划分为一系列的图像块(patch),并将其视为序列数据进行处理,展现了在图像分类任务中强大的性能。
2. 核心概念与联系
2.1 Transformer
Transformer是一种基于自注意力机制的深度学习模型,最初用于自然语言处理任务。其核心组件包括多头自注意力机制(Multi-Head Self-Attention)、前馈神经网络(Feed-Forward Neural Network)和位置编码(Positional Encoding)。
2.2 视觉Transformer(ViT)
视觉Transformer将图像划分为固定大小的图像块(patch),并将每个图像块展平为一维向量。然后,将这些向量作为Transformer的输入序列,通过自注意力机制和前馈神经网络进行处理,最终输出图像的分类结果。
2.3 自注意力机制
自注意力机制通过计算输入序列中每个元素与其他元素之间的相关性,捕捉序列中的全局信息