AdaGrad优化器简介与原理
1.背景介绍
在机器学习和深度学习领域中,优化算法扮演着至关重要的角色。优化算法的目标是找到最小化损失函数(或者最大化目标函数)的模型参数值。传统的优化算法如梯度下降法(Gradient Descent)虽然简单有效,但在处理大规模数据和复杂非凸优化问题时,往往会遇到收敛速度慢、容易陷入局部最优等挑战。
为了解决这些问题,研究人员提出了各种自适应优化算法(Adaptive Optimization Algorithms),其中AdaGrad算法就是一种广为人知的自适应学习率优化算法。AdaGrad算法通过对每个参数分别调整学习率,从而加快收敛速度,避免陷入局部最优,并提高模型的鲁棒性。
2.核心概念与联系
2.1 学习率(Learning Rate)
在优化算法中,学习率决定了每次迭代时参数更新的幅度。较大的学习率可以加快收敛速度,但可能会导致损失函数在最小值附近来回震荡;较小的学习率虽然能够收敛到最小值,但收敛速度较慢。传统的梯度下降法使用固定的全局学习率,无法适应不同参数的特征,因此在处理稀疏数据时表现不佳。
2.2 自适应学习率(Adaptive Learning Rate)
自适应学习率的思想是为不同的参数设置不同的学习率,从而更好地适应各参数的特征。自适应学习率算法通常基于过去梯度的统计信息来动态调整每个参数的学习率,使得具有较大梯度的参数获得较小的学习率,而具有较小梯